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Summary. Efficient and robust tearing and interconnecting solvers for large scale
systems of coupled boundary and finite element domain decomposition equations
are the main topic of this paper. In order to reduce the complexity of the finite
element part from O((H/h)d) to O((H/h)d−1), we use an interface-concentrated
hp finite element approximation. The complexity of the boundary element part is
reduced by data-sparse approximations of the boundary element matrices. Finally,
we arrive at a parallel solver whose complexity behaves like O((H/h)d−1) up to some
polylogarithmic factor, where H, h, and d denote the usual scaling parameters of
the subdomains, the minimal discretization parameter of the subdomain boundaries,
and the spatial dimension, respectively.

1 Introduction

Domain Decomposition (DD) methods are nowadays not only used for con-
structing highly efficient parallel solvers for partial differential equations but
also for coupling different physical fields, different meshes and different dis-
cretization techniques. Since Finite Element Methods (FEM) and Bound-
ary Element Methods (BEM) exhibit certain complementary properties, it is
sometimes very useful to couple these discretization techniques within some
DD framework (see, e. g., [11] and the references cited there). The classi-
cal BEM has O((H/h)d−1) unknowns (degree of freedom = DOF) and needs
O((H/h)2(d−1)) memory units for storing the dense BE system matrix whereas
the standard FEM has O((H/h)d) DOF and needs O((H/h)d) memory units
for storing the sparse FE stiffness matrix per subdomain. To reduce the mem-
ory demand for the BEM, various data sparse approximations of the dense
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BE matrices have been proposed during the last two decades. Let us here
only mention the Fast Multipole Method (FMM) [30, 5], the panel cluster-
ing method [15], the H-matrix technology [12, 13], and the Adaptive Cross
Approximation (ACA) [1, 3], see also the book [29]. These methods replace
the original dense BE matrix by a data-sparse approximation in such a way
that the discretization error is not perturbed and the memory demand can
be reduced from O((H/h)2(d−1)) to O((H/h)d−1) up to some polylogarithmic
factor. The same is true for the matrix-by-vector multiplication that is the
basic operation in an iteration process for solving the corresponding system
of algebraic equations. Now, the FE parts have suddenly an higher complex-
ity than the BE parts, at least, asymptotically. Under additional smoothness
assumptions which are fulfilled in many practical applications (smooth co-
efficients and right-hand sides on the subdomains of the DD) it is possible
to reduce the complexity of the FE parts from O((H/h)d) to O((H/h)d−1).
This reduction can be achieved by the boundary-concentrated FEM that was
proposed by B.N. Khoromskij and J.M. Melenk in [17], see also [16, 9, 8, 4]
and an earlier paper by H. Yserentant [37].

The Finite Element Tearing and Interconnecting (FETI) method, which
was originally proposed by C. Farhat and F.-X. Roux in [10], and its mod-
ern versions FETI-DP and BDDC (see the monograph [36] and the references
therein) are nowadays certainly the most popular DD methods, at least, in
many engineering applications on large-scale parallel computers. The Bound-
ary Element Tearing and Interconnecting (BETI) method was introduced in
[23] as BE counterpart of the FETI methods. Coupled FETI-BETI methods
were discussed in [24], see also [25] and the references therein. The tearing and
interconnecting solvers exhibit only O(1+ log(H/h)) growth in the number of
iterations. Furthermore, they do not suffer from coefficient jumps across the
subdomain boundaries and they are highly parallel, but the total complexity
is defined by the complexity of the matrix-by-vector multiplication and by the
preconditioning operation.

In this paper, similar to [24], we use the tearing and interconnecting tech-
nique for solving coupled BE-FE domain decomposition equations, but we now
use data-sparse approximations of the BE matrices involved and interface-
concentrated FE approximations in some of the subdomains. Here, the in-
terface is the union of the subdomain boundaries. The arithmetical cost and
the memory demand of our All-Floating (AF) BETI-FETI solvers are basi-
cally proportional to the degrees of freedoms living on the skeleton of do-
main decomposition given. More precisely, the total complexity behaves like
O((H/h)d−1) up to a polylogarithmic factor in a parallel regime.

The rest of the paper is organized as follows: In Section 2, we introduce
the symmetric coupled BE-FE discretization of a model potential equation
in a non-overlapping DD framework, where we used data-sparse BE approxi-
mations in the BE subdomains and Interface-Concentrated (IC) FE approx-
imations in the FE subdomains. Section 3 is devoted to the description of
the AF-BETI-FETI solvers and to the construction of the preconditioners.
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We state and prove our main result on the total complexity of our solver.
Section 4 contains the results of our numerical experiments.

2 Symmetric BEM-FEM Coupling

2.1 Skeleton Variational Formulation

Let Ω ⊂ Rd (d = 2, 3) be a bounded domain with a Lipschitz boundary
Γ = ∂Ω, and let us consider the Dirichlet boundary value problem (BVP) for
the potential equations

−div (a(x)∇u(x)) = f(x) for x ∈ Ω, u(x) = g(x) for x ∈ Γ (1)

as our first model problem. We assume that the domain Ω is shape-regularly
decomposed into p non-overlapping Lipschitz subdomains

Ω =
p⋃

i=1

Ωi, Ωi ∩Ωj = ∅ for i 6= j, Γi = ∂Ωi, Γij = Γi ∩ Γj , ΓS =
p⋃

i=1

Γi, (2)

where we call ΓS the skeleton of the domain decomposition. For the sake of
simplicity, we assume that the boundary Γ and the subdomain boundaries Γi

are polygonal (d = 2) or polyhedral (d = 3). We refer to the first q subdomains
as BE subdomains, whereas the remaining p − q subdomains are called FE
subdomains. Thus, the extreme cases q = 0 and q = p mean that there are
no BE subdomains and no FE subdomains, respectively. We assume that the
scalar coefficient function a is piecewise constant and the source function f is
vanishing in the BE subdomains, i. e.,

a(x) = ai > 0 and f(x) = 0 for x ∈ Ωi, i = 1, . . . , q,

whereas the coefficient function a(.) = ai(.) and the source function f(.) =
fi(.) are assumed to be analytic in the FE subdomains Ω̄i, i = q + 1, . . . , p.
Furthermore, we assume that the variation of the coefficient function ai(.)
should be small, whereas the jumps across the subdomain boundaries can be
very large. More precisely, there exist positive constants ai and āi such that

0 < ai ≤ a(x) ≤ āi ∀x ∈ Ωi

with a small ratio āi/ai ≥ 1 for i = q + 1, . . . , p.
As a second typical model problem, we consider the potential equation (1)
in Rd with an appropriate radiation condition for |x| → ∞ instead of the
Dirichlet boundary condition on Γ . In this case, we only add the exterior
subdomain Ω0 := Rd \Ω to the domain decomposition (2). In particular, we
present numerical results for a simplified magnetic field problem given in the
entire space R2 in Section 4. However, in this paper, we only analyse the case



4 Ulrich Langer and Clemens Pechstein

of a bounded domain. The specialities of the analysis of the one-level BETI
method and of the BETI-DP method for the case of unbounded domains are
discussed in [28].

Following [25], we can easily see that the standard variational formulation
of the BVP (1) in H1(Ω) is equivalent to the following skeleton variational
formulation: Given g ∈ H1/2(Γ ), find u ∈ H1/2

g (ΓS) such that

p∑
i=1

∫
Γi

(Siu)(x)v(x)dsx =
p∑

i=q+1

∫
Γi

(Nif)(x)v(x)dsx ∀v ∈ H1/2
0 (ΓS), (3)

where Si and Ni denote the Steklov-Poincaré and the Newton potential op-
erators, respectively. The manifold H1/2

g (ΓS) and the corresponding subspace
H

1/2
0 (ΓS) are given by all functions from H1/2(ΓS) := {v|ΓS

: v ∈ H1(Ω)}
with the trace g and 0 on Γ , respectively.

In order to discretize (3), we use the data-sparse BEM in the first q sub-
domains, whereas the IC-FEM is used for the remaining subdomains.

2.2 Data-Sparse Boundary Element Approximation

For the BE subdomains Ωi, i ≤ q, the local PDE reads as follows:

−ai∆u(x) = 0 for x ∈ Ωi .

The corresponding fundamental solution

U∗(x, y) :=


− 1

2π
log |x− y| for d = 2 ,

1
4π

1
|x− y|

for d = 3 ,
(4)

defines the usual boundary integral operators, namely the single layer po-
tential operator Vi : H−1/2(Γi) → H1/2(Γi), the double layer potential op-
erator Ki : H1/2(Γi) → H1/2(Γi), and the hypersingular integral operator
Di : H1/2(Γi) → H−1/2(Γi) by the relations

(Vi t)(x) :=
∫

Γi

U∗(x, y) t(y) dsy,

(Ki u)(x) :=
∫

Γi

∂

∂ni(y)
U∗(x, y)u(y) dsy, and

(Di u)(x) := − ∂

∂ni(x)

∫
Γ

∂

∂ni(y)
U∗(x, y)u(y) dsy,

(5)

respectively, where x ∈ Γi and ni denotes the outer unit normal vector on
Γi. The adjoint double layer potential K>

i : H−1/2(Γi) → H−1/2(Γi) is given
by (K>t)(x) =

∫
Γ

∂
∂ni(x)U

∗(x, y) t(y) dsy . In two dimensions, we require the
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scaling assumption diamΩi < 1 such that the single layer potential operator
is coercive, see, e. g., [33]

We consider quasi-uniform triangulations Ti of the local boundaries Γi by
line segments or affine triangles T with the mesh parameter hi. We define the
spaces of linear functions

V h(Γi) := {v ∈ H1/2(Γi) : v|T is affine linear on T ∀T ∈ Ti},
V h

0 (Γi) := {v ∈ V h(Γi) : v|Γ = 0} .
(6)

Moreover, we define the space of piecewise constant functions

Zh(Γi) := {v ∈ H−1/2(Γi) : v|T = const ∀T ∈ Ti} . (7)

With the standard bases {ϕ(i)
k }k of V h(Γi) and {ψ(i)

k } of Zh(Γi), we define
the boundary element matrices VC,i, KC,i, and DC,i which correspond to the
Galerkin approximations of the boundary integral operators Vi, Ki, and Di

respectively, and the mass matrix MC,i by the Galerkin relations

VC,i[k, l] = 〈ψk, Vi ψl〉 , KC,i[k, l] = 〈ψl, Ki ϕk〉 , (8)
DC,i[k, l] = 〈Di ϕk, ϕk〉 , MC,i[k, l] = 〈ψl, ϕk〉 , (9)

where 〈·, ·〉 is the H−1/2-H1/2-duality pairing with the pivot space L2(Γi),
see [24] for details. The index ”C” stands for the coupling boundary ΓC that
coincides with ΓS in the AF-BETI-FETI-case. The BE Schur complement

SBE
C,i := αiDC,i + αi

(
1
2M

>
C,i + K>

C,i

)[
VC,i

]−1( 1
2MC,i + KC,i

)
, (10)

or, more precisely, the corresponding operator Si, h : V h(Γi) → V h(Γi)∗ ap-
pears as a symmetric BE approximation of the Steklov-Poincaré operator Si.
This is not the Galerkin approximation, but an outer approximation, see [25]
for the approximation and spectral properties.

The BE matrices as defined above are fully populated. In order to save
memory and to be able to perform fast matrix-by-vector operations, we re-
place the BE matrices VC,i, KC,i and DC,i by data-sparse approximations
ṼC,i, K̃C,i and D̃C,i without perturbing the approximation and the spectral
properties. Such data-sparse approximation can be realized by different meth-
ods such as the FMM [30, 5], the panel clustering method [15], the H-matrix
technology [12, 13], and the ACA [1, 3], see also the book [29]. These meth-
ods allow us to reduce the memory demand and the arithmetical cost for one
matrix-by-vector multiplication from O((H/h)2(d−1)) to O((H/h)d−1) up to
some polylogarithmic factor.

Replacing the BE matrices in SBE
C,i by their data-sparse representations,

we arrive at an approximate BE Schur complement

S̃BE
C,i := αiD̃C,i + αi

(
1
2M

>
C,i + K̃>

C,i

)[
ṼC,i

]−1( 1
2MC,i + K̃C,i

)
, (11)
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It is also possible to approximate SBE
C,i by a data-sparse approximation S̃BE

C,i

replacing V−1
C,i by Ṽ−1

C,i or by an H − LU factorization of ṼC,i, [2], see also
[14]. However, in our BETI-FETI-3 solver we make not use of data-sparse
approximations of the BE Schur-complement, but only of the BE matrices
VC,i, KC,i, and DC,i, cf. Section 3.

2.3 Interface-Concentrated Finite Element Approximation

The boundary-concentrated finite element method was introduced in [17], see
also [16] for solvers and [8] for some error analysis. This technique was used
in [4] for developing fast DD solvers. In the following we summarize the main
aspects of the interface concentrated FEM in our context.

We consided γ-shape-regular triangulations Ti of the FEM subdomains Ωi,
i = q + 1, . . . , p, into affine triangles or tetrahedra K, i. e., each element K is
the image FK(K̂) of a reference simplex K̂ satisfying the inequality

h−1
K ‖F ′

K‖L∞(K) + hK‖(F ′
K)−1‖L∞(K) ≤ γ ∀K ∈ Ti , (12)

where hK := diamK denotes the local mesh size. We assume that the resulting
triangulation of the local boundary Γi is quasi uniform and denote the minimal
mesh size on the boundary by hi. We assume that the triangulation of Ωi

forms a geometric mesh. A mesh is called a geometric mesh if there exist
positive constants c1 and c2 such that all elements K ∈ Ti fulfill the following
properties:

1. if K ∩ Γi 6= ∅, then h ≤ hk ≤ c2 h,
2. if K ∩ Γi = ∅, then c1 infx∈K dist (x, Γi) ≤ hK ≤ c2 supx∈K dist (x, Γi).

Figure 1 provides an example of a geometric mesh that is used in our numerical
experiments presented in Section 4. In order to define the finite element spaces
on Ωi we associate to each element K ∈ Ti a polynomial degree pK ∈ N and
collect these numbers in the polynomial degree vector p(i) := {pK : K ∈ Ti}.
Furthermore, for each edge e and face f of Ti we define

pe := min{pK : e is an edge of K ∈ Ti} ,
pf := min{pK : f is a face of K ∈ Ti} ,

(13)

respectively. For an element K, we collect the degrees corresponding to K in
a vector pK defined by

pK := (pK , {pe}e:edge of K , {pf}f :face of K) , (14)

where, in two dimensions, we have to drop the face degrees.
For our geometric mesh Ti we assume that the vectors p(i) are linear degree

vectors, that means, for a fixed parameter αi > 0, called the slope of the linear
degree vector p(i), we choose the pK for each element K ∈ Ti such that
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Fig. 1. Geometric meshes in the FE subdomains for our numerical example (mag-
netic valve) from Section 4.

1 + αi c1 log
(hK

hi
) ≤ pK ≤ 1 + αi c2 log

(hK

hi

)
,

for some positive constants c1 and c2. In practical applications, one usually
chooses αi = 1. In particular, we have degree 1 on the elements touching the
boundary.

The finite element spaces V h(Ωi) and V h
0 (Ωi) are defined as follows:

V h(Ωi) := {v ∈ H1(Ωi) : v ◦ FK ∈ PpK
(K̂) ∀K ∈ Ti} ,

V h
0 (Ωi) := {v ∈ V h(Ωi) : v|Γ = 0} ,
V h(Γi) := {v|Γi : v ∈ V h(Ωi)} ,
V h

0 (Γi) := {v|Γi : v ∈ V h
0 (Ωi)} ,

(15)

where PpK
(K̂) is the space of polynomials on the reference simplex K̂ with

the polynomial degrees on the element, edges and faces given according to
pK .

For each of the FE subdomains Ωi, i = q + 1, . . . , p, we denote the local
FE stiffness matrix corresponding to the bilinear form

ai(u, v) =
∫

Ωi

ai(x)∇u(x) · ∇v(x) dx

by Ki and group it with respect to the degrees of freedom on the (coupling)
boundary (subscript C) and the remaining (interior) ones (subscript I),

Ki =

(
K(i)

II (K(i)
CI)

>

K(i)
CI K(i)

CC

)
. (16)
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We can now define the Schur complement matrix and the Newton potential
matrix by

SFE
C,i := K(i)

CC −K(i)
CI

[
K(i)

II

]−1(K(i)
CI)

> and (17)

NFE
C,i :=

[
IC

∣∣∣−K(i)
CI

[
K(i)

II

]−1
]
, (18)

respectively, i. e., NFE
C,i f = fC −K(i)

CI [K
(i)
II ]−1fI .

It was shown in [17] that the boundary-concentrated FEM yields the same
discretization error estimates as the standard FEM with linear finite elements
on a uniformly refined mesh, but with an amount of unknowns (DOF) that is
proportional to the number of grid points on the boundary, i. e., proportional
to (Hi/hi)d−1 in our case. The same complexity holds for storage needed
for the FE stiffness matrices Ki and for the cost for one matrix-by-vector
multiplication.

2.4 Coupled System

Using now the data-sparse BE approximation S̃BE
C,i of the Steklov-Poincaré Si

in the BE subdomains and the IC FE approximations SFE
C,i of Si and NFE

C,i of
Ni and taking into account the Dirichlet boundary conditions (we assume for
simplicity that g is a piecewise linear function), we can immediately derive
the following linear system from the skeleton variational formulation (3):

q∑
i=1

R>
i,0S̃

BE
C,i RiuC +

p∑
i=q+1

R>
i,0S

FE
C,i RiuC =

p∑
i=q+1

R>
i,0N

FE
i (f>C,i, f

>
I,i)

> (19)

together with the Dirichlet condition RDuC = gD, where the vector uC con-
tains all nodal parameters living on the skeleton ΓS including the (Dirichlet)
boundary Γ , the restriction operator (sometimes also called subdomain con-
nectivity matrix) Ri maps some vector uC to uC,i, RD maps some vector
uC to the vector containing only the values in the Dirichlet nodal points,
the vector gD contains the given Dirichlet data, and, finally, Ri,0 coincides
with Ri with exception of the columns the column index of which belongs to
Dirichlet nodes. These columns have only zero entries. After homogenization
of the Dirichlet boundary conditions RDuC = gD, system (19) is nothing but
the primal coupled BE-FE Schur complement system. The article [4] discusses
asymptotically optimal iterative methods for solving the primal coupled IC-
FE (i. e., q = 0) Schur complement system or, more precisely, the rolled up
system.

We mention that for the solution of the coupled data-sparse boundary and
interface-concentrated finite element system (19) the same discretization error
estimates hold as for the standard coupled BE-FE system [25].

In the next section, we apply the (all-floating) tearing and interconnecting
technique for solving (19) following the BETI-FETI solvers proposed in [24]
and [25] for standard coupled BE-FE systems.



Boundary and Finite Element Tearing and Interconnecting Methods 9

3 All-Floating BETI – FETI Methods

3.1 Coupled BETI – FETI systems

Following [10] (see also [36]) and taking the all-floating idea into account [26,
27] (see also [7] for a closely related approach called total FETI), we tear the
global skeleton potential vector uC on all subdomain boundaries Γi including
the Dirichlet parts by introducing the individual local unknowns uC,i = RiuC .
The global continuity of the potentials on Γi \ Γ and the Dirichlet boundary
conditions on ΓD = Γ are now enforced by the constraints

p∑
i=1

BC,iuC,i = g (20)

interconnecting the local potential vectors across the subdomain boundaries
and the nodal parameters on the boundary ΓD with the corresponding Dirich-
let data. Each row of the matrix B = (BC,1, . . . ,BC,p) is connected with a
pair of matching nodes across the subdomain boundaries or with a Dirichlet
node. The entries of the former rows are 1 and −1 for the indices corre-
sponding to the matching nodes on the interface ΓS \ ΓD and 0 otherwise,
whereas an entry corresponding to a Dirichlet node on ΓD is 1 and again 0
otherwise. The entries of the vector g coincides with the entries of gD at the
Dirichlet nodes and are 0 otherwise. Therefore, (20) implies that the corre-
sponding finite element functions ui,h are continuous across the interface ΓC ,
i. e., ui,h = uj,h on Γi ∩ Γj 6= ∅, and coincides with g on Γi ∩ ΓD. We assume
here that the number of constraints at some matching node is equal to the
number of matching subdomains minus one. This method resulting in a mini-
mal number of Lagrange multipliers is called non–redundant, see, e. g., [18] or
[36] for the use of redundant constraints. The latter case is even more often
used in the implementation than the non–redundant.

By introducing Lagrange multipliers λ ∈ RL, the linear system (19) is
obviously equivalent to the following extended saddle point system

SC,1 B>
C,1

. . .
...

SC,p B>
C,s

BC,1 . . . BC,p 0




uC,1

...
uC,p

λ

 =


bC,1

...
bC,p

g

 , (21)

with the singular Schur complements

SC,i =

{
S̃BE

C,i for i = 1, . . . , q,

SFE
C,i for i = q + 1, . . . , p,

(22)

with (ker(SC,i) = span{1C,i} for all i = 1, . . . , p), and the corresponding
right-hand sides
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bC,i =

{
0 for i = 1, . . . , q,

fC,i −KCI,iK−1
II,ifI,i for i = q + 1, . . . , p,

(23)

It is clear that there exists a unique solution of system (21). We note that in
the redundant case the Lagrange parameter λ is only unique up to kerBC

>.
However, the solution uC is unique, and the redundancy does not result in
any implementational difficulties, cf. [36] or [28].

Following [25], we can transform saddle point system (21) to the equivalent
saddle point system (BETI-FETI-2 system)

SC,1 B
>
C,1

. . .
...

SC,p B
>
C,p

BC,1 . . . BC,p 0




vC,1

...
vC,p

λ0

 =


dC,1

...
dC,p

d

 , (24)

with symmetric and positive definite (SPD) diagonal blocks

SC,i = SC,i + βi1C,i1>C,i, i = 1, . . . , p, (25)

and with the block matrices

BC,i = L>0 P>BC,i, i = 1, . . . , p, (26)

where βi is some positive regularization parameter. The matrix P denotes the
well-studied FETI projector I−QG(G>QG)−1G>, where

G = (BC,11C,1, . . . ,BC,p1C,p)

and Q is a diagonal matrix which takes care of the coefficient jumps (see,
e. g., [36]). We only mention that, for the FE subdomains Ωi, i = q+1, . . . , p,
where the coefficient a(·) is slightly varying, we use the upper bounds ai for
the entries in Q. The matrix L0 is defined by the representation of λ in the
form

λ = L0λ0 + λe (27)

with known λe = QG(G>QG)−1e fulfilling the constraints G>λe = e, and
unknown L0λ0 ∈ kerG>, i. e., G>L0λ0 = 0. The right-hand side of BETI-
FETI-2 system (24) is defined by the relations dC,i = bC,i − B>

C,iλe for i =
1, . . . , p and d = L>0 P>g.

Once the vectors vC,1, . . . ,vC,p and λ0 are defined from (24), we get λ
from (27) and uC,1, . . . ,uC,p from the relations

uC,i = vC,i + γi1C,i i = 1, . . . , p, (28)

with γ = (γi)i=1,...,p = (G>QG)−1G>Q(g −BC,1vC,1 − . . .−BC,pvC,p).
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On the one hand, eliminating the unknowns vC,1, . . . ,vC,p from the BETI-
FETI-2 system (24), we arrive at the SPD BETI-FETI Schur complement
system (BETI-FETI-1 system)

L>0 P>FPL0λ0 = L>0 P>b (29)

with the BETI-FETI matrix F and the right-hand side b

F =
p∑

i=1

BC,iS
−1

C,iB
>
C,i and b =

p∑
i=1

BC,iS
−1

C,idC,i − g, (30)

respectively. In the redundant case the Lagrange parameter λ0 is only unique
up to kerBC

>.
On the other hand, unfolding the Schur complements SC,i on the block

diagonal of the BETI-FETI-2 system (24), we get the larger saddle point
system 

K1 B
>
1

. . .
...

Kp B
>
p

B1 . . . Bp 0




u1

...
up

λ0

 =


f1
...
fp
d

 , (31)

that is also called BETI-FETI-3 system, with the regular, symmetric, but
indefinite BE (subdomain) matrices

Ki = αi

(
ṼC,i −

(
1
2M

>
C,i + K̃>

C,i

)
−
(

1
2M

>
C,i + K̃>

C,i

)
−(D̃C,i + βi1C,i1>C,i)

)
(32)

for i = 1, . . . , q and the SPD FE (subdomain) stiffness matrices

Ki =

(
K(i)

II (K(i)
CI)

>

K(i)
CI K

(i)

CC

)
, with K

(i)

CC = K(i)
CC + βi1C,i1>C,i, (33)

for i = q+1, . . . , p. The matrices Bi are nothing but the extension to interior
indices by zero columns, i. e., Bi = (BC,i 0) for i = 1, . . . , p. The unknown
vectors ui and the given right-hand side vectors fi are defined as follows:

ui =
(

tC,i

vC,i

)
, fi =

(
0

−B>
C,iλe

)
for i = 1, . . . , q,

and

ui =
(

uI,i

vC,i

)
, fi =

(
fI,i

fC,i −B>
C,iλe

)
for i = q + 1, . . . , p.

If q = 0 (i. e., no BE subdomains), then system (31) is an one-fold saddle
point system that was treated in [4]. In the case of a pure BETI-3 system
(i. e., q = p), we get a two-fold saddle point system that was studied in [19].
In the next subsection we focus on the mixed case of the BETI-FETI-3 system
(31).
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3.2 BETI–FETI Preconditioners and Solvers

The system matrix L>0 P>FPL0 of the BETI-FETI-1 system (29) is SPD. The
Preconditioned Conjugate Gradient (PCG) method is a very efficient solver
for ill-conditioned SPD systems provided that an appropriate preconditioner
is available. If we start the PCG iteration with λe, then it is clear that we can
perform the PCG iteration on the subspace rangeP = kerG> = rangeL0, see
Algorithm 1 in [23] or Fig. 6.4 in [36]. Thus, we need a good preconditioner
C that is spectrally equivalent to F on the subspace kerG>. At least, two
efficient BETI-FETI preconditioners C are available:

• the scaled Dirichlet BETI-FETI preconditioner (see, e. g., [36]):

C−1 = ASCA>, (34)

with SC = diag(SC,i), see (25), and
• the scaled data-sparse hypersingular preconditioner [23]:

C−1 = ADCA>, (35)

with DC = diag(DC,i) = diag(D̃C,i + βi1C,i1>C,i).

In the redundant case the matrix A = (WC,1BC,1, . . . ,WC,pBC,p) is defined
by the interconnecting matrix B = diag(BC,i) and by the scaling or weighting
matrix W = diag(WC,i) with appropriate diagonal matrices WC,i whose
entries depend on the coefficients, see [18] and [36] for further details. For
the non-redundant case, a similar matrix A can be constructed [18, 36], see
also [26] for implementational details. We mention that the scaled data-sparse
hypersingular preconditioner (35) uses the data-sparse hypersingular blocks
DC,i not only in the BE subdomains but also in the FE subdomains.

Theorem 1. Let C be one of the BETI-FETI preconditioners defined by (34)
or (35). Then there exist positive constants c and c such that the spectral
inequalities

c (Cλ, λ) ≤ (Fλ, λ) ≤ c (1 + log(H/h))2 (Cλ, λ) (36)

hold for all λ ∈ kerG>, where the constant c and c are independent of hi, Hi,
and the coefficient jumps across the interfaces, and H/h = maxHi/hi.

Proof. The matrices SC,i and DC,i are spectrally equivalent to an auxil-
iary Schur complement S

auxFE

C,i arising from a standard finite element dis-
cretization with linear triangular or tetrahedral elements on an auxiliary
quasi-uniform triangular or tetrahedral mesh generated from the given quasi-
uniform boundary mesh on ∂Ωi with the average mesh size hi in both the
FE- and BE-subdomains, see [23] and [4]. The spectral inequalities (36) were
proved for S

auxFE

C,i (see [18] or [36] for the standard FETI method, see [28] for
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details on the all-floating method), they are also valid if we replace S
auxFE

C,i in
F and C−1 by the spectrally equivalent matrices SC,i or DC,i. This completes
the proof of the theorem.

Theorem 1 immediately implies that we need at most I(ε) = O((1 +
log(H/h)) log ε−1) PCG iterations in order to reduce the initial error by the
factor ε ∈ (0, 1). The complexity of the one PCG iteration depends on the com-
plexity of the preconditioning operation C−1ρ and the costs for the matrix-
by-vector multiplication Fλ. If we use the scaled data-sparse hypersingular
preconditioner (35), then the cost for the preconditioning operation is pro-
portional to (H/h)d−1 up to a polylogarithmic factor in a parallel regime. In
principle, this complexity estimate can also be obtained for the other opera-
tions if we use special direct solvers (see [2] and [16] for BEM and IC-FEM,
respectively) for the systems with the regularized Neumann matrices (32) and
(33) arising in the matrix-by-vector multiplication Fλ, and for the systems
with the system matrices ṼC,i and K(i)

II arising in the scaled Dirichlet BETI-
FETI preconditioner (34).

However, in the BETI-FETI-2 and in the BETI-FETI-3 cases, we avoid
the inversions of the local Schur complements SC,i, i. e., the solution of the
corresponding local Neumann problems. The BETI-FETI-3 solver even avoids
the multiplication with the local Schur complements SC,i, i. e., the solution of
the corresponding local Dirichlet problems.

Let us here only discuss the ingredients of the BETI-FETI-3 solver. The
BETI-FETI-2 solver can directly benefit from these ingredients. In the case
q = p (only BE subdomains), system (31) is pure two-fold saddle point prob-
lem The BETI-3 solver was discussed and analyzed in [19]. In order to solve
system (31) in the mixed case 1 < q < p, we need preconditioners for the
blocks ṼC,i (i = 1, . . . , q), SC,i (i = 1, . . . , q), Ki (i = q + 1, . . . , p), and
for the BETI-FETI-1 matrix F. We propose the following preconditioners for
these blocks [19, 4]:

• Multigrid or multilevel preconditioners CV
C,i for the data-sparse single layer

potential matrices ṼC,i in the BE subdomain (i = 1, . . . , q) which are
asymptotically optimal [22]. Algebraic version are also available [21, 32,
19].

• Opposite order preconditioners CS
C,i for the BE Schur complement matri-

ces SC,i (i = 1, . . . , q) which are also asymptotically optimal [34, 19].
• Asymptotically optimal preconditoners of the form

Ci =
(

II,i 0
−E>

IC,i IC,i

)(
CI,i 0
0 CC,i

)(
II,i −EIC,i

0 IC,i

)
(37)

for the regularized IC-FE Neumann matrix Ki in the FE subdomains
(i = q + 1, . . . , p) were proposed in [4], where CI,i denotes the Additive
Schwarz Preconditioner proposed in [4] for K(i)

II , CC,i is an asymptotically
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optimal preconditioner for the local FE Schur complement matrices SC,i,
e. g., the BPX preconditioner [35], and EIC,i is the matrix representation
of the multilevel bounded extension operator proposed in [4].

• For F we propose to use the BETI-FETI preconditioner

C−1 = (CF )−1 = Adiag(DC,i)A> (38)

that uses the data-sparse hypersingular blocks DC,i = D̃C,i +βi1C,i1>C,i in
the BE subdomains (i = 1, . . . , q) and the inexact FE Schur complement

DC,i = K
(i)

CC + E>
IC,iK

(i)
II EIC,i −K(i)

CIEIC,i −E>
IC,iK

(i)
IC (39)

in the FE subdomains (i = q + 1, . . . , p). The inexact Schur complement
(39) does not contain (K(i)

II )−1. The matrix-vector multiplication DC,ivC,i

costs O((Hi/hi)d−1) arithmetical operations and is, therefore, more effi-
cient than the application of the hypersingular matrix performed by a
Fast Multipole Method (FMM) where two additional logarithmic factors
appear [19]. Since the inexact Schur complement (39) is spectrally equiv-
alent to the exact Schur complement SC,i with spectral constants which
are independent on hi and Hi [4], the new BETI-FETI preconditioner C
fulfills the spectral inequalities (36).

Now we can solve the BETI-FETI-3 system (31) by means of the general-
ized Bramble-Pasciak PCG studied in [19].

Theorem 2. Let us assume that the BETI-FETI-3 system (31) is solved by
means of the generalized Bramble-Pasciak PCG method with the appropri-
ately scaled block preconditioners CV

C,i, CS
C,i, Ci and CF proposed above.

Then not more than I(ε) = O((1+ log(H/h)) log ε−1) iterations and ops(ε) =
O((H/h)d−1(1+log(H/h))3 log ε−1) arithmetical operations (provided that the
FMM is used for the BE matrices) are required in order to reduce the initial
error by the factor ε ∈ (0, 1) in a parallel regime. The number of iterations
I(ε) is robust with respect to the jumps in the coefficients. Moreover, at most
O(H/h)(1 + log(H/h))2 storage units are needed per subdomain (processor).

Proof. The estimate for the number I(ε) of iterations is a direct consequence of
results given in [19] and of the spectral estimates for the block preconditioners.
The complexity estimates for the arithmetical costs and the memory demand
follow from the corresponding complexity estimates for the block matrices
involved in the matrix-vector multiplications and in the preconditioning. This
completes the proof of the theorem.

Remark 1. The results of Theorems 1 and 2 are proved for bounded domains
Ω. In the case of an unbounded domain Ω, where the exterior subdomain Ω0

has to be added to the domain decomposition (cf. Section 2.1), there are some
specialities. A rigorous analysis of the unbounded case can be found in [28].
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Remark 2. In general, 2D magnetic field problems lead to non-linear potential
problems due to the non-linear dependence of the reluctivity ν from the induc-
tion. The Newton linearization results in potential problems of the form (1)
where a(·) becomes a matrix-valued coefficient in the ferromagnetic materials.
Typically, a(·) is smooth in the ferromagnetic subdomains, but shows large
variation, especially along the material interfaces. In [20], we studied this case
and proposed special scaling matricies WC,i resulting in a robust behavior
of the preconditioner with respect to these variations, at least in numerical
experiments.

4 Numerical Experiments

A very simplified two-dimensional model of a magnetic valve (see Figure 2,
left) leads to the potential equation −div (a∇u) = f in R2 with an appropriate
radiation condition for |x| → ∞. The reluctivity a(.) is piecewise constant,
but exhibits large jumps across the interface between ferromagnetic materials
and air. More precisely, a(.) is equal to ν0, ν0, 10−5 ·ν0 and 10−3 ·ν0 in the air,
coil, armature and iron core, respectively, where ν0 := 1

4 π ·107. The right-hand
side f is concentrated in the coil and is nothing else but the current density.
In our test case, we set f = 2.3 · 106 in the coil and zero elsewhere.
The domain decomposition is shown in Figure 2 (right). Our computational
domain is the entire space R2 where the exterior subdomain Ω0 is an air
subdomain and the interior subdomainΩ is decomposed into 14 air subdomain
Ωi (i = 1, , . . . , q = 14) and into 22 other subdomains Ωi (i = 15, , . . . , p = 36)
which are discretized by the IC-FEM. The triangulation of the FE subdomains
by interface-concentrated (geometric) meshes is shown in Figure 1. All air
subdomains including the exterior subdomain Ω0 are discretized by the BEM.
Figure 3 displays the potential field (left) and the norm of the B-field (right)
in the FE subdomains and on the boundary of the BE subdomains. Using the
representation formula, one could easily calculate both fields in any point of
the BE subdomains.

The generation of the BE matrices is preformed by the software package
OSTBEM [31]. Furthermore, we use some of the hp-FEM routines from the
open source package NGSolve (www.hpfem.jku.at). On the finest level, we
get polynomial basis function up to degree 7 in FE subdomains.

Table 1 provides some numerical features of our experiments. The first six
columns give an overview over the DOF involved in the BETI-FETI methods.
It can be seen from the second (also from the fifth) and the third columns
that the local BEM DOF and the local IC-FEM DOF grow both like O(H/h)
whereas the standard FEM DOF grows like O((H/h)2) which is illustrated
in the fourth column for comparison. The total number of Lagrange mul-
tipiers grows like h−1 (column 6). The logarithmic grow of the number of
PCG iteration is confirmed by column 7. There is almost no change in the
number of iteration if we would artificially change the jumps of the coeffi-
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cients across the interfaces. We used the BETI-FETI-1 solver with the scaled
Dirichlet BETI-FETI preconditioner (34). In the FE subdomains we used the
direct solver PARDISO [6] whereas in the BE subdomains we used dense
BE matrices and a standard LU decomposition using LAPACK for solving
the local Neumann and Dirichlet problems. Of course, in order to reduce the
complexity (CPU-time) in the BE subdomains one has to replace the dense
matrices by data-sparse representations and the standard LU decomposition
by an H − LU decomposition. In 3D, the use of data-sparse techniques is
absolutely necessary. Moreover, at least for large-scale problems, we expect
that the BETI-FETI-3 solver is more efficient than the BETI-FETI-1 and
BETI-FETI-2 solvers (cf. also [19] for the pure BE case).

iron core

a
rm

a
tu

re

coil

air

air / exterior domain

Fig. 2. The magnetic valve (left) and the domain decomposition (right).

Fig. 3. The potential field (left) and the B-field (right).
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Table 1. Numerical results BETI–IC-FETI-1: DOF, Number I(ε) of PCG-iterations
for ε = 10−8, and CPU in seconds.

global local local cf. local external Lagrange PCG CPU
DOF BEM DOF IC-FEM DOF FEM DOF DOF DOF I(ε) [sec]

155 8 9 9 48 298 9 0.3
499 16 21 25 96 466 10 0.4

1715 32 61 81 192 802 12 0.9
6259 64 189 289 384 1474 14 2.8

23795 128 514 1089 768 2818 16 13.0
92659 256 1405 4225 1536 5506 18 63.9

365555 512 3373 16641 3072 11012 20 344.9
1452019 1024 7645 66049 6144 21634 22 1990.3
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