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Abstract

The goal of this report is twofold. First, we describe and compare

different strategies that can be used to solve a decision problem arising

from engineering using quantifier elimination. Second, the decision prob-

lem stated in this report corresponds to the last step in proving that it is

not possible to dynamically balance a special type of spherical 4R linkage.

1 Problem statement

A spherical 4R linkage is shown in Fig. 1. It consists of four bars: the base
which is fixed, the input crank and the output crank which are connected to the
base, and the coupler. The joints are revolute joints and their axes of rotation
intersect in a point. This point is considered as the origin of a sphere of radius
1, on which the joints are moving. Although the joints do not have to move on
the sphere, this model is equivalent. The length of the bars are measured by
the angles between two successive axis of rotation. The base have length α, the
input crank β, the output crank γ and the coupler δ. The design parameters
(which will be called variable for the quantifier elimination problem) α, β, γ and
δ can be replaced by a, b, c and d respectively using the tangent half-angles
substitutions, i.e. for α we obtain:

cos(α) =
1 − a2

1 + a2
sin(α) =

2a

1 + a2
(1)
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Two joints, p1 and p2 are fixed on the base and the two other joints, q1 and
q2, are moving on two circles inscribed in a plane perpendicular to their axis of
rotation.

The mass properties of each moving bars can be represented by its design
static parameters (mass and centre of mass position) and its design dynamic
variables (inertia matrix). The design parameters consists of the geometric,
static and dynamic parameters. The problem consists of finding all possible
design parameters such that the angular momentum of the linkage is zero for any
motion of the linkage. Using an equivalent model, the equations of the angular
momentum can be written in terms of the geometric and dynamic parameters
only, that is, independent of the static parameters. The inertia matrices can be
written in the following form:

Ij =





Ijxx Ijxy Ijxz

Ijxy Ijyy Ijyz

Ijxz Ijyz Ijzz



 (2)

where I1, I2, I3 are the inertia matrix of the input crank, output crank and
coupler respectively.

The method for finding dynamically balanced linkages yield a set of equalities
and inequalities in terms of the design parameters. This set of equations form
a set of underdetermined linear system in terms of the dynamic parameters
and can be solved symbolically in terms of the dynamic parameters, where
some dynamic parameters are free parameters. Since there are also inequality
constraints in terms of the geometric and dynamic parameters, we must check
if there exists also solutions satisfying these inequalities.

For some particular choice of the geometric parameters, we obtain different
sets of constraints. In this report, we are interested in the “parallelogram”
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linkage, i.e. d = a 6= c = b 1. Let

I1xx = b2 T1I3xx + T2I3yy + T3I3zz

a (1 + b2)
2
D

I2xx = b2(1 + a2)
T4I3xx + T5I3yy + T6I3zz

(a + b)a (1 + b2)
2
D

I3xz =
T7I3xx + T8I3yy + T9I3zz

2(a + b)D

I3xy = 0

I3yz = 0

(3)

with

T1 = 2
“

1 + a
2

”

(ba − 1)
“

2 ba
2 − ab

4 + 2 b
2
a − a + 2 b

3
”

T2 = (a + b)
“

a
4
b
4

+ a
4
− 6 a

4
b
2
− 4 a

3
b
3

+ 12 a
3
b − 4 a

2
+ 4 a

2
b
4
− 12 b

3
a + 4 ba − 1 + 6 b

2
− b

4
”

T3 = − (b − 1) (b + 1)
“

1 + a
2

”

(ba + a − 1 + b) (a + b) (ba − a − 1 − b)

T4 = −2 b
“

2 ba
2 + ab

4 − a − 2 b
3

”

T5 = −a
2 − a

2
b
4 + 6 b

2
a
2 − 2 ba + 2 b

5
a + b

2 + b
6 − 6 b

4

T6 = (b − 1) (b + 1)
“

−b
4 − 2 b

3
a + b

2 + b
2
a
2 − 2 ba − a

2
”

T7 = a
2 + 4 b

4 + 4 b
3
a − 4 a

3
b + a

2
b
6 − a

2
b
4 + 4 a

4
b
2 − b

2
a
2 + 4 a

3
b
3 − 4 b

5
a

T8 = −
“

1 + b
2

”

2
“

b
2 + a

4
”

T9 = b
2 − 2 b

4 + a
4
b
4 + b

6 + a
4 − 4 a

3
b
3 + 4 b

2
a
2 + 4 a

2
b
4 − 4 b

3
a + 4 a

3
b − 2 a

4
b
2 + 4 b

5
a

D =
“

2 ba + b
2 − 1

” “

b
2
a − a − 2 b

”

(a − b)

(4)

Let E be the identity matrix and the matrix A defined as

A := E trace(I3) − 2I3 (5)

For a valid inertia matrix, the determinant of A should be positive2. Such
dynamically balanced linkage exists if and only if

∃a,b,I3xx,I3yy ,I3zz∈R+ I1xx > 0 ∧ I2xx > 0 ∧ det(A) > 0 (6)

Clearly, we can simplify the values of I1xx and I2xx by removing terms in the
numerator and denominator that are strictly positive, i.e. that do not change
the sign of the expression. For example, we can omit the factors a, a+ b, b2 and
1 + a2. and obtain simplified expressions for I1xx and I2xx, i.e.

I1xxs =
T1I3xx + T2I3yy + T3I3zz

D

I2xxs =
T4I3xx + T5I3yy + T6I3zz

D

(7)

1There are actually two possible kinematic modes[6] and we will investigate one of them.
The other case is very similar.

2This is equivalent to the fact that the inertia matrix is positive definite and that every
eigenvalue is smaller than the sum of the two other eigenvalues.
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Note that the denominator of I1xxs and I2xxs are the same. We investigate the
case where the numerator of I1xxs and I2xxs as well as the denominator D, are
negative, i.e.

∃a,b,I3xx,I3yy ,I3zz∈R+ num(I1xxs) < 0∧ num(I2xxs) < 0∧D < 0∧det(A) > 0 (8)

where num(I) is the numerator of I. The investigation of the case where
num(I1xxs), num(I2xxs) and D are positive gives similar results.

2 Quantifier elimination

2.1 Methods

Since (8) is a formula from the first order theory of the real closed fields, its
validity can be effectively decided [10]. For solving the decision problem, i.e., for
real quantifier elimination, in theory one can use Cylindrical Algebraic Decom-
position (CAD) [3, 2], Virtual Substitution (VS)[11, 5] or Hermitian Quantifier
Elimination [12]. The latter is not suitable for our purpose, since we do not
have equational constraints. VS can be used to eliminate variables occuring
either linearly or quadratically in the input constraint system. Therefore we
cannot eliminate all the variables appearing in (7) just by using VS since a and
b appears with higher degree than 2. In theory, CAD works without any restric-
tion on the degree of the variables, but it is not necessarily the most efficient in
practice. Therefore we will use a combination of the VS and CAD method and
study the results for different combinations (see section 2.3).

In theory one could also refine the strategies by trying out different variable
orderings, but in our case since the variables I3xx, I3yy , I3zz occur quadratically
and play a symmetric role in the contraint system, the best variable ordering
seems to be I3zz , I3yy, (I3xx), a, b where the leftmost variable will be eliminated
first.

2.2 Tools

The following systems provide implementations of at least one of the method
mentioned above:

• Mathematica [13, 7, 8, 9]

• QEPCAD [1]

• Redlog [4]

• SyNRAC [14]

We have chosen the computer algebra system Mathematica[13] for solving
the problem for several reasons. First, Mathematica seems to be the most
efficient tool for such problem. It provides VS and CAD based real quantifier
elimination (this is not the case e.g. for QEPCAD). Another reason is that the
user interface is easier to use than other software. Since QEPCAD can be called
from Reduce (Redlog), a viable alternative would be to use Redlog combined
with QEPCAD.
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In Mathematica, there is a default setting for handling real constraint sys-
tems. Inspecting the form of the input formula, Mathematica tries to guess
which method to use. In order to have an explicit control over the chosen
strategies, we set the inequality solving options of Mathematica directly. E.g, if
we do not want to have a CAD based elimination, we set the following option:

Developer‘SetSystemOptions[”InequalitySolvingOptions” − > ”CAD” − > False]

To eliminate a variable, let us say I3zz , we use the command Resolve

Resolve[Exists[I3zz, cond], Reals]

where cond is the set of inequalities.

2.3 Solutions

To name (and refer to) the different strategies used below, we will use the
following notation. The name of the strategy will be a string where the letters
will be from the set {V, C}. The letter V will stand for the VS method and the
letter C for the CAD method. Each letter, starting from the left describes the
approach used to eliminate one variable. The last letter of the string corresponds
to the strategy used to eliminate the remaining variables. The elimination order
of the variables is also mentioned, where the leftmost variable will be eliminated
first. Let cond be the condition as defined in (8), i.e.

cond = { I3zz > 0 ∧ I3yy > 0 ∧ I3xx > 0 ∧ a > 0 ∧ b > 0 ∧

I1xxsNumer < 0 ∧ I2xxsNumer < 0 ∧ Ds < 0 ∧ Det[A] > 0 }

For example, if the elimination order is {I3zz , I3yy, I3xx, a, b}, and the strategy
is V C:

1. Eliminate I3zz using the VS method:

Developer‘SetSystemOptions[”InequalitySolvingOptions” − > ”CAD” − > False]

Developer‘SetSystemOptions[”InequalitySolvingOptions” − > ”QuadraticQE” − > True]

Developer‘SetSystemOptions[”InequalitySolvingOptions” − > ”LinearQE” − > True]

cond2 = Resolve[Exists[I3zz, cond], Reals]

2. Eliminate the remaining variables using the CAD method:

Developer‘SetSystemOptions[”InequalitySolvingOptions” − > ”CAD” − > True]

Developer‘SetSystemOptions[”InequalitySolvingOptions” − > ”QuadraticQE” − > False]

Developer‘SetSystemOptions[”InequalitySolvingOptions” − > ”LinearQE” − > False]

Resolve[Exists[{I3yy, I3xx, a, b} , cond2], Reals]

To simplify the problem, it is also possible to set one of the inertia variable,
I3zz , I3yy or I3xx to 1 since the equations are homogeneous in terms of these
variables. In this case, the variable which is set to 1 will be omitted from the
elimination ordering list. For example, if I3xx = 1, the elimination order could
be {I3zz, I3yy , a, b}.

Another way to simplify the problem, is to bring the problem in the suitable
form. For example, if the quantifier-free matrix of the formula is a disjunction
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Method Elimination order Timing (s)

C {I3zz , I3yy, a, b} ∞
V C {I3zz , I3yy, a, b} 3 + 146 = 149
V V C {I3zz , I3yy, a, b} 398 + 3484 + 96775 = 100657

Table 1: Comparison of QE strategies in Mathematica with I3xx = 1 (Special
case)

and we have to eliminate a variable which is existentially quantified, then we
could use the logic equivalence

∃x (F [x] ∨ G[x]) ≡ ∃xF [x] ∨ ∃xG[x] (9)

to reduce the problem to the disjunction of a set of simpler problems. However,
in our case, the elimination of one variable using the VS method leads to a
problem of the form:

∃x (D1(x) ∧ D2(x) ∧ ... ∧ Dn(x)) (10)

That is, we obtain a formula where the outermost logical operator in the formula
matrix is conjunction but the next variable, which has to be eliminated, is
existentially quantified. However, it is possible to tranform the formula matrix
into a disjunctive form, e.g. by transforming it into disjunctive normal form.
In Mathematica, this can be achieved with LogicalExpand. To indicate after
which step we transform the formula to its disjunctive normal form, we will put
and overline over the method’s name. For example, the method V V C implies
that the LogicalExpand is applied after eliminating the first variable using the
VS method.

In Table 1 and in Table 2, an overview of the different strategies used and
the time required to prove that there exists no variables such that the linkage
can be dynamically balanced, i.e. satisfying cond, is given. Note that we were
able to solve the decision problem at least with one of the strategies for both
the special and the general case. The timing as been done using Mathematica
version 6.0.0, on a Intel(R) Xeon(TM) CPU 3.40GHz. The result ∞ means that
we run it for at least 12 hours without the process terminating.

Setting I3xx = 1, the problem can be solved efficiently using the V C ap-
proach. If none of the variables are set to 1, the problem is more difficult. It
can be solved using V C in about 8.5 hours. In this case, using LogicalExpand
we get 297 disjuncts, the i-th denoted by form2[i], where 1 ≤ i ≤ 297. We
consider each subproblem/disjunct separately and solve them by method C. For
example, to solve element i = 19, we use

Resolve[Exists[{I3yy, I3xx, a, b}, form2[[19]]], Reals]

For speeding up, one can also try to call the different subproblems with
different variable ordering. In Mathematica default setting, the CAD-based
computation of element i = 19 takes 9325 seconds. By explicit control of the
variable order (i.e., by setting CADSortVariables to False), the following com-
putation gives the same result and takes only 3 seconds:
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Method Elimination order Timing (s)

C {I3zz , I3yy, I3xx, a, b} ∞
V C {I3zz , I3yy, I3xx, a, b} 4 + ∞ = ∞
V V C {I3zz , I3yy, I3xx, a, b} 4 + 3851 + ∞ = ∞

V C {I3zz , I3yy, I3xx, a, b} 4 + 10 + 31140 = 31154

V V C {I3zz , I3yy, I3xx, a, b} 4 + 4066 + ∞ = ∞

V V C {I3zz , I3yy, I3xx, a, b} 4 + 10 + 8050 + 12000 ≅ 20000

Table 2: Comparison of QE strategies in Mathematica (General case)

Resolve[Exists[{I3yy, b, I3xx, a}, form2[[19]]], Reals]

Trying different choice of the variable ordering, the computation can be
reduced from 8.5 hours to 10 minutes. This will be the subject of future work.
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