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I Many seemingly unrelated questions concerning inequalities
can be answered by CAD.

I Main questions in this tutorial:
When to apply CAD? and How to apply CAD?

I Not: How does CAD work.



I Typical Questions involving Inequalities



Question 1: Is this true?

Example: Let a, b, c ∈ R be such that
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Show that
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Problem Pattern: Determine the solutions of a given system
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(Gröbner basis analog: Solving algebraic equation systems)

Special case: real solutions of algebraic equation systems
(Gröbner bases give complex solutions by default)



Question 3: What is the dimension?

Example 1: The real solution set S ⊆ R3

of the system

0 ≤ x ≤ 1, y2 ≤ 1 − x, z2 = x

has dimension 2.
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Question 3: What is the dimension?

Example 2: The real solution set S ⊆ R3

of the equation

0 = 4x4 − 8yx2 − 8zx2 + x2 + 2y2x
+ y4 + 4y2 + 4z2 + 8yz

has dimension 1.
(Note: Ideal dimension is 2.)
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of the equation
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Problem Pattern: Determine the (real) dimension of the so-
lution set of a system of polynomial inequalities
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II The Machine:

Cylindrical Algebraic Decomposition
(George E. Collins, 1975)
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Algebraic Decomposition

A finite set of polynomials {p1, . . . , pm} ⊆ R[x1, . . . , xn] induces a
decomposition (“partition”) of Rn into maximal sign-invariant cells
(“regions”).
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4 Precise Definition:
A cell in the algebraic decomposition of

{p1, . . . , pm} ⊆ R[x1, . . . , xn]

is a maximal connected subset of Rn on
which all the pi are sign invariant.
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A Tarski Formula is a formula in first order predicate logic whose
atomic formulas are of the form
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A Tarski Formula is a formula in first order predicate logic whose
atomic formulas are of the form

poly(x1, . . . , xn) ♦ 0

where

I poly(x1, . . . , xn) ∈ Q[x1, . . . , xn], and

I ♦ ∈ {=, 6=, >, <,≥,≤}

Examples

I x2 + y2 ≤ 1 ∧ (x − 1)(y − 1) > 1

I ∀ x ∃ y : x2 + y2 > z2 ⇒ z2 < 1

I ∃ y : y2 − x5 < 0
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Tarski Formulas vs. Algebraic Decomposition

Truth of a Tarski Formula can be determined by inspection from
the algebraic decomposition of the involved polynomials.

Example: ∀x∃ y : x2 + y2 > 4 ⇐⇒ (x − 1)(y − 1) > 1

Consider the cell(s) for which the quan-
tifier free part

x2 + y2 > 4 ⇐⇒ (x − 1)(y − 1) < 1

is true.
Obviously, each vertical line x = α inter-
sects one of those cells nontrivially. The
∀x∃y claim follows.
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Observation: It does not hurt if we change from a decomposition
for {p1, . . . , pm} to a decomposition for {p1, . . . , pm, q1, . . . , qk}
for some polynomials q1, . . . , qk ∈ Q[x1, . . . , xn].

The reasoning of the previous example is not affected.

Goal: Given p1, . . . , pm, find polynomials q1, . . . , qk such that the
decomposition of {p1, . . . , pm, q1, . . . , qk} is easier to deal with.

In particular, it should be possible to carry out the reasoning on
the previous slide automatically.

This motivates the definition of a Cylindrical Algebraic
Decomposition.
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Cylindrical Algebraic Decomposition: Definition

For n ∈ N, let

πn : Rn → Rn−1, (x1, . . . , xn−1, xn) 7→ (x1, . . . , xn−1)

denote the canonical projection.

Definition: Let p1, . . . , pm ∈ Q[x1, . . . , xn]. The algebraic
decomposition of {p1, . . . , pm} is called cylindrical, if

I For any two cells C, D of the decomposition, the
images πn(C), πn(D) are either identical or disjoint.

I The algebraic decomposition of
{p1, . . . , pm} ∩ Q[x1, . . . , xn−1] is cylindrical.

Base case: Any algebraic decomposition of R1 is cylindrical.
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Warning: The term “Cylindrical Algebraic Decomposition” (CAD)
is also used for:

I A data structure for representing a cylindrical algebraic
decomposition by a symbolic description and a sample point
for each cell.

I The process of making a decomposition cylindrical (by adding
suitable additional polynomials) and constructing this data
structure. (Collin’s algorithm.)

These three notions are used in parallel, but this does usually not
cause much confusion.
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Cylindrical Algebraic Decomposition: Example

Consider again {x2 + y2 − 4, (x − 1)(y − 1) − 1} ⊆ Q[x, y]
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This is not a CAD. Why not?

Consider the two shaded cells.

Their projection to the real line is
neither disjoint nor identical.

Fix: Insert a vertical line.

Proceed analogously for all other
cell pairs. The result is a CAD.
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Consider {x2 + y2 + z2 − 1} ⊆ Q[x, y, z]
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1. Account for the projection
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Result: {x2 + y2 + z2 − 1, x2 + y2 − 1, x2 − 1} is a CAD for
{x2 + y2 + z2 − 1}.
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The CAD-algorithm delivers a CAD in form of a tree.

>
· · · x = a

. . .
a < x < b

|
· · · y = c(x)

. . .

c(x) < y < d(x)

|
· · · z = e(x, y)

. . .

e(x, y) < z < f(x, y)

. . .

z = f(x, y)

. . .

· · ·

y = d(x)

. . .

· · ·

x = b
. . .

· · ·

Each path in this tree describes an individual cell of the CAD.
Sample points for each cell are easily obtained from this
representation.
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III Using CAD for Answering

Questions involving Inequalities



Question 4: When is this true?

Problem Pattern: Given a Tarski formula

Φ ≡ ∀∃x1, x2, . . . , xn ∈ R : A(x1, . . . , xn, y1, . . . , ym),

determine a quantifier free formula B(y1, . . . , ym) which is
equivalent to Φ
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I Compute a CAD for the involved polynomials wrt. the
variable order y1, . . . , ym, x1, . . . , xn.

I Determine the cells where A(x1, . . . , xn, y1, . . . , ym) is
satisfied.

I Determine the subtrees where the quantifiers for x1, . . . , xn

are respected. Replace them by ‘true’ and the others by ‘false’.

I Return the disjunction of all path-conjunctions as
B(y1, . . . , ym)
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The other Questions

Problem Pattern: Decide whether a given inequality is a con-
sequence of some given constraints

Problem Pattern: Determine the solutions of a given system
of inequalities.

Problem Pattern: Determine the (real) dimension of the so-
lution set of a system of polynomial inequalities

→ Homework
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I Consider the Tarski fromula

∀x, y, z ∈ R : (z = x + y ∧ x > 0 ∧ y > 0) ⇒ z > 0

I CAD confirms that this formula is true.
I The formula implies the positivity of the Fibonacci

numbers Fn:
I Setting x = Fn, y = Fn+1, z = Fn+2, we obtain

Fn+2 = Fn + Fn+1 ∧ Fn > 0 ∧ Fn+1 > 0 ⇒ Fn+2 > 0.

I This gives the induction step of an induction proof.
I To complete the proof, just verify F1 > 0, F2 > 0.

I This simple application of CAD is strong enough to prove a
lot of inequalities about quantities that satisfy recurrence
equations.
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I Weierstraß’s inequalities: If 0 < ak < 1 and
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k=1 ak < 1 then
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(ak + 1) <
1

1 − ∑n
k=1 ak

for all n ≥ 1.

I . . . and many others . . .

Lesson: Problems concerning nonpolynomial inequalities
may be reduced to questions about polynomial inequalities
that can be answered with CAD.
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I There is no success guarantee for this method.

I The method fails, for instance, to prove the Schöberl
conjecture:

fn(x) :=
n

∑

k=0

(4k + 1)(2n − 2k + 1)P2k(0)P2k(x) ≥ 0

I The sum is heavily oscillat-
ing. The plot shows the
case n = 20.
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I S. Gerhold was able to derive asymptotic envelopes for fn(x):

fn(x) = A(x) + 2|B(x)| sin
(

2nπθ(x) + ϕ(x)
)

+ O(
log n
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)

where θ(x), ϕ(x) are irrelevant and A(x)
and B(x) are complicated.
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I Still to show: A(x) − 2|B(x)| ≥ 0 (x ∈ [−1, 1]).

Lesson: Special function inequalities can be very difficult.
(As opposed to identities. . . )



A Question asked by an Analysis Student

Question: What is the image of the triangle
(−1,−1), (−1, 1), (1, 1) under the map

f : R2 → R2, (x, y) 7→ (x2 + y2, xy − 1) ?
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Answer: Eliminate x, y from the formula

∃x, y : ( − 1 ≤ x ≤ 1 ∧ −1 ≤ y ≤ 1 ∧ x ≤ y∧
X = x2 + y2 ∧ Y = xy − 1)
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Result:

f(∆) = {(x, y) ∈ R2 :
(

0 ≤ x ≤ 1 ∧ |y + 1| ≤ 1
2x

)

∨
(

1 < x ≤ 2 ∧
√

x − 1 ≤ |y + 1| ≤ 1
2x

)

}}



Another Problem of Schöberl’s

Find a polynomial v ∈ R[x, y]
of total degree n with

I v(x, 0) =
∫ x

−1 Pn−1(t) dt

I v(x, 1 − x) = v(x, 1 + x) = 0

such that

∫ 1

0

∫ 1−y

y−1
y
(

( ∂

∂x
v(x, y)

)2
+

( ∂

∂y
v(x, y)

)2
)

dx dy

is minimal.
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is minimal.

This problem is open for general n, but easy for specific n.
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Solution: Because of the constraints, the polynomials v(x, y) are
of the form

v(x, y) = (x−y+1)(x+y−1)
(∫ x

−1 Pn−1(t) dt/(x2−1)+y ·ṽ(x, y)
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Another Problem of Schöberl’s

Solution: Because of the constraints, the polynomials v(x, y) are
of the form

v(x, y) = (x−y+1)(x+y−1)
(∫ x

−1 Pn−1(t) dt/(x2−1)+y ·ṽ(x, y)
)

.

Make an ansatz for the coefficients of ṽ(x, y):

ṽ(x, y) = a0,0 + a1,0x + a0,1y + . . .

Compute the integral with symbolic coefficients:

I = poly(a0,0, a1,0, a0,1, . . . ).

Applying CAD to this equation gives a formula

I = min∧
(

a0,0 = u, a1,0 = v, . . .
)

∨ I > min∧
(

. . .
)

from which the coefficients can be extracted.



Further Applications of CAD

There are further applications of CAD in the SFB. . .

I . . . in control theory (S. Ratschan, phase 1),

I . . . for finite difference schemes (V. Levandovskyy),

I . . . in program verification (L. Kovacs et. al.),

I . . . in symbolic summation (C. Schneider),
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I . . . in control theory (S. Ratschan, phase 1),

I . . . for finite difference schemes (V. Levandovskyy),

I . . . in program verification (L. Kovacs et. al.),

I . . . in symbolic summation (C. Schneider),

I . . . (where else?)

→ Ask the colleagues for details if you are interested.



V What You Also Need to Know
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Complexity

Warning! Computing a CAD for a system of m polynomials in
n variables with total degree d may cost up to

(md)2
n

arithmetic operations runtime.

deg #vars CAD Lag. + GB

5 2 0.03s 0.02s
6 6 298.7s 0.05s
7 6 419.7s 0.07s

26 156 – 293.7s
27 156 – 331.2s

Unlike for Gröbner bases,
this worst case bound is of-
ten experienced in practice.

Example: Runtime for
computing v(x, y) in Schö-
berl’s problem.



Complexity

There are some standard advices in case of a slow computation:



Complexity

There are some standard advices in case of a slow computation:

I Be patient. . .



Complexity

There are some standard advices in case of a slow computation:

I Be patient. . .

I Try a different variable order



Complexity

There are some standard advices in case of a slow computation:

I Be patient. . .

I Try a different variable order

I Preprocess (= simplify) the polynomials by hand



Complexity

There are some standard advices in case of a slow computation:

I Be patient. . .

I Try a different variable order

I Preprocess (= simplify) the polynomials by hand
I Try specialized variants of the CAD algorithm, for instance

I full-dimensional CAD
I partial CAD
I trigonometric CAD



Complexity

There are some standard advices in case of a slow computation:

I Be patient. . .

I Try a different variable order

I Preprocess (= simplify) the polynomials by hand
I Try specialized variants of the CAD algorithm, for instance

I full-dimensional CAD
I partial CAD
I trigonometric CAD

I Ask a specialist for help
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Implementations

Implementations of CAD:

I Qepcad: by Hoon Hong, Chris Brown, et. al.; Standalone
program; http://www.cs.usna.edu/˜qepcad/B/QEPCAD.html

I Redlog: by Andreas Dolzmann, Andreas Seidl, et. al.;
Package for the CA-system Reduce;
http://www.fmi.uni-passau.de/˜redlog/

I Mathematica: part of the standard distribution from Version 5
on. Command names:

I CylindricalDecomposition and
I Reduce



The End


