Symbolic Computation for Inequalities

Manuel Kauers

Orientation

Algorithms for Symbolic Computation

Orientation

Algorithms for Symbolic Computation

- Objective: Nonlinear (= polynomial) Inequalities over the reals

Orientation

Algorithms for Symbolic Computation

- Objective: Nonlinear (= polynomial) Inequalities over the reals
- Many seemingly unrelated questions concerning inequalities can be answered by CAD.

Orientation

Algorithms for Symbolic Computation

- Objective: Nonlinear (= polynomial) Inequalities over the reals
- Many seemingly unrelated questions concerning inequalities can be answered by CAD.
- Main questions in this tutorial:

When to apply CAD? and How to apply CAD?

Orientation

Algorithms for Symbolic Computation

- Objective: Nonlinear (= polynomial) Inequalities over the reals
- Many seemingly unrelated questions concerning inequalities can be answered by CAD.
- Main questions in this tutorial:

When to apply CAD? and How to apply CAD?

- Not: How does CAD work.

I Typical Questions involving Inequalities

Question 1: Is this true?

Example: Let $a, b, c \in \mathbb{R}$ be such that

$$
\text { 1. } a>0, b>0, c>0 \text { and }
$$

$$
\text { 2. } a+b+c=a b c \text {. }
$$

Show that

$$
\frac{1}{\sqrt{a^{2}+1}}+\frac{1}{\sqrt{b^{2}+1}}+\frac{1}{\sqrt{c^{2}+1}} \leq \frac{3}{2} .
$$

Question 1: Is this true?

Example: Let $a, b, c \in \mathbb{R}$ be such that

$$
\text { 1. } a>0, b>0, c>0 \text { and }
$$

$$
\text { 2. } a+b+c=a b c \text {. }
$$

Show that

$$
\frac{1}{\sqrt{a^{2}+1}}+\frac{1}{\sqrt{b^{2}+1}}+\frac{1}{\sqrt{c^{2}+1}} \leq \frac{3}{2} .
$$

Problem Pattern: Decide whether a given inequality is a consequence of some given constraints

Question 1: Is this true?

Example: Let $a, b, c \in \mathbb{R}$ be such that

1. $a>0, b>0, c>0$ and
2. $a+b+c=a b c$.

Show that

$$
\frac{1}{\sqrt{a^{2}+1}}+\frac{1}{\sqrt{b^{2}+1}}+\frac{1}{\sqrt{c^{2}+1}} \leq \frac{3}{2} .
$$

Problem Pattern: Decide whether a given inequality is a consequence of some given constraints
(Gröbner basis analog: Ideal membership)

Question 2: What are the solutions?

Example: Find all $x, y, z \in \mathbb{R}$ such that

$$
\begin{aligned}
& 0=-10 x^{4}+24 y x^{3}+33 x^{3}-16 y^{2} x^{2}+5 y x^{2}-x^{2}-37 y^{2} x \\
&-50 y x-22 x+2 y^{4}+15 y^{3}-61 y^{2}-46 y+60 \\
& 0=-3 x^{4}+7 y x^{3}+10 x^{3}-5 y^{2} x^{2}+3 y x^{2}-x^{2}+y^{3} x \\
&-12 y^{2} x-16 y x-6 x+7 y^{3}-19 y^{2}-18 y+20 \\
&(x-1)^{2}+(y-1)^{2} \leq 1
\end{aligned}
$$

Question 2: What are the solutions?

Example: Find all $x, y, z \in \mathbb{R}$ such that

$$
\begin{aligned}
& 0=-10 x^{4}+24 y x^{3}+33 x^{3}-16 y^{2} x^{2}+5 y x^{2}-x^{2}-37 y^{2} x \\
& \quad-50 y x-22 x+2 y^{4}+15 y^{3}-61 y^{2}-46 y+60 \\
& 0=-3 x^{4}+7 y x^{3}+10 x^{3}-5 y^{2} x^{2}+3 y x^{2}-x^{2}+y^{3} x \\
& \quad-12 y^{2} x-16 y x-6 x+7 y^{3}-19 y^{2}-18 y+20 \\
& (x-1)^{2}+(y-1)^{2} \leq 1
\end{aligned}
$$

Question 2: What are the solutions?

Example: Find all $x, y, z \in \mathbb{R}$ such that

$$
\begin{aligned}
& 0=-10 x^{4}+24 y x^{3}+33 x^{3}-16 y^{2} x^{2}+5 y x^{2}-x^{2}-37 y^{2} x \\
&-50 y x-22 x+2 y^{4}+15 y^{3}-61 y^{2}-46 y+60 \\
& 0=-3 x^{4}+7 y x^{3}+10 x^{3}-5 y^{2} x^{2}+3 y x^{2}-x^{2}+y^{3} x \\
&-12 y^{2} x-16 y x-6 x+7 y^{3}-19 y^{2}-18 y+20 \\
&(x-1)^{2}+(y-1)^{2} \leq 1
\end{aligned}
$$

There are finitely many solutions:
$\left(\frac{1}{2}, 1\right),\left(1, \frac{1}{2}\right)$, and $\left(\frac{1}{2}, \frac{1}{2}\right)$.

Question 2: What are the solutions?

Example: Find all $x, y, z \in \mathbb{R}$ such that

$$
\begin{aligned}
& 0=-10 x^{4}+24 y x^{3}+33 x^{3}-16 y^{2} x^{2}+5 y x^{2}-x^{2}-37 y^{2} x \\
&-50 y x-22 x+2 y^{4}+15 y^{3}-61 y^{2}-46 y+60 \\
& 0=-3 x^{4}+7 y x^{3}+10 x^{3}-5 y^{2} x^{2}+3 y x^{2}-x^{2}+y^{3} x \\
&-12 y^{2} x-16 y x-6 x+7 y^{3}-19 y^{2}-18 y+20 \\
&(x-1)^{2}+(y-1)^{2} \leq 1
\end{aligned}
$$

Problem Pattern: Determine the solutions of a given system of equations and inequalities.

Question 2: What are the solutions?

Example: Find all $x, y, z \in \mathbb{R}$ such that

$$
\begin{aligned}
& 0=-10 x^{4}+24 y x^{3}+33 x^{3}-16 y^{2} x^{2}+5 y x^{2}-x^{2}-37 y^{2} x \\
&-50 y x-22 x+2 y^{4}+15 y^{3}-61 y^{2}-46 y+60 \\
& 0=-3 x^{4}+7 y x^{3}+10 x^{3}-5 y^{2} x^{2}+3 y x^{2}-x^{2}+y^{3} x \\
&-12 y^{2} x-16 y x-6 x+7 y^{3}-19 y^{2}-18 y+20 \\
&(x-1)^{2}+(y-1)^{2} \leq 1
\end{aligned}
$$

Problem Pattern: Determine the solutions of a given system of equations and inequalities.
(Gröbner basis analog: Solving algebraic equation systems)

Question 2: What are the solutions?

Example: Find all $x, y, z \in \mathbb{R}$ such that

$$
\begin{aligned}
& 0=-10 x^{4}+24 y x^{3}+33 x^{3}-16 y^{2} x^{2}+5 y x^{2}-x^{2}-37 y^{2} x \\
&-50 y x-22 x+2 y^{4}+15 y^{3}-61 y^{2}-46 y+60 \\
& 0=-3 x^{4}+7 y x^{3}+10 x^{3}-5 y^{2} x^{2}+3 y x^{2}-x^{2}+y^{3} x \\
&-12 y^{2} x-16 y x-6 x+7 y^{3}-19 y^{2}-18 y+20 \\
&(x-1)^{2}+(y-1)^{2} \leq 1
\end{aligned}
$$

Problem Pattern: Determine the solutions of a given system of equations and inequalities.
(Gröbner basis analog: Solving algebraic equation systems)
Special case: real solutions of algebraic equation systems (Gröbner bases give complex solutions by default)

Question 3: What is the dimension?

Example 1: The real solution set $S \subseteq \mathbb{R}^{3}$ of the system

$$
0 \leq x \leq 1, y^{2} \leq 1-x, z^{2}=x
$$

has dimension 2.

Question 3: What is the dimension?

Example 2: The real solution set $S \subseteq \mathbb{R}^{3}$ of the equation

$$
\begin{aligned}
0=4 x^{4} & -8 y x^{2}-8 z x^{2}+x^{2}+2 y^{2} x \\
& +y^{4}+4 y^{2}+4 z^{2}+8 y z
\end{aligned}
$$

has dimension 1.
(Note: Ideal dimension is 2.)

Question 3: What is the dimension?

Example 2: The real solution set $S \subseteq \mathbb{R}^{3}$ of the equation

$$
\begin{gathered}
0=4 x^{4}-8 y x^{2}-8 z x^{2}+x^{2}+2 y^{2} x \\
+y^{4}+4 y^{2}+4 z^{2}+8 y z
\end{gathered}
$$

has dimension 1.
(Note: Ideal dimension is 2.)

Problem Pattern: Determine the (real) dimension of the solution set of a system of polynomial inequalities

Question 4: When is this true?

Example: For which $a, b \in \mathbb{R}$ does the formula
$\forall x, y \in \mathbb{R}: a^{2}-2 b^{2} a-2 y a+(1-2 a) x^{2}+4 y^{2}+x(2 y-4 b a-2 a) \geq 0$ become valid?

Question 4: When is this true?

Example: For which $a, b \in \mathbb{R}$ does the formula
$\forall x, y \in \mathbb{R}: a^{2}-2 b^{2} a-2 y a+(1-2 a) x^{2}+4 y^{2}+x(2 y-4 b a-2 a) \geq 0$ become valid?
Answer: Precisely for those $a, b \in \mathbb{R}$ that satisfy

$$
a \leq 0 \vee\left(0<a \leq \frac{3}{8} \wedge b=-a\right)
$$

Question 4: When is this true?

Example: For which $a, b \in \mathbb{R}$ does the formula
$\forall x, y \in \mathbb{R}: a^{2}-2 b^{2} a-2 y a+(1-2 a) x^{2}+4 y^{2}+x(2 y-4 b a-2 a) \geq 0$
become valid?
Answer: Precisely for those $a, b \in \mathbb{R}$ that satisfy

$$
a \leq 0 \vee\left(0<a \leq \frac{3}{8} \wedge b=-a\right)
$$

Problem Pattern: Given a formula

$$
\Phi \equiv \forall \exists x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{R}: A\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)
$$

determine a quantifier free formula

$$
B\left(y_{1}, \ldots, y_{m}\right)
$$

which is equivalent to Φ

Question 4: When is this true?

Example: For which $a, b \in \mathbb{R}$ does the formula
$\forall x, y \in \mathbb{R}: a^{2}-2 b^{2} a-2 y a+(1-2 a) x^{2}+4 y^{2}+x(2 y-4 b a-2 a) \geq 0$
become valid?
Answer: Precisely for those $a, b \in \mathbb{R}$ that satisfy

$$
a \leq 0 \vee\left(0<a \leq \frac{3}{8} \wedge b=-a\right)
$$

Problem Pattern: Given a formula

$$
\Phi \equiv \forall \exists x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{R}: A\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)
$$

determine a quantifier free formula

$$
B\left(y_{1}, \ldots, y_{m}\right)
$$

which is equivalent to Φ
(Gröbner basis analog: Elimination)

I/ The Machine:
Cylindrical Algebraic Decomposition
(George E. Collins, 1975)

Algebraic Decomposition

A finite set of polynomials $\left\{p_{1}, \ldots, p_{m}\right\} \subseteq \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ induces a decomposition ("partition") of \mathbb{R}^{n} into maximal sign-invariant cells ("regions").

Algebraic Decomposition

A finite set of polynomials $\left\{p_{1}, \ldots, p_{m}\right\} \subseteq \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ induces a decomposition ("partition") of \mathbb{R}^{n} into maximal sign-invariant cells ("regions").

Example: The polynomials $p_{1}=x^{2}+y^{2}-4$ and $p_{2}=(x-1)(y-1)-1$ induce a decomposition of \mathbb{R}^{2} into
13 cells:

Algebraic Decomposition

A finite set of polynomials $\left\{p_{1}, \ldots, p_{m}\right\} \subseteq \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ induces a decomposition ("partition") of \mathbb{R}^{n} into maximal sign-invariant cells ("regions").

Example: The polynomials $p_{1}=x^{2}+y^{2}-4$ and $p_{2}=(x-1)(y-1)-1$ induce a decomposition of \mathbb{R}^{2} into 13 cells:

For all points (x, y) in the shaded cell, we have

$$
p_{1}(x, y)>0 \quad \text { and } \quad p_{2}(x, y)<0 .
$$

Algebraic Decomposition

A finite set of polynomials $\left\{p_{1}, \ldots, p_{m}\right\} \subseteq \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ induces a decomposition ("partition") of \mathbb{R}^{n} into maximal sign-invariant cells ("regions").

Example: The polynomials $p_{1}=x^{2}+y^{2}-4$ and $p_{2}=(x-1)(y-1)-1$ induce a decomposition of \mathbb{R}^{2} into 13 cells:

For all points (x, y) in the shaded cell, we have

$$
p_{1}(x, y)>0 \quad \text { and } \quad p_{2}(x, y)>0 .
$$

Algebraic Decomposition

A finite set of polynomials $\left\{p_{1}, \ldots, p_{m}\right\} \subseteq \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ induces a decomposition ("partition") of \mathbb{R}^{n} into maximal sign-invariant cells ("regions").

Example: The polynomials $p_{1}=x^{2}+y^{2}-4$ and $p_{2}=(x-1)(y-1)-1$ induce a decomposition of \mathbb{R}^{2} into 13 cells:

For all points (x, y) in the shaded cell, we have

$$
p_{1}(x, y)<0 \quad \text { and } \quad p_{2}(x, y)>0 .
$$

Algebraic Decomposition

A finite set of polynomials $\left\{p_{1}, \ldots, p_{m}\right\} \subseteq \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ induces a decomposition ("partition") of \mathbb{R}^{n} into maximal sign-invariant cells ("regions").

Example: The polynomials $p_{1}=x^{2}+y^{2}-4$ and $p_{2}=(x-1)(y-1)-1$ induce a decomposition of \mathbb{R}^{2} into 13 cells:

For all points (x, y) in the shaded cell, we have

$$
p_{1}(x, y)<0 \quad \text { and } \quad p_{2}(x, y)<0
$$

Algebraic Decomposition

A finite set of polynomials $\left\{p_{1}, \ldots, p_{m}\right\} \subseteq \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ induces a decomposition ("partition") of \mathbb{R}^{n} into maximal sign-invariant cells ("regions").

Example: The polynomials $p_{1}=x^{2}+y^{2}-4$ and $p_{2}=(x-1)(y-1)-1$ induce a decomposition of \mathbb{R}^{2} into 13 cells:

For all points (x, y) in the shaded cell, we have

$$
p_{1}(x, y)>0 \quad \text { and } \quad p_{2}(x, y)>0 .
$$

Algebraic Decomposition

A finite set of polynomials $\left\{p_{1}, \ldots, p_{m}\right\} \subseteq \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ induces a decomposition ("partition") of \mathbb{R}^{n} into maximal sign-invariant cells ("regions").

Example: The polynomials $p_{1}=x^{2}+y^{2}-4$ and $p_{2}=(x-1)(y-1)-1$ induce a decomposition of \mathbb{R}^{2} into 13 cells:

For all points (x, y) in the shaded cell, we have

$$
p_{1}(x, y)=0 \quad \text { and } \quad p_{2}(x, y)>0
$$

Algebraic Decomposition

A finite set of polynomials $\left\{p_{1}, \ldots, p_{m}\right\} \subseteq \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ induces a decomposition ("partition") of \mathbb{R}^{n} into maximal sign-invariant cells ("regions").

Example: The polynomials $p_{1}=x^{2}+y^{2}-4$ and $p_{2}=(x-1)(y-1)-1$ induce a decomposition of \mathbb{R}^{2} into 13 cells:

For all points (x, y) in the shaded cell, we have

$$
p_{1}(x, y)=0 \quad \text { and } \quad p_{2}(x, y)<0
$$

Algebraic Decomposition

A finite set of polynomials $\left\{p_{1}, \ldots, p_{m}\right\} \subseteq \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ induces a decomposition ("partition") of \mathbb{R}^{n} into maximal sign-invariant cells ("regions").

Example: The polynomials $p_{1}=x^{2}+y^{2}-4$ and $p_{2}=(x-1)(y-1)-1$ induce a decomposition of \mathbb{R}^{2} into
13 cells:

For all points (x, y) in the shaded cell, we have

$$
p_{1}(x, y)<0 \quad \text { and } \quad p_{2}(x, y)=0
$$

Algebraic Decomposition

A finite set of polynomials $\left\{p_{1}, \ldots, p_{m}\right\} \subseteq \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ induces a decomposition ("partition") of \mathbb{R}^{n} into maximal sign-invariant cells ("regions").

Example: The polynomials $p_{1}=x^{2}+y^{2}-4$ and $p_{2}=(x-1)(y-1)-1$ induce a decomposition of \mathbb{R}^{2} into 13 cells:

For all points (x, y) in the shaded cell, we have

$$
p_{1}(x, y)>0 \quad \text { and } \quad p_{2}(x, y)=0 .
$$

Algebraic Decomposition

A finite set of polynomials $\left\{p_{1}, \ldots, p_{m}\right\} \subseteq \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ induces a decomposition ("partition") of \mathbb{R}^{n} into maximal sign-invariant cells ("regions").

Example: The polynomials $p_{1}=x^{2}+y^{2}-4$ and $p_{2}=(x-1)(y-1)-1$ induce a decomposition of \mathbb{R}^{2} into
13 cells:

For all points (x, y) in the shaded cell, we have

$$
p_{1}(x, y)>0 \quad \text { and } \quad p_{2}(x, y)=0
$$

Algebraic Decomposition

A finite set of polynomials $\left\{p_{1}, \ldots, p_{m}\right\} \subseteq \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ induces a decomposition ("partition") of \mathbb{R}^{n} into maximal sign-invariant cells ("regions").

Example: The polynomials $p_{1}=x^{2}+y^{2}-4$ and $p_{2}=(x-1)(y-1)-1$ induce a decomposition of \mathbb{R}^{2} into
13 cells:

For all points (x, y) in the shaded cell, we have

$$
p_{1}(x, y)>0 \quad \text { and } \quad p_{2}(x, y)=0
$$

Algebraic Decomposition

A finite set of polynomials $\left\{p_{1}, \ldots, p_{m}\right\} \subseteq \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ induces a decomposition ("partition") of \mathbb{R}^{n} into maximal sign-invariant cells ("regions").

Example: The polynomials $p_{1}=x^{2}+y^{2}-4$ and $p_{2}=(x-1)(y-1)-1$ induce a decomposition of \mathbb{R}^{2} into
13 cells:

For all points (x, y) in the shaded cell, we have

$$
p_{1}(x, y)=0 \quad \text { and } \quad p_{2}(x, y)=0
$$

Algebraic Decomposition

A finite set of polynomials $\left\{p_{1}, \ldots, p_{m}\right\} \subseteq \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ induces a decomposition ("partition") of \mathbb{R}^{n} into maximal sign-invariant cells ("regions").

Example: The polynomials $p_{1}=x^{2}+y^{2}-4$ and $p_{2}=(x-1)(y-1)-1$ induce a decomposition of \mathbb{R}^{2} into
13 cells:

For all points (x, y) in the shaded cell, we have

$$
p_{1}(x, y)=0 \quad \text { and } \quad p_{2}(x, y)=0
$$

Algebraic Decomposition

A finite set of polynomials $\left\{p_{1}, \ldots, p_{m}\right\} \subseteq \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ induces a decomposition ("partition") of \mathbb{R}^{n} into maximal sign-invariant cells ("regions").

Example: The polynomials $p_{1}=x^{2}+y^{2}-4$ and $p_{2}=(x-1)(y-1)-1$ induce a decomposition of \mathbb{R}^{2} into 13 cells:

Precise Definition:
A cell in the algebraic decomposition of

$$
\left\{p_{1}, \ldots, p_{m}\right\} \subseteq \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]
$$

is a maximal connected subset of \mathbb{R}^{n} on which all the p_{i} are sign invariant.

Tarski Formulas

A Tarski Formula is a formula in first order predicate logic whose atomic formulas are of the form

$$
\operatorname{poly}\left(x_{1}, \ldots, x_{n}\right) \diamond 0
$$

where

- $\operatorname{poly}\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$, and
- $\diamond \in\{=, \neq,>,<, \geq, \leq\}$

Tarski Formulas

A Tarski Formula is a formula in first order predicate logic whose atomic formulas are of the form

$$
\operatorname{poly}\left(x_{1}, \ldots, x_{n}\right) \diamond 0
$$

where

- $\operatorname{poly}\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$, and
- $\diamond \in\{=, \neq,>,<, \geq, \leq\}$

Examples

- $x^{2}+y^{2} \leq 1 \wedge(x-1)(y-1)>1$
- $\forall x \exists y: x^{2}+y^{2}>z^{2} \Rightarrow z^{2}<1$
- $\exists y: y^{2}-x^{5}<0$

Tarski Formulas vs. Algebraic Decomposition

Truth of a Tarski Formula can be determined by inspection from the algebraic decomposition of the involved polynomials.

Tarski Formulas vs. Algebraic Decomposition

Truth of a Tarski Formula can be determined by inspection from the algebraic decomposition of the involved polynomials.

Example: $\forall x \exists y: x^{2}+y^{2}>4 \Longleftrightarrow(x-1)(y-1)>1$

Tarski Formulas vs. Algebraic Decomposition

Truth of a Tarski Formula can be determined by inspection from the algebraic decomposition of the involved polynomials.

Example: $\forall x \exists y: x^{2}+y^{2}>4 \Longleftrightarrow(x-1)(y-1)>1$
Consider the cell(s) for which the quantifier free part

$$
x^{2}+y^{2}>4 \Longleftrightarrow(x-1)(y-1)<1
$$

is true.

Tarski Formulas vs. Algebraic Decomposition

Truth of a Tarski Formula can be determined by inspection from the algebraic decomposition of the involved polynomials.

Example: $\forall x \exists y: x^{2}+y^{2}>4 \Longleftrightarrow(x-1)(y-1)>1$
Consider the cell(s) for which the quantifier free part

$$
x^{2}+y^{2}>4 \Longleftrightarrow(x-1)(y-1)<1
$$

is true.
Obviously, each vertical line $x=\alpha$ intersects one of those cells nontrivially. The $\forall x \exists y$ claim follows.

Cylindrical Algebraic Decomposition: Motivation

Observation: It does not hurt if we change from a decomposition for $\left\{p_{1}, \ldots, p_{m}\right\}$ to a decomposition for $\left\{p_{1}, \ldots, p_{m}, q_{1}, \ldots, q_{k}\right\}$ for some polynomials $q_{1}, \ldots, q_{k} \in \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$.

Cylindrical Algebraic Decomposition: Motivation

Observation: It does not hurt if we change from a decomposition for $\left\{p_{1}, \ldots, p_{m}\right\}$ to a decomposition for $\left\{p_{1}, \ldots, p_{m}, q_{1}, \ldots, q_{k}\right\}$ for some polynomials $q_{1}, \ldots, q_{k} \in \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$.

The reasoning of the previous example is not affected.

Cylindrical Algebraic Decomposition: Motivation

Observation: It does not hurt if we change from a decomposition for $\left\{p_{1}, \ldots, p_{m}\right\}$ to a decomposition for $\left\{p_{1}, \ldots, p_{m}, q_{1}, \ldots, q_{k}\right\}$ for some polynomials $q_{1}, \ldots, q_{k} \in \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$.

The reasoning of the previous example is not affected.
Goal: Given p_{1}, \ldots, p_{m}, find polynomials q_{1}, \ldots, q_{k} such that the decomposition of $\left\{p_{1}, \ldots, p_{m}, q_{1}, \ldots, q_{k}\right\}$ is easier to deal with.

Cylindrical Algebraic Decomposition: Motivation

Observation: It does not hurt if we change from a decomposition for $\left\{p_{1}, \ldots, p_{m}\right\}$ to a decomposition for $\left\{p_{1}, \ldots, p_{m}, q_{1}, \ldots, q_{k}\right\}$ for some polynomials $q_{1}, \ldots, q_{k} \in \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$.

The reasoning of the previous example is not affected.
Goal: Given p_{1}, \ldots, p_{m}, find polynomials q_{1}, \ldots, q_{k} such that the decomposition of $\left\{p_{1}, \ldots, p_{m}, q_{1}, \ldots, q_{k}\right\}$ is easier to deal with.

In particular, it should be possible to carry out the reasoning on the previous slide automatically.

Cylindrical Algebraic Decomposition: Motivation

Observation: It does not hurt if we change from a decomposition for $\left\{p_{1}, \ldots, p_{m}\right\}$ to a decomposition for $\left\{p_{1}, \ldots, p_{m}, q_{1}, \ldots, q_{k}\right\}$ for some polynomials $q_{1}, \ldots, q_{k} \in \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$.

The reasoning of the previous example is not affected.
Goal: Given p_{1}, \ldots, p_{m}, find polynomials q_{1}, \ldots, q_{k} such that the decomposition of $\left\{p_{1}, \ldots, p_{m}, q_{1}, \ldots, q_{k}\right\}$ is easier to deal with.

In particular, it should be possible to carry out the reasoning on the previous slide automatically.

This motivates the definition of a Cylindrical Algebraic Decomposition.

Cylindrical Algebraic Decomposition: Definition

For $n \in \mathbb{N}$, let

$$
\pi_{n}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n-1}, \quad\left(x_{1}, \ldots, x_{n-1}, x_{n}\right) \mapsto\left(x_{1}, \ldots, x_{n-1}\right)
$$

denote the canonical projection.

Cylindrical Algebraic Decomposition: Definition

For $n \in \mathbb{N}$, let

$$
\pi_{n}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n-1}, \quad\left(x_{1}, \ldots, x_{n-1}, x_{n}\right) \mapsto\left(x_{1}, \ldots, x_{n-1}\right)
$$

denote the canonical projection.

Definition: Let $p_{1}, \ldots, p_{m} \in \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$. The algebraic decomposition of $\left\{p_{1}, \ldots, p_{m}\right\}$ is called cylindrical, if

Cylindrical Algebraic Decomposition: Definition

For $n \in \mathbb{N}$, let

$$
\pi_{n}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n-1}, \quad\left(x_{1}, \ldots, x_{n-1}, x_{n}\right) \mapsto\left(x_{1}, \ldots, x_{n-1}\right)
$$

denote the canonical projection.

Definition: Let $p_{1}, \ldots, p_{m} \in \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$. The algebraic decomposition of $\left\{p_{1}, \ldots, p_{m}\right\}$ is called cylindrical, if

- For any two cells C, D of the decomposition, the images $\pi_{n}(C), \pi_{n}(D)$ are either identical or disjoint.

Cylindrical Algebraic Decomposition: Definition

For $n \in \mathbb{N}$, let

$$
\pi_{n}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n-1}, \quad\left(x_{1}, \ldots, x_{n-1}, x_{n}\right) \mapsto\left(x_{1}, \ldots, x_{n-1}\right)
$$

denote the canonical projection.

Definition: Let $p_{1}, \ldots, p_{m} \in \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$. The algebraic decomposition of $\left\{p_{1}, \ldots, p_{m}\right\}$ is called cylindrical, if

- For any two cells C, D of the decomposition, the images $\pi_{n}(C), \pi_{n}(D)$ are either identical or disjoint.
- The algebraic decomposition of $\left\{p_{1}, \ldots, p_{m}\right\} \cap \mathbb{Q}\left[x_{1}, \ldots, x_{n-1}\right]$ is cylindrical.

Cylindrical Algebraic Decomposition: Definition

For $n \in \mathbb{N}$, let

$$
\pi_{n}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n-1}, \quad\left(x_{1}, \ldots, x_{n-1}, x_{n}\right) \mapsto\left(x_{1}, \ldots, x_{n-1}\right)
$$

denote the canonical projection.

Definition: Let $p_{1}, \ldots, p_{m} \in \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$. The algebraic decomposition of $\left\{p_{1}, \ldots, p_{m}\right\}$ is called cylindrical, if

- For any two cells C, D of the decomposition, the images $\pi_{n}(C), \pi_{n}(D)$ are either identical or disjoint.
- The algebraic decomposition of $\left\{p_{1}, \ldots, p_{m}\right\} \cap \mathbb{Q}\left[x_{1}, \ldots, x_{n-1}\right]$ is cylindrical.
Base case: Any algebraic decomposition of \mathbb{R}^{1} is cylindrical.

Cylindrical Algebraic Decomposition: Definition

Warning: The term "Cylindrical Algebraic Decomposition" (CAD) is also used for:

Cylindrical Algebraic Decomposition: Definition

Warning: The term "Cylindrical Algebraic Decomposition" (CAD) is also used for:

- A data structure for representing a cylindrical algebraic decomposition by a symbolic description and a sample point for each cell.

Cylindrical Algebraic Decomposition: Definition

Warning: The term "Cylindrical Algebraic Decomposition" (CAD) is also used for:

- A data structure for representing a cylindrical algebraic decomposition by a symbolic description and a sample point for each cell.
- The process of making a decomposition cylindrical (by adding suitable additional polynomials) and constructing this data structure. (Collin's algorithm.)

Cylindrical Algebraic Decomposition: Definition

Warning: The term "Cylindrical Algebraic Decomposition" (CAD) is also used for:

- A data structure for representing a cylindrical algebraic decomposition by a symbolic description and a sample point for each cell.
- The process of making a decomposition cylindrical (by adding suitable additional polynomials) and constructing this data structure. (Collin's algorithm.)

These three notions are used in parallel, but this does usually not cause much confusion.

Cylindrical Algebraic Decomposition: Example

Consider again $\left\{x^{2}+y^{2}-4,(x-1)(y-1)-1\right\} \subseteq \mathbb{Q}[x, y]$

This is not a CAD. Why not?

Cylindrical Algebraic Decomposition: Example

Consider again $\left\{x^{2}+y^{2}-4,(x-1)(y-1)-1\right\} \subseteq \mathbb{Q}[x, y]$

This is not a CAD. Why not?
Consider the two shaded cells.

Cylindrical Algebraic Decomposition: Example

Consider again $\left\{x^{2}+y^{2}-4,(x-1)(y-1)-1\right\} \subseteq \mathbb{Q}[x, y]$

This is not a CAD. Why not?
Consider the two shaded cells.
Their projection to the real line is neither disjoint nor identical.

Cylindrical Algebraic Decomposition: Example

Consider again $\left\{x^{2}+y^{2}-4,(x-1)(y-1)-1\right\} \subseteq \mathbb{Q}[x, y]$

This is not a CAD. Why not?
Consider the two shaded cells.
Their projection to the real line is neither disjoint nor identical.

Fix: Insert a vertical line.

Cylindrical Algebraic Decomposition: Example

Consider again $\left\{x^{2}+y^{2}-4,(x-1)(y-1)-1\right\} \subseteq \mathbb{Q}[x, y]$

This is not a CAD. Why not?
Consider the two shaded cells.
Their projection to the real line is neither disjoint nor identical.

Fix: Insert a vertical line.

Cylindrical Algebraic Decomposition: Example

Consider again $\left\{x^{2}+y^{2}-4,(x-1)(y-1)-1\right\} \subseteq \mathbb{Q}[x, y]$

This is not a CAD. Why not?
Consider the two shaded cells.
Their projection to the real line is neither disjoint nor identical.

Fix: Insert a vertical line.
Proceed analogously for all other cell pairs. The result is a CAD.

Cylindrical Algebraic Decomposition: 3D-Example

Consider $\left\{x^{2}+y^{2}+z^{2}-1\right\} \subseteq \mathbb{Q}[x, y, z]$

Cylindrical Algebraic Decomposition: 3D-Example

Consider $\left\{x^{2}+y^{2}+z^{2}-1\right\} \subseteq \mathbb{Q}[x, y, z]$

1. Account for the projection $(x, y, z) \mapsto(x, y)$: Add a cylinder arround the ball.

Cylindrical Algebraic Decomposition: 3D-Example

Consider $\left\{x^{2}+y^{2}+z^{2}-1\right\} \subseteq \mathbb{Q}[x, y, z]$

1. Account for the projection $(x, y, z) \mapsto(x, y)$: Add a cylinder arround the ball.
2. The image of this projection must be a CAD as well: Add two tangential planes as in the 2D example before.

Cylindrical Algebraic Decomposition: 3D-Example

Consider $\left\{x^{2}+y^{2}+z^{2}-1\right\} \subseteq \mathbb{Q}[x, y, z]$

1. Account for the projection $(x, y, z) \mapsto(x, y)$: Add a cylinder arround the ball.
2. The image of this projection must be a CAD as well: Add two tangential planes as in the 2D example before.

Result: $\left\{x^{2}+y^{2}+z^{2}-1, x^{2}+y^{2}-1, x^{2}-1\right\}$ is a CAD for $\left\{x^{2}+y^{2}+z^{2}-1\right\}$.

Representation of a CAD in the Computer

The CAD-algorithm delivers a CAD in form of a tree.

Representation of a CAD in the Computer

The CAD-algorithm delivers a CAD in form of a tree.

Representation of a CAD in the Computer

The CAD-algorithm delivers a CAD in form of a tree.

Representation of a CAD in the Computer

The CAD-algorithm delivers a CAD in form of a tree.

Representation of a CAD in the Computer

The CAD-algorithm delivers a CAD in form of a tree.

Representation of a CAD in the Computer

The CAD-algorithm delivers a CAD in form of a tree.

Each path in this tree describes an individual cell of the CAD.

Representation of a CAD in the Computer

The CAD-algorithm delivers a CAD in form of a tree.

Each path in this tree describes an individual cell of the CAD. Sample points for each cell are easily obtained from this representation.

Representation of a CAD in the Computer

Here is a part of the tree for our 2D example:

where

- $\alpha=\frac{1}{2}(1-\sqrt{5}-\sqrt{2(1+\sqrt{5})})$
- $\beta=\frac{1}{2}(1-\sqrt{5}+\sqrt{2(1+\sqrt{5})})$

Representation of a CAD in the Computer

Here is a part of the tree for our 2D example:

where

- $\alpha=\frac{1}{2}(1-\sqrt{5}-\sqrt{2(1+\sqrt{5})})$
- $\beta=\frac{1}{2}(1-\sqrt{5}+\sqrt{2(1+\sqrt{5})})$

Representation of a CAD in the Computer

Here is a part of the tree for our 2D example:

where

- $\alpha=\frac{1}{2}(1-\sqrt{5}-\sqrt{2(1+\sqrt{5})})$
- $\beta=\frac{1}{2}(1-\sqrt{5}+\sqrt{2(1+\sqrt{5})})$

Representation of a CAD in the Computer

Here is a part of the tree for our 2D example:

where

- $\alpha=\frac{1}{2}(1-\sqrt{5}-\sqrt{2(1+\sqrt{5})})$
- $\beta=\frac{1}{2}(1-\sqrt{5}+\sqrt{2(1+\sqrt{5})})$

Representation of a CAD in the Computer

Here is a part of the tree for our 2D example:

where

- $\alpha=\frac{1}{2}(1-\sqrt{5}-\sqrt{2(1+\sqrt{5})})$
- $\beta=\frac{1}{2}(1-\sqrt{5}+\sqrt{2(1+\sqrt{5})})$

Representation of a CAD in the Computer

Here is a part of the tree for our 2D example:

where

- $\alpha=\frac{1}{2}(1-\sqrt{5}-\sqrt{2(1+\sqrt{5})})$
- $\beta=\frac{1}{2}(1-\sqrt{5}+\sqrt{2(1+\sqrt{5})})$

Representation of a CAD in the Computer

Here is a part of the tree for our 2D example:

where

- $\alpha=\frac{1}{2}(1-\sqrt{5}-\sqrt{2(1+\sqrt{5})})$
- $\beta=\frac{1}{2}(1-\sqrt{5}+\sqrt{2(1+\sqrt{5})})$

Representation of a CAD in the Computer

Here is a part of the tree for our 2D example:

where

- $\alpha=\frac{1}{2}(1-\sqrt{5}-\sqrt{2(1+\sqrt{5})})$
- $\beta=\frac{1}{2}(1-\sqrt{5}+\sqrt{2(1+\sqrt{5})})$

Representation of a CAD in the Computer

Here is a part of the tree for our 2D example:

where

- $\alpha=\frac{1}{2}(1-\sqrt{5}-\sqrt{2(1+\sqrt{5})})$
- $\beta=\frac{1}{2}(1-\sqrt{5}+\sqrt{2(1+\sqrt{5})})$

Representation of a CAD in the Computer

Here is a part of the tree for our 2D example:

where

- $\alpha=\frac{1}{2}(1-\sqrt{5}-\sqrt{2(1+\sqrt{5})})$
- $\beta=\frac{1}{2}(1-\sqrt{5}+\sqrt{2(1+\sqrt{5})})$

Representation of a CAD in the Computer

Here is a part of the tree for our 2D example:

where

- $\alpha=\frac{1}{2}(1-\sqrt{5}-\sqrt{2(1+\sqrt{5})})$
- $\beta=\frac{1}{2}(1-\sqrt{5}+\sqrt{2(1+\sqrt{5})})$

Representation of a CAD in the Computer

Here is a part of the tree for our 2D example:

where

- $\alpha=\frac{1}{2}(1-\sqrt{5}-\sqrt{2(1+\sqrt{5})})$
- $\beta=\frac{1}{2}(1-\sqrt{5}+\sqrt{2(1+\sqrt{5})})$
- $\gamma(x)=-\sqrt{4-x^{2}}$
- $\delta(x)=\frac{x}{x-1}$
- $\epsilon(x)=\sqrt{4-x^{2}}$

Representation of a CAD in the Computer

Here is a part of the tree for our 2D example:

where

- $\alpha=\frac{1}{2}(1-\sqrt{5}-\sqrt{2(1+\sqrt{5})})$
- $\beta=\frac{1}{2}(1-\sqrt{5}+\sqrt{2(1+\sqrt{5})})$
- $\gamma(x)=-\sqrt{4-x^{2}}$
- $\delta(x)=\frac{x}{x-1}$
- $\epsilon(x)=\sqrt{4-x^{2}}$

Representation of a CAD in the Computer

Here is a part of the tree for our 2D example:

where

- $\alpha=\frac{1}{2}(1-\sqrt{5}-\sqrt{2(1+\sqrt{5})})$
- $\beta=\frac{1}{2}(1-\sqrt{5}+\sqrt{2(1+\sqrt{5})})$
- $\gamma(x)=-\sqrt{4-x^{2}}$
- $\delta(x)=\frac{x}{x-1}$
- $\epsilon(x)=\sqrt{4-x^{2}}$

Representation of a CAD in the Computer

Here is a part of the tree for our 2D example:

where

- $\alpha=\frac{1}{2}(1-\sqrt{5}-\sqrt{2(1+\sqrt{5})})$
- $\beta=\frac{1}{2}(1-\sqrt{5}+\sqrt{2(1+\sqrt{5})})$
- $\gamma(x)=-\sqrt{4-x^{2}}$
- $\delta(x)=\frac{x}{x-1}$
- $\epsilon(x)=\sqrt{4-x^{2}}$

Representation of a CAD in the Computer

Here is a part of the tree for our 2D example:

where

- $\alpha=\frac{1}{2}(1-\sqrt{5}-\sqrt{2(1+\sqrt{5})})$
- $\beta=\frac{1}{2}(1-\sqrt{5}+\sqrt{2(1+\sqrt{5})})$
- $\gamma(x)=-\sqrt{4-x^{2}}$
- $\delta(x)=\frac{x}{x-1}$
- $\epsilon(x)=\sqrt{4-x^{2}}$

Representation of a CAD in the Computer

Here is a part of the tree for our 2D example:

where

- $\alpha=\frac{1}{2}(1-\sqrt{5}-\sqrt{2(1+\sqrt{5})})$
- $\beta=\frac{1}{2}(1-\sqrt{5}+\sqrt{2(1+\sqrt{5})})$
- $\gamma(x)=-\sqrt{4-x^{2}}$
- $\delta(x)=\frac{x}{x-1}$
- $\epsilon(x)=\sqrt{4-x^{2}}$

Representation of a CAD in the Computer

Here is a part of the tree for our 2D example:

where

- $\alpha=\frac{1}{2}(1-\sqrt{5}-\sqrt{2(1+\sqrt{5})})$
- $\beta=\frac{1}{2}(1-\sqrt{5}+\sqrt{2(1+\sqrt{5})})$
- $\gamma(x)=-\sqrt{4-x^{2}}$
- $\delta(x)=\frac{x}{x-1}$
- $\epsilon(x)=\sqrt{4-x^{2}}$

Representation of a CAD in the Computer

Here is a part of the tree for our 2D example:

where

- $\alpha=\frac{1}{2}(1-\sqrt{5}-\sqrt{2(1+\sqrt{5})})$
- $\beta=\frac{1}{2}(1-\sqrt{5}+\sqrt{2(1+\sqrt{5})})$
- $\gamma(x)=-\sqrt{4-x^{2}}$
- $\delta(x)=\frac{x}{x-1}$
- $\epsilon(x)=\sqrt{4-x^{2}}$

III Using CAD for Answering
Questions involving Inequalities

Question 4: When is this true?

$$
\begin{aligned}
& \text { Problem Pattern: Given a Tarski formula } \\
& \qquad \Phi \equiv \forall \exists x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{R}: A\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right), \\
& \text { determine a quantifier free formula } B\left(y_{1}, \ldots, y_{m}\right) \text { which is } \\
& \text { equivalent to } \Phi
\end{aligned}
$$

Question 4: When is this true?

$$
\begin{aligned}
& \text { Problem Pattern: Given a Tarski formula } \\
& \qquad \Phi \equiv \forall \exists x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{R}: A\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right) \\
& \text { determine a quantifier free formula } B\left(y_{1}, \ldots, y_{m}\right) \text { which is } \\
& \text { equivalent to } \Phi
\end{aligned}
$$

Solution:

Question 4: When is this true?

$$
\begin{aligned}
& \text { Problem Pattern: Given a Tarski formula } \\
& \qquad \Phi \equiv \forall \exists x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{R}: A\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right) \\
& \text { determine a quantifier free formula } B\left(y_{1}, \ldots, y_{m}\right) \text { which is } \\
& \text { equivalent to } \Phi
\end{aligned}
$$

Solution:

- Compute a CAD for the involved polynomials wrt. the variable order $y_{1}, \ldots, y_{m}, x_{1}, \ldots, x_{n}$.

Question 4: When is this true?

Problem Pattern: Given a Tarski formula

$$
\Phi \equiv \forall \exists x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{R}: A\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)
$$

determine a quantifier free formula $B\left(y_{1}, \ldots, y_{m}\right)$ which is equivalent to Φ

Solution:

- Compute a CAD for the involved polynomials wrt. the variable order $y_{1}, \ldots, y_{m}, x_{1}, \ldots, x_{n}$.
- Determine the cells where $A\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)$ is satisfied.

Question 4: When is this true?

Problem Pattern: Given a Tarski formula

$$
\Phi \equiv \forall \exists x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{R}: A\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)
$$

determine a quantifier free formula $B\left(y_{1}, \ldots, y_{m}\right)$ which is equivalent to Φ

Solution:

- Compute a CAD for the involved polynomials wrt. the variable order $y_{1}, \ldots, y_{m}, x_{1}, \ldots, x_{n}$.
- Determine the cells where $A\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)$ is satisfied.
- Determine the subtrees where the quantifiers for x_{1}, \ldots, x_{n} are respected. Replace them by 'true' and the others by 'false'.

Question 4: When is this true?

Problem Pattern: Given a Tarski formula

$$
\Phi \equiv \forall \exists x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{R}: A\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)
$$

determine a quantifier free formula $B\left(y_{1}, \ldots, y_{m}\right)$ which is equivalent to Φ

Solution:

- Compute a CAD for the involved polynomials wrt. the variable order $y_{1}, \ldots, y_{m}, x_{1}, \ldots, x_{n}$.
- Determine the cells where $A\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)$ is satisfied.
- Determine the subtrees where the quantifiers for x_{1}, \ldots, x_{n} are respected. Replace them by 'true' and the others by 'false'.
- Return the disjunction of all path-conjunctions as $B\left(y_{1}, \ldots, y_{m}\right)$

The other Questions

> Problem Pattern: Decide whether a given inequality is a consequence of some given constraints

Problem Pattern: Determine the solutions of a given system of inequalities.

Problem Pattern: Determine the (real) dimension of the solution set of a system of polynomial inequalities

The other Questions

Problem Pattern: Decide whether a given inequality is a consequence of some given constraints

Problem Pattern: Determine the solutions of a given system of inequalities.

Problem Pattern: Determine the (real) dimension of the solution set of a system of polynomial inequalities
\rightarrow Homework

IV Example Applications of CAD

Proving Non-Polynomial Things

- Consider the Tarski fromula

$$
\forall x, y, z \in \mathbb{R}:(z=x+y \wedge x>0 \wedge y>0) \Rightarrow z>0
$$

Proving Non-Polynomial Things

- Consider the Tarski fromula

$$
\forall x, y, z \in \mathbb{R}:(z=x+y \wedge x>0 \wedge y>0) \Rightarrow z>0
$$

- CAD confirms that this formula is true.

Proving Non-Polynomial Things

- Consider the Tarski fromula

$$
\forall x, y, z \in \mathbb{R}:(z=x+y \wedge x>0 \wedge y>0) \Rightarrow z>0
$$

- CAD confirms that this formula is true.
- The formula implies the positivity of the Fibonacci numbers F_{n} :

Proving Non-Polynomial Things

- Consider the Tarski fromula

$$
\forall x, y, z \in \mathbb{R}:(z=x+y \wedge x>0 \wedge y>0) \Rightarrow z>0
$$

- CAD confirms that this formula is true.
- The formula implies the positivity of the Fibonacci numbers F_{n} :
- Setting $x=F_{n}, y=F_{n+1}, z=F_{n+2}$, we obtain

$$
F_{n+2}=F_{n}+F_{n+1} \wedge F_{n}>0 \wedge F_{n+1}>0 \Rightarrow F_{n+2}>0 .
$$

Proving Non-Polynomial Things

- Consider the Tarski fromula

$$
\forall x, y, z \in \mathbb{R}:(z=x+y \wedge x>0 \wedge y>0) \Rightarrow z>0
$$

- CAD confirms that this formula is true.
- The formula implies the positivity of the Fibonacci numbers F_{n} :
- Setting $x=F_{n}, y=F_{n+1}, z=F_{n+2}$, we obtain

$$
F_{n+2}=F_{n}+F_{n+1} \wedge F_{n}>0 \wedge F_{n+1}>0 \Rightarrow F_{n+2}>0 .
$$

- This gives the induction step of an induction proof.

Proving Non-Polynomial Things

- Consider the Tarski fromula

$$
\forall x, y, z \in \mathbb{R}:(z=x+y \wedge x>0 \wedge y>0) \Rightarrow z>0
$$

- CAD confirms that this formula is true.
- The formula implies the positivity of the Fibonacci numbers F_{n} :
- Setting $x=F_{n}, y=F_{n+1}, z=F_{n+2}$, we obtain

$$
F_{n+2}=F_{n}+F_{n+1} \wedge F_{n}>0 \wedge F_{n+1}>0 \Rightarrow F_{n+2}>0 .
$$

- This gives the induction step of an induction proof.
- To complete the proof, just verify $F_{1}>0, F_{2}>0$.

Proving Non-Polynomial Things

- Consider the Tarski fromula

$$
\forall x, y, z \in \mathbb{R}:(z=x+y \wedge x>0 \wedge y>0) \Rightarrow z>0
$$

- CAD confirms that this formula is true.
- The formula implies the positivity of the Fibonacci numbers F_{n} :
- Setting $x=F_{n}, y=F_{n+1}, z=F_{n+2}$, we obtain

$$
F_{n+2}=F_{n}+F_{n+1} \wedge F_{n}>0 \wedge F_{n+1}>0 \Rightarrow F_{n+2}>0 .
$$

- This gives the induction step of an induction proof.
- To complete the proof, just verify $F_{1}>0, F_{2}>0$.
- This simple application of CAD is strong enough to prove a lot of inequalities about quantities that satisfy recurrence equations.

Proving Non-Polynomial Things - Examples

- Bernoulli, Turan, Cauchy-Schwarz, ...

Proving Non-Polynomial Things - Examples

- Bernoulli, Turan, Cauchy-Schwarz, ...
- Weierstraß's inequalities: If $0<a_{k}<1$ and $\sum_{k=1}^{n} a_{k}<1$ then

$$
\begin{aligned}
& 1-\sum_{k=1}^{n} a_{k}<\prod_{k=1}^{n}\left(1-a_{k}\right)<\frac{1}{1+\sum_{k=1}^{n} a_{k}} \\
& 1+\sum_{k=1}^{n} a_{k}<\prod_{k=1}^{n}\left(a_{k}+1\right)<\frac{1}{1-\sum_{k=1}^{n} a_{k}}
\end{aligned}
$$

for all $n \geq 1$.

Proving Non-Polynomial Things - Examples

- Bernoulli, Turan, Cauchy-Schwarz, ...
- Weierstraß's inequalities: If $0<a_{k}<1$ and $\sum_{k=1}^{n} a_{k}<1$ then

$$
\begin{aligned}
& 1-\sum_{k=1}^{n} a_{k}<\prod_{k=1}^{n}\left(1-a_{k}\right)<\frac{1}{1+\sum_{k=1}^{n} a_{k}} \\
& 1+\sum_{k=1}^{n} a_{k}<\prod_{k=1}^{n}\left(a_{k}+1\right)<\frac{1}{1-\sum_{k=1}^{n} a_{k}}
\end{aligned}
$$

for all $n \geq 1$.

- ... and many others ...

Proving Non-Polynomial Things - Examples

- Bernoulli, Turan, Cauchy-Schwarz, ...
- Weierstraß's inequalities: If $0<a_{k}<1$ and $\sum_{k=1}^{n} a_{k}<1$ then

$$
\begin{aligned}
& 1-\sum_{k=1}^{n} a_{k}<\prod_{k=1}^{n}\left(1-a_{k}\right)<\frac{1}{1+\sum_{k=1}^{n} a_{k}} \\
& 1+\sum_{k=1}^{n} a_{k}<\prod_{k=1}^{n}\left(a_{k}+1\right)<\frac{1}{1-\sum_{k=1}^{n} a_{k}}
\end{aligned}
$$

for all $n \geq 1$.

- ... and many others ...

Lesson: Problems concerning nonpolynomial inequalities may be reduced to questions about polynomial inequalities that can be answered with CAD.

Proving Non-Polynomial Things - Warning

- There is no success guarantee for this method.

Proving Non-Polynomial Things - Warning

- There is no success guarantee for this method.
- The method fails, for instance, to prove the Schöberl conjecture:

$$
f_{n}(x):=\sum_{k=0}^{n}(4 k+1)(2 n-2 k+1) P_{2 k}(0) P_{2 k}(x) \geq 0
$$

Proving Non-Polynomial Things - Warning

- There is no success guarantee for this method.
- The method fails, for instance, to prove the Schöberl conjecture:

$$
f_{n}(x):=\sum_{k=0}^{n}(4 k+1)(2 n-2 k+1) P_{2 k}(0) P_{2 k}(x) \geq 0
$$

- The sum is heavily oscillating. The plot shows the case $n=20$.

Proving Non-Polynomial Things - Warning

- S. Gerhold was able to derive asymptotic envelopes for $f_{n}(x)$:

$$
f_{n}(x)=A(x)+2|B(x)| \sin (2 n \pi \theta(x)+\varphi(x))+\mathrm{O}\left(\frac{\log n}{n}\right)
$$

where $\theta(x), \varphi(x)$ are irrelevant and $A(x)$ and $B(x)$ are complicated.

Proving Non-Polynomial Things - Warning

- S. Gerhold was able to derive asymptotic envelopes for $f_{n}(x)$:

$$
f_{n}(x)=A(x)+2|B(x)| \sin (2 n \pi \theta(x)+\varphi(x))+\mathrm{O}\left(\frac{\log n}{n}\right)
$$

where $\theta(x), \varphi(x)$ are irrelevant and $A(x)$ and $B(x)$ are complicated.

The plot shows $A(x) \pm 2|B(x)|$.

Proving Non-Polynomial Things - Warning

-S. Gerhold was able to derive asymptotic envelopes for $f_{n}(x)$:

$$
f_{n}(x)=A(x)+2|B(x)| \sin (2 n \pi \theta(x)+\varphi(x))+\mathrm{O}\left(\frac{\log n}{n}\right)
$$

where $\theta(x), \varphi(x)$ are irrelevant and $A(x)$ and $B(x)$ are complicated.
The plot shows $A(x) \pm 2|B(x)|$.

- Still to show: $A(x)-2|B(x)| \geq 0(x \in[-1,1])$.

Proving Non-Polynomial Things - Warning

-S. Gerhold was able to derive asymptotic envelopes for $f_{n}(x)$:

$$
f_{n}(x)=A(x)+2|B(x)| \sin (2 n \pi \theta(x)+\varphi(x))+\mathrm{O}\left(\frac{\log n}{n}\right)
$$

where $\theta(x), \varphi(x)$ are irrelevant and $A(x)$ and $B(x)$ are complicated.

The plot shows $A(x) \pm 2|B(x)|$.

- Still to show: $A(x)-2|B(x)| \geq 0(x \in[-1,1])$.

Lesson: Special function inequalities can be very difficult. (As opposed to identities...)

A Question asked by an Analysis Student

Question: What is the image of the triangle $(-1,-1),(-1,1),(1,1)$ under the map

$$
f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, \quad(x, y) \mapsto\left(x^{2}+y^{2}, x y-1\right) ?
$$

$$
\stackrel{f}{\stackrel{f}{l}}
$$

?

A Question asked by an Analysis Student

Question: What is the image of the triangle $(-1,-1),(-1,1),(1,1)$ under the map

$$
f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, \quad(x, y) \mapsto\left(x^{2}+y^{2}, x y-1\right) ?
$$

Answer: Eliminate x, y from the formula

$$
\begin{gathered}
\exists x, y:(-1 \leq x \leq 1 \wedge-1 \leq y \leq 1 \wedge x \leq y \wedge \\
\left.X=x^{2}+y^{2} \wedge Y=x y-1\right)
\end{gathered}
$$

A Question asked by an Analysis Student

Question: What is the image of the triangle $(-1,-1),(-1,1),(1,1)$ under the map

$$
f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, \quad(x, y) \mapsto\left(x^{2}+y^{2}, x y-1\right) ?
$$

Result:

$$
\begin{aligned}
f(\Delta)=\left\{(x, y) \in \mathbb{R}^{2}:(0\right. & \left.\leq x \leq 1 \wedge|y+1| \leq \frac{1}{2} x\right) \\
\vee & \left.\left.\left(1<x \leq 2 \wedge \sqrt{x-1} \leq|y+1| \leq \frac{1}{2} x\right)\right\}\right\}
\end{aligned}
$$

Another Problem of Schöberl's

Find a polynomial $v \in \mathbb{R}[x, y]$ of total degree n with

- $v(x, 0)=\int_{-1}^{x} P_{n-1}(t) d t$
- $v(x, 1-x)=v(x, 1+x)=0$
such that

$$
\int_{0}^{1} \int_{y-1}^{1-y} y\left(\left(\frac{\partial}{\partial x} v(x, y)\right)^{2}+\left(\frac{\partial}{\partial y} v(x, y)\right)^{2}\right) d x d y
$$

is minimal.

Another Problem of Schöberl's

Find a polynomial $v \in \mathbb{R}[x, y]$ of total degree n with

- $v(x, 0)=\int_{-1}^{x} P_{n-1}(t) d t$
- $v(x, 1-x)=v(x, 1+x)=0$
such that

$$
\int_{0}^{1} \int_{y-1}^{1-y} y\left(\left(\frac{\partial}{\partial x} v(x, y)\right)^{2}+\left(\frac{\partial}{\partial y} v(x, y)\right)^{2}\right) d x d y
$$

is minimal.
This problem is open for general n, but easy for specific n.

Another Problem of Schöberl's

Solution: Because of the constraints, the polynomials $v(x, y)$ are of the form
$v(x, y)=(x-y+1)(x+y-1)\left(\int_{-1}^{x} P_{n-1}(t) d t /\left(x^{2}-1\right)+y \cdot \tilde{v}(x, y)\right)$.

Another Problem of Schöberl's

Solution: Because of the constraints, the polynomials $v(x, y)$ are of the form
$v(x, y)=(x-y+1)(x+y-1)\left(\int_{-1}^{x} P_{n-1}(t) d t /\left(x^{2}-1\right)+y \cdot \tilde{v}(x, y)\right)$.
Make an ansatz for the coefficients of $\tilde{v}(x, y)$:

$$
\tilde{v}(x, y)=a_{0,0}+a_{1,0} x+a_{0,1} y+\ldots
$$

Another Problem of Schöberl's

Solution: Because of the constraints, the polynomials $v(x, y)$ are of the form
$v(x, y)=(x-y+1)(x+y-1)\left(\int_{-1}^{x} P_{n-1}(t) d t /\left(x^{2}-1\right)+y \cdot \tilde{v}(x, y)\right)$.
Make an ansatz for the coefficients of $\tilde{v}(x, y)$:

$$
\tilde{v}(x, y)=a_{0,0}+a_{1,0} x+a_{0,1} y+\ldots
$$

Compute the integral with symbolic coefficients:

$$
I=\operatorname{poly}\left(a_{0,0}, a_{1,0}, a_{0,1}, \ldots\right)
$$

Another Problem of Schöberl's

Solution: Because of the constraints, the polynomials $v(x, y)$ are of the form
$v(x, y)=(x-y+1)(x+y-1)\left(\int_{-1}^{x} P_{n-1}(t) d t /\left(x^{2}-1\right)+y \cdot \tilde{v}(x, y)\right)$.
Make an ansatz for the coefficients of $\tilde{v}(x, y)$:

$$
\tilde{v}(x, y)=a_{0,0}+a_{1,0} x+a_{0,1} y+\ldots
$$

Compute the integral with symbolic coefficients:

$$
I=\operatorname{poly}\left(a_{0,0}, a_{1,0}, a_{0,1}, \ldots\right)
$$

Applying CAD to this equation gives a formula

$$
I=\min \wedge\left(a_{0,0}=u, a_{1,0}=v, \ldots\right) \vee I>\min \wedge(\ldots)
$$

from which the coefficients can be extracted.

Further Applications of CAD

There are further applications of CAD in the SFB...

- ... in control theory (S. Ratschan, phase 1),
- ... for finite difference schemes (V. Levandovskyy),
- ...in program verification (L. Kovacs et. al.),
- . . . in symbolic summation (C. Schneider),
- . . . (where else?)

Further Applications of CAD

There are further applications of CAD in the SFB...

- ... in control theory (S. Ratschan, phase 1),
- ... for finite difference schemes (V. Levandovskyy),
- ...in program verification (L. Kovacs et. al.),
- . . . in symbolic summation (C. Schneider),
- . . . (where else?)
\rightarrow Ask the colleagues for details if you are interested.
V What You Also Need to Know

Complexity

Warning! Computing a CAD for a system of m polynomials in n variables with total degree d may cost up to

$$
(m d)^{2^{n}}
$$

arithmetic operations runtime.

Complexity

Warning! Computing a CAD for a system of m polynomials in n variables with total degree d may cost up to

$$
(m d)^{2^{n}}
$$

arithmetic operations runtime.

deg	\#vars	CAD	Lag. + GB
5	2	0.03 s	0.02 s
6	6	298.7 s	0.05 s
7	6	419.7 s	0.07 s
26	156	-	293.7 s
27	156	-	331.2 s

Unlike for Gröbner bases, this worst case bound is often experienced in practice.
Example: Runtime for computing $v(x, y)$ in Schöberl's problem.

Complexity

There are some standard advices in case of a slow computation:

Complexity

There are some standard advices in case of a slow computation:

- Be patient...

Complexity

There are some standard advices in case of a slow computation:

- Be patient...
- Try a different variable order

Complexity

There are some standard advices in case of a slow computation:

- Be patient...
- Try a different variable order
- Preprocess (= simplify) the polynomials by hand

Complexity

There are some standard advices in case of a slow computation:

- Be patient...
- Try a different variable order
- Preprocess (= simplify) the polynomials by hand
- Try specialized variants of the CAD algorithm, for instance
- full-dimensional CAD
- partial CAD
- trigonometric CAD

Complexity

There are some standard advices in case of a slow computation:

- Be patient...
- Try a different variable order
- Preprocess (= simplify) the polynomials by hand
- Try specialized variants of the CAD algorithm, for instance
- full-dimensional CAD
- partial CAD
- trigonometric CAD
- Ask a specialist for help

Implementations

Implementations of CAD:

Implementations

Implementations of CAD:

- Qepcad: by Hoon Hong, Chris Brown, et. al.; Standalone program; http://www.cs.usna.edu/~qepcad/B/QEPCAD.html

Implementations

Implementations of CAD:

- Qepcad: by Hoon Hong, Chris Brown, et. al.; Standalone program; http://www.cs.usna.edu/~qepcad/B/QEPCAD.html
- Redlog: by Andreas Dolzmann, Andreas Seidl, et. al.; Package for the CA-system Reduce; http://www.fmi.uni-passau.de/~redlog/

Implementations

Implementations of CAD:

- Qepcad: by Hoon Hong, Chris Brown, et. al.; Standalone program; http://www.cs.usna.edu/~qepcad/B/QEPCAD.html
- Redlog: by Andreas Dolzmann, Andreas Seidl, et. al.; Package for the CA-system Reduce; http://www.fmi.uni-passau.de/~redlog/
- Mathematica: part of the standard distribution from Version 5 on. Command names:
- CylindricalDecomposition and
- Reduce

The End

