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Abstract. We present a computer-assisted proof of positivity of sums over kernel polyno-
mials for ultraspherical Jacobi polynomials.

1. Introduction

In this paper we show positivity of sums over Jacobi kernel polynomials kα
j (x, 0) on the in-

terval [−1, 1] where we consider ultraspherical Jacobi polynomials P
(α,α)
n (x) with α ∈ [−1

2 ,
1
2 ].

This problem originated in a new convergence proof for a certain finite element scheme in the
course of which Schöberl [8] was led to conjecture that the inequality

(1)

n
∑

j=0

(4j + 1)(2n − 2j + 1)P2j(0)P2j(x) ≥ 0

holds for −1 ≤ x ≤ 1 and n ≥ 0, where Pn(x) denotes the nth Legendre polynomial. Relation
(1) corresponds to setting α = 0 in the inequality of Theorem 1 that will be proven below.
Asymptotics seem to be difficult even for this special case [4]. In this paper we describe
an approach that makes heavy use of computer algebra algorithms. Based on treating the
special cases α = ±1

2 we will determine a decomposition of the given sum into expressions
that can be estimated from below. For this proof we will use the Mathematica packages
SumCracker [6] and GeneratingFunctions [7]. Both implementations, as well as a variety of
other algorithms for symbolic summation are available at

http://www.risc.uni-linz.ac.at/research/combinat/software/

In the following section we introduce kernel polynomials and formulate the conjectured in-
equality. We also briefly outline the background from which the original problem (1) emerged.

In section 3 we will show positivity for the special cases α = ±1
2 of P

(α,α)
n (x) being Chebyshev

polynomials. This proof motivates a decomposition of the given sum in the remaining case
−1

2 < α < 1
2 , Lemma 5 in section 4, which allows finding a lower bound in closed form whose

positivity can be verified using SumCracker’s ProveInequality command.

2. Motivation

When constructing a smoothing operator for a high order finite element scheme, Schöberl
[8] considered an integral operator that serves as point evaluation when applied to polynomials
up to a given degree n. More precisely, he wanted to find a family of polynomials {φn} such
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that

(2)

∫ 1

−1
φn(x)v(x) dx = v(0),

for all polynomials v with deg v ≤ n. Moreover, he wanted {φn} to satisfy the following norm
estimate

‖φn‖L1 =

∫ 1

−1
|φn(x)| dx ≤ C,

where the constant C is independent of n. Property (2) led to considering so-called kernel
polynomials.

Let {pj(x)} be a given sequence of polynomials defined on a real interval [a, b] and being
orthogonal with respect to some weight function w(x), which is a nondecreasing function
with an infinite number of points of increase in the interval [a, b]. Then the kernel polynomial
sequence is defined as

kn(x, y) =

n
∑

j=0

1

hj
pj(x)pj(y),

where hn =
∫ b
a pn(x)2 w(x) dx. Kernel polynomials have the reproducing property

∫ b

a
kn(x, y)q(x)w(x) dx = q(y)

for all polynomials q(x) with degree less or equal to n. From the three term recurrence relation
for the pn(x) one easily obtains a compact expression for these kernel polynomials, namely

kn(x, y) = c(n)
pn+1(x)pn(y) − pn+1(y)pn(x)

x− y
,

where c(n) depends on the leading coefficients of pn+1(x), pn(x) and hn, for more details see
e.g. [1, 9].

In the following we consider only kernel polynomials for Jacobi polynomials of the form

P
(α,α)
n (x) which we will denote by kα

n(x, y). They are orthogonal with respect to the weight
function w(x) = (1 − x2)α and can be expressed as [1]

(3) kα
n(x, y) =

cαn
x− y

[P
(α,α)
n+1 (x)P (α,α)

n (y) − P (α,α)
n (x)P

(α,α)
n+1 (y)],

where

cαn = 2−2α−1 Γ(n+ 2)Γ(n + 2α+ 2)

Γ(n+ α+ 1)Γ(n+ α+ 2)
.

If we choose φn to be the Legendre kernel polynomials k0
n(x, 0) then condition (2) is satisfied

because of the reproducing property with respect to the L2-inner product
∫ 1
−1 f(x)g(x) dx

corresponding to the constant weight function w(x) = (1−x)0 ≡ 1. But for this candidate we
do not know uniform bounds in the L1-norm. In addition numerical computations indicate
that the k0

n(x, 0) are not uniformly bounded in the L1-norm at all. So Schöberl was led to
consider a modified ansatz using so-called gliding averages [3],

(4) φn(x) =
1

n+ 1

2n
∑

j=n

k0
j (x, 0).



POSITIVITY OF CERTAIN SUMS OVER JACOBI KERNEL POLYNOMIALS 3

Here φn is a polynomial of degree 2n satisfying (2). Defining the sum

(5) S(n, x) =
1

n+ 1

n
∑

j=0

k0
j (x, 0),

we can write φn in the form

φn(x) =
2n + 1

n+ 1
S(2n, x) −

n

n+ 1
S(n− 1, x).

Schöberl conjectured that (5) is positive for even indices, i.e. S(2n, x) ≥ 0. Once this result
is established one can bound the L1-norm of φn for odd n immediately via

‖φn‖L1 ≤
2n+ 1

n+ 1

∫ 1

−1
S(2n, x) dx +

n

n+ 1

∫ 1

−1
S(n− 1, x) dx =

3n+ 1

n+ 1
≤ 3, n odd.

Here we only needed to invoke the positivity of S(2k, x) and its constant preserving property.
After applying the triangle inequality we can omit the absolute values and evaluate each of
the integrals over S(2n, x) and S(n − 1, x) to 1. Having only an estimate for φ2n+1 at hand
clearly is no obstruction to the application we have in mind since one can always raise the
degree of the smoothing operator by one, if needed.

Trying to prove that S(2n, x) ≥ 0, x ∈ [−1, 1], we observed that this inequality seems to
remain valid if we define S(n, x) more generally as a sum over Jacobi kernel polynomials kα

n

with α ∈ [−1
2 ,

1
2 ]. Consequently we define

Sα
n (x, y) :=

n
∑

j=0

kα
j (x, y).

In this notation we have S(n, x) = (n + 1)S0
n(x, 0). In the remainder of this paper we will

prove the extended conjecture formulated in the following theorem.

Theorem 1. Let kα
n(x, y) be the nth kernel polynomial for Jacobi polynomials P

(α,α)
j (x).

Then

Sα
2n(x, 0) ≥ 0 for −

1

2
≤ α ≤

1

2
, −1 ≤ x ≤ 1, n ≥ 0.

Note that for odd degrees, i.e. Sα
2n+1(x, 0), the sums are not positive. The proof of Theorem

1 will be split into two parts. In section 3 we will consider the cases α = ±1
2 , corresponding

to the Chebyshev polynomials of the first and second kind, respectively. The proof of these
special cases motivates a decomposition of the sum Sα

2n(x, 0) which is the key to proving
Theorem 1 for the remaining part where −1

2 < α < 1
2 .

3. Chebyshev polynomials of first and second kind (α = ±1
2)

Jacobi polynomials P
(−1/2,−1/2)
n (x) can be identified with Chebyshev polynomials of the

first kind Tn(x). The sum S
−1/2
n (x, y) is called Fejér kernel and positivity is well known for

all n ≥ 0 and for all x, y in the unit square [−1, 1]2, for a short proof see e.g. [10]. Hence we
only have to consider the case α = 1

2 .

For α = 1
2 Jacobi polynomials P

(α,α)
n (x) are called Chebyshev polynomials of the second

kind and commonly denoted by Un(x). Their kernel polynomials are

k1/2
n (x, y) =

1

π(x− y)
[Un+1(x)Un(y) − Un(x)Un+1(y)].
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SumCracker yields a closed form for S
1/2
2n (x, y), namely,

(6) S1/2
n (x, y) =

1

π(x− y)2
[Un+1(x)(xUn(y) − Un+1(y)) + Un(x)(yUn+1(y) − Un(y)) + 1].

Remark 2. Here we used the Crack command which takes an expression and returns a

reformulation in “smaller” terms. A “human” proof of this identity which only uses the

Chebyshev three term recurrence will be given later in this section.

To prove that S
1/2
2n (x, 0) ≥ 0 we proceed as follows. Since U2n+1(0) = 0 and U2n(0) = (−1)n

we have that

S
1/2
2n (x, 0) =

1

πx2
[1 + (−1)nx U2n+1(x) − (−1)nU2n(x)].

Inspection of the first few polynomials S
1/2
2n (x, 0) suggests that

S
1/2
4m (x, 0) = p2m(x)2 and S

1/2
4m+2(x, 0) = (1 − x2)q2m(x)2,

where p2m(x), q2m(x) are polynomials of degree 2m satisfying the relation qn(x)S
1/2
1 (x, 0) =

(pn+1(x) − pn(x))2. To verify this claim we use the GuessRE command of Mallinger’s Gene-

ratingFunctions package that tries to guess a holonomic recurrence equation given the first
few terms of a sequence. Applying this function to pm(x) yields the following rewriting of

S
1/2
2n (x, 0).

Lemma 3. For m ≥ 0 and −1 ≤ x ≤ 1 we have

S
1/2
4m (x, 0) =

2

πx2
T2m+1(x)

2,

and

S
1/2
4m+2(x, 0) =

1

2πx2(1 − x2)
(T2m+3(x) − T2m+1(x))

2,

where Tm(x) are the Chebyshev polynomials of the first kind.

Proof. The closed forms for S
1/2
4m (x, 0) and S

1/2
4m+2(x, 0) can be verified immediately with

Kauers’ SumCracker package. For this purpose we use an algorithm that decides zero equiv-
alences of a given admissible sequence, for details see [6],

In[1]:= ZeroSequenceQ[xChebyshevU[4m + 1, x] − ChebyshevU[4m, x] + 1

− 2ChebyshevT[2m + 1, x]2]

Out[1]= True

In[2]:= ZeroSequenceQ[−xChebyshevU[4m + 3, x] + ChebyshevU[4m + 2, x] + 1

− (ChebyshevT[2m + 3, x] − ChebyshevT[2m + 1, x])2/(2(1 − x2))]

Out[2]= True

�

From these representations it is obvious that the sums S
1/2
2n (x, 0) are non-negative. For

Chebyshev polynomials of the second kind the closed form representation (6) for the sum

S
1/2
n (x, y) exists, yet for arbitrary α > −1 this is not the case. Still, examining a derivation of

(6) using only the three term recurrence satisfied by Un(x) indicates how to continue dealing

with general Jacobi polynomials P
(α,α)
n (x),−1

2 < α < 1
2 .



POSITIVITY OF CERTAIN SUMS OVER JACOBI KERNEL POLYNOMIALS 5

So, let again α = 1
2 . In order to derive (6), we show that S

1/2
n (x, y) rewritten according to

(3) as the sum

S1/2
n (x, y) =

1

π(x− y)

n
∑

j=0

[Uj+1(x)Uj(y) − Uj(x)Uj+1(y)],

is a sum representation which telescopes to the right hand side of (6). Because of symmetry
it suffices to consider only one part of the sum. For the first part, SumCracker yields

(x− y)
n

∑

j=0

Uj+1(x)Uj(y) =
1

2
(2xUn+1(x)Un(y) − Un(x)Un(y) − Un+1(x)Un+1(y) + 1) ,

which suggests that

(x−y)Uj+1(x)Uj(y) =
1

2
∆j(2xUj(x)Uj−1(y)−Uj−1(x)Uj−1(y)−Uj(x)Uj(y)) =:

1

2
∆jGj(x, y),

where ∆j denotes the difference operator ∆j [ψ(j)] = ψ(j + 1)−ψ(j). The correctness of this
identity can be verified by straight-forward calculation using the three term recurrence for
Chebyshev polynomials,

(7) Un(x) − 2xUn+1(x) + Un+2(x) = 0, U0(x) = 1, U1(x) = 2x.

Namely, first we use (7) to rewrite 2xUj(x) and then, to involve y, we use the same recurrence
relation to replace Uj−1(y) + Uj+1(y). This way we obtain,

(8)

Gj+1(x, y) −Gj(x, y) = 2xUj(y)Uj+1(x) − Uj+1(x)Uj+1(y)

− 2xUj−1(y)Uj(x) + Uj−1(x)Uj−1(y)

= 2xUj(y)Uj+1(x) − Uj+1(x)Uj+1(y) − Uj−1(y)Uj+1(x)

= 2(x− y)Uj+1(x)Uj(y).

We note that this telescoping property is due to the fact that Chebyshev polynomials satisfy
a three term recurrence with constant coefficients. Consequently this procedure cannot be

performed the same way for Jacobi polynomials P
(α,α)
n (x), α 6= ±1

2 . However mimicking the

steps of the proof above one obtains a decomposition of Sα
2n(x, 0), −1

2 < α < 1
2 , that makes

the problem better treatable with our methods.

Remark 4. Because of the fact that Chebyshev polynomials of first and second kind satisfy

the same recurrence relation but with different starting values, a closed form for S
−1/2
n (x, y)

can be computed completely analogously.

4. Jacobi polynomials P
(α,α)
n (x) with −1

2 < α < 1
2

In this section we will prove Theorem 1, i.e. the positivity of Sα
2n(x, 0), −1

2 < α < 1
2 , where

the sum representation according to (3) is given by

(9) Sα
n (x, y) =

1

x− y

n
∑

j=0

cαj [P
(α,α)
j+1 (x)P

(α,α)
j (y) − P

(α,α)
j (x)P

(α,α)
j+1 (y)],

with cαj = 2−2α−1 Γ(j+2)Γ(j+2α+2)
Γ(j+α+1)Γ(j+α+2) . To this end we need several intermediate results starting

with a suitable decomposition of Sα
n (x, y) which will be obtained by following the steps of the
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derivation (8). For this we will invoke the three term recurrence [1, 9]

(10)
(n+ 2)(n + 2α+ 2)P

(α,α)
n+2 (x) = (n+ α+ 2)(2n + 2α+ 3)xP

(α,α)
n+1 (x)

− (n+ α+ 1)(n + α+ 2)P (α,α)
n (x)

for n ≥ 0 with initial values P
(α,α)
−1 (x) = 0, P

(α,α)
0 (x) = 1. With this relation we obtain for

all j ≥ 0

(x− y)cαj P
(α,α)
j+1 (x)P

(α,α)
j (y)

= x cαj P
(α,α)
j+1 (x)P

(α,α)
j (y) −

cαj
(j + α+ 1)(2j + 2α + 1)

P
(α,α)
j+1 (x)

× [(j + α)(j + α+ 1)P
(α,α)
j−1 (y) + (j + 1)(j + 2α+ 1)P

(α,α)
j+1 (y)]

= x cαj P
(α,α)
j+1 (x)P

(α,α)
j (y) − cαj

(j + 1)(j + 2α+ 1)

(j + α+ 1)(2j + 2α+ 1)
P

(α,α)
j+1 (x)P

(α,α)
j+1 (y)

− cαj
(j + α)(j + α+ 1)

(2j + 2α+ 1)(j + 1)(j + 2α+ 1)
P

(α,α)
j−1 (y)

× [x(2j + 2α+ 1)P
(α,α)
j (x) − (j + α)P

(α,α)
j−1 (x)]

= xcαj P
(α,α)
j+1 (x)P

(α,α)
j (y) − xcαj−1P

(α,α)
j (x)P

(α,α)
j−1 (y)

− cαj
(j + 1)(j + 2α+ 1)

(j + α+ 1)(2j + 2α + 1)
P

(α,α)
j+1 (x)P

(α,α)
j+1 (y)

+ cαj
(j + α)2(j + α+ 1)

(j + 1)(j + 2α+ 1)(2j + 2α+ 1)
P

(α,α)
j−1 (x)P

(α,α)
j−1 (y).

Now we plug this identity into Definition (9), set y = 0 and substitute n 7→ 2n. This gives

x2Sα
2n(x, 0) =

2n
∑

j=0

x∆j[c
α
j−1P

(α,α)
j (x)P

(α,α)
j−1 (0)]

− 2

2n
∑

j=0

cαj
(j + 1)(j + 2α+ 1)

(j + α+ 1)(2j + 2α+ 1)
P

(α,α)
j+1 (x)P

(α,α)
j+1 (0)

+ 2

2n
∑

j=0

cαj
(j + α)2(j + α+ 1)

(j + 1)(j + 2α+ 1)(2j + 2α+ 1)
P

(α,α)
j−1 (x)P

(α,α)
j−1 (0),

The first sum can easily be simplified by telescoping, the second and third sums can be
combined by shifting summation indices. We also use the fact that ultraspherical Jacobi

polynomials P
(α,α)
n of odd degree vanish at x = 0. Thus with

gα
2n(x, 0) = cα2n

[

xP
(α,α)
2n+1 (x) − 2

2n + α+ 1

4n + 2α+ 3
P

(α,α)
2n (x)

]

P
(α,α)
2n (0)

and

fα
2n(x, 0) = 2(4α2 − 1)

n
∑

j=0

(2j + α+ 1)cα2j

(2j + 1)(2j + 2α+ 1)(4j + 2α − 1)(4j + 2α+ 3)
P

(α,α)
2j (0)P

(α,α)
2j (x)

we obtain
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Figure 1. x2S0
2n(x, 0) and f0

2n(x, 0), g0
2n(x, 0) for n = 8

Lemma 5.

x2Sα
2n(x, 0) = fα

2n(x, 0) + gα
2n(x, 0), −

1

2
< α <

1

2
, −1 ≤ x ≤ 1, n ≥ 0.

As can be seen from figure 1, gα
2n(x) contains the main oscillations whereas in fα

2n(x) they are
dampenend out. In order to prove non-negativity of Sα

2n(x, 0) we will show that fα
2n(x, 0) +

gα
2n(x, 0) ≥ 0. This will be achieved by estimating the sum fα

2n(x, 0) from below. Adding this
lower bound to gα

2n(x, 0) can then be shown to be positive with SumCracker’s ProveInequality
command.

The first step is to define, more generally, fα
n for arguments x, y ∈ [−1, 1] by

fα
n (x, y) = 2(2α−1)(2α+1)

n
∑

j=0

(j + α+ 1)cαj
(j + 1)(j + 2α+ 1)(2j + 2α− 1)(2j + 2α + 3)

P
(α,α)
j (x)P

(α,α)
j (y).

This definition is consistent with that of fα
2n(x, 0) above. The coefficient of the Jacobi poly-

nomials inside the sum is positive for j ≥ 1, hence we have

n
∑

j=1

(j + α+ 1)cαj
(j + 1)(j + 2α+ 1)(2j + 2α− 1)(2j + 2α + 3)

[P
(α,α)
j (x) − P

(α,α)
j (y)]2 ≥ 0,

which is equivalent to

−
n

∑

j=0

(j + α+ 1)cαj
(j + 1)(j + 2α+ 1)(2j + 2α − 1)(2j + 2α+ 3)

P
(α,α)
j (x)P

(α,α)
j (y) ≥

−

n
∑

j=0

(j + α+ 1)cαj
(j + 1)(j + 2α + 1)(2j + 2α− 1)(2j + 2α+ 3)

P
(α,α)
j (x)2

−

n
∑

j=0

(j + α+ 1)cαj
(j + 1)(j + 2α+ 1)(2j + 2α− 1)(2j + 2α + 3)

P
(α,α)
j (y)2

Since (1 − 2α)(1 + 2α) is positive for −1
2 < α < 1

2 we can multiply both sides of the last
inequality with this factor to obtain

Lemma 6. Let −1
2 < α < 1

2 . Then

fα
n (x, y) ≥

1

2
(fα

n (x, x) + fα
n (y, y)), n ≥ 0,

for all x, y ∈ [−1, 1].
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This lower bound has the advantage that we can find a closed form for fα
n (x, x). Kauers’

package Crack delivers closed form expressions for specific values of α, and guessing suggests
the identity

Lemma 7.

fα
n (x, x) = 2cαn

[

(n+ 1)(n + 2α+ 1)

(n+ α+ 1)(2n + 2α+ 1)
P

(α,α)
n+1 (x)2

−xP (α,α)
n (x)P

(α,α)
n+1 (x) +

n+ α+ 1

2n+ 2α+ 3
P (α,α)

n (x)2
]

,

for all n ≥ 0, −1 ≤ x ≤ 1 and α > −1.

The key point is discovering this identity. Once it has been found its validity can be proven
fairly easily.

Proof. By telescoping and by fα
−1(x, x) = 0 it suffices to show that

2(4α2 − 1)cαj−1

(j + α)(2j + 2α− 1)(2j + 2α+ 3)
P

(α,α)
j (x)2 = fα

j (x, x) − fα
j−1(x, x) = ∆j[f

α
j−1(x, x)].

Since
cα
j

cα
j−1

= (j+1)(j+2α+1)
(j+α)(j+α+1) we have

1

2cαj−1

(fα
j (x, x) − fα

j−1(x, x))

=
4α2 − 1

(j + α)(2j + 2α− 1)(2j + 2α+ 3)
P

(α,α)
j (x)2

+
(j + 1)(j + 2α+ 1)

(j + α)(j + α+ 1)

[

(j + 1)(j + 2α+ 1)

(j + α+ 1)(2j + 2α+ 1)
P

(α,α)
j+1 (x) − xP

(α,α)
j (x)

]

P
(α,α)
j+1 (x)

+

[

xP
(α,α)
j (x) −

j + α

2j + 2α+ 1
P

(α,α)
j−1 (x)

]

P
(α,α)
j−1 (x).

By the Jacobi recurrence relation (10) the expressions in the last two rows cancel. �

Figure 2 illustrates how the functions gα
2n(x, 0), fα

2n(x, 0) and 1
2(fα

2n(x, x) + fα
2n(0, 0)) are

related. Now we collect the previous lemmas to give a proof of Theorem 1.

Proof of Theorem 1. The cases α = ±1
2 are covered by the results of section 3. For α = −1

2

Theorem 1 follows from well known results on the Fejèr kernel [10] and positivity of S
1/2
2n (x, 0)

is obvious from the rewriting stated in Lemma 3.
Next we consider −1

2 < α < 1
2 . With the decomposition given in Lemma 5 and the lower

bound from Lemma 6 we have

x2Sα
2n(x, 0) = gα

2n(x, 0) + fα
2n(x, 0) ≥ gα

2n(x, 0) +
1

2
(fα

2n(x, x) + fα
2n(0, 0)).
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Figure 2. g2n(x, 0), f2n(x, 0), dashed: ±1
2(f2n(x, x) + f2n(0, 0))

-1 -0.5 0.5 1

5

Figure 3. [g2n(x, 0) + 1
2(f2n(x, x) + f2n(0, 0))]/x2 , dotted: 2S0

2n(x, 0) for n = 12.

To finish the proof it suffices to show positivity of the latter expression. We plug in the closed
form stated in Lemma 7 and simplify to

1

cα2n

[gα
2n(x, 0) +

1

2
(fα

2n(x, x) + fα
2n(0, 0))]

=
(2n+ 1)(2n + 2α+ 1)

(2n + α+ 1)(4n + 2α+ 1)
P

(α,α)
2n+1 (x)2 − x P

(α,α)
2n+1 (x)[P

(α,α)
2n (x) − P

(α,α)
2n (0)]

+
2n + α+ 1

4n+ 2α+ 3
[P

(α,α)
2n (x) − P

(α,α)
2n (0)]2.(11)

We use the ProveInequality command of SumCracker in the following way:

In[3]:= ProveInequality[
(2n + 1)(2n + 2α + 1)

(2n + α + 1)(4n + 2α + 1)
JacobiP[2n + 1, α, α, x]2

− xJacobiP[2n + 1, α, α, x](JacobiP[2n, α, α, x] − JacobiP[2n, α, α, 0])

+
2n + α + 1

4n + 2α + 3
(JacobiP[2n, α, α, x] − JacobiP[2n, α, α, 0])2 ≥ 0,

Using → {−1 ≤ x ≤ 1, −
1

2
< α <

1

2
}, Variable → n, From → 0]//Timing

Out[3]= {5358.25Second, True}

This command constructs an inductive proof using cylindrical algebraic decomposition
[2, 6, 5], which is also where the main computational effort lies.

2
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5. Conclusion

The condition on α above cannot be removed if we want positivity of (11) for n ≥ 0. It
seems though that this expression stays non-negative for n greater some lower bound, possibly
depending on α.

An obvious open problem is to give a “human” proof of the positivity of the expression in
(11).

Acknowledgement. I thank Manuel Kauers and Peter Paule for numerous discussions
and general suggestions.
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[9] G. Szegö. Orthogonal Polynomials. AMS Colloquium Publications, Volume XXIII. 3rd edition, 1974.

[10] A. Weiße, G. Wellein, A. Alvermann, H. Fehske. The Kernel Polynomial Method. Rev.Mod.Phys. 78,
2006.


