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Abstract

In this paper we investigate the discretization of an elliptic boundary value problem in 3D
by means of the hp-version of the finite element method using a mesh of hexahedrons. The
corresponding linear system is solved by a preconditioned conjugate gradient method with
an overlapping preconditioner as inexact additive Schwarz preconditioner. The remaining
subproblems are treated by a tensor product based preconditioner. This preconditioner uses
a basis transformation into a basis which is stable in L2 and H1. Several numerical examples
show the efficiency of the proposed method.

1 Introduction

In this paper, we investigate the following boundary value problem: Let Ω ⊂ R3 be a bounded
domain and let f ∈ L2(Ω), f1 ∈ L2(∂Ω). Find u ∈ H1

Γ1
(Ω) = {u ∈ H1(Ω), u = 0 on Γ1},

Γ1 ∩ Γ2 = ∅, Γ1 ∪ Γ2 = ∂Ω such that

a(u, v) :=
∫

Ω

(∇u)>∇v =
∫

Ω

fv +
∫

Γ2

f1v := 〈f, v〉Ω + 〈f1, v〉Γ2 (1.1)

holds for all v ∈ H1
Γ1

(Ω). Problem (1.1) will be discretized by means of the hp-version of the finite
element method using hexahedral elements 4s, s = 1, . . . , nel. Let 4̂ = (−1, 1)3 be the reference
hexahedron and Fs : 4̂ → 4s be the isoparametric mapping to the element 4s.
We define the finite element space M := {u ∈ H1

Γ1
(Ω), u |4s= ũ(F−1

s (x, y, z)), ũ ∈ Qp}, where Qp
is the space of all polynomials of maximal degree p in each variable. By [Z] = (ζ1, . . . , ζN ), we
denote a basis for M in which the functions ζ1, . . . , ζnv are the usual hat functions. The functions
ζnv+(j−1)(p−1)+1, . . . , ζnv+j(p−1) correspond to the edge ej of the mesh, and vanish on all other
edges, i.e. satisfy the condition ζnv+(j−1)(p−1)+k−1 |el

= δj,lpk, where pk is a polynomial of degree
k, k = 2, . . . , p. The support of an edge function is formed by those elements which have the
corresponding edge ej in common. One defines (p−1)(p−2)

2 face shapes which are polynomial on the
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defining face and vanish on all other faces. The support of these face-based functions is formed
by the two elements sharing the defining face. The remaining basis functions are interior bubble
functions consisting of a support containing one element only. These functions vanish on each face
of the mesh. With this definition, the basis functions ζi can be divided into four groups,

• the vertex functions (V),

• the edge bubble functions (E),

• face bubble functions (F),

• the interior bubble functions (I),

locally on each element 4s, and globally on Ω.
The Galerkin projection of (1.1) onto M leads to the linear system of algebraic finite element
equations

Kζu = f, where Kζ = [a∆(ζj , ζi)]
N
i,j=1 , f

p
= [〈f, ζi〉+ 〈f1, ζi〉Γ2 ]

N
i=1 . (1.2)

Using the vector u, an approximation up = [Z]u of the exact solution u of (1.1) can be built from
the usual finite element isomorphism. In the case of smooth solutions u in parts of the domain Ω,
spectral methods, [17], and finite elements of high order (p-version), see e.g. [27], [28], [12] and
the references therein, have become more and more popular for twenty years. For the h-version
of the FEM, the polynomial degree p of the shape functions on the elements is kept constant
and the mesh-size h is decreased. This is in contrast to the p-version of the FEM in which the
polynomial degree p is increased and the mesh-size h is kept constant. Both ideas, mesh refinement
and increasing the polynomial degree, can be combined. This is called the hp-version of the FEM.
The advantage of the p-version in comparison to the h-version is that the solution converges faster
to the exact solution with respect to the number of unknowns N . However, the solution of the
system (1.2) is more difficult. The matrix Kζ and therefore the numerical solution of (1.2) depends
on the choice of the basis functions and an appropriate preconditioner.
For 2 ≤ i ≤ p, let

L̂i(x) =
1
2

√
(2i− 3)(2i− 1)(2i+ 1)

∫ x

−1

Li−1(s) ds (1.3)

be the i-th integrated Legendre polynomial where Li(x) = 1
2ii!

di

dxi (x2−1)i denotes the i-th Legendre
polynomial. Moreover, let L̂0/1(x) = 1±x

2 . In the case of parallelepipedal elements, the stiffness
matrix with respect to the tensor products of the integrated Legendre polynomials (1.3) has O(p3)
nonzero matrix entries. Therefore, the solution time of the system (1.2) should require O(p3) flops
up to some logarithmic terms.
It is known from literature, see [29], that domain decomposition (DD) methods are a powerful tool
for the development of parallel preconditioners for the h-version as well as for the p-version of the
FEM. In the two-dimensional case, nonoverlapping DD preconditioners with inexact subproblem
solvers on the subdomains are preferred since the coupling between the high order functions, i.e.
edge bubbles and interior bubbles, and the vertex functions can be removed by paying a log p
term in the condition number estimates, [2]. This preconditioner requires a solver related to the
Dirichlet problem on the elements 4s, see [19, 3, 6, 13], a solver related to the Schur complement
corresponding to the subdomain boundaries, see [16, 1], and an approximate discrete harmonic
extension from ∂4s to 4s, see [2, 22, 4, 8].
In the three-dimensional case, the situation is much more difficult due to the coupling between
the face bubble (F), edge bubble (E) and vertex based functions (V). More precisely, a splitting
into different spaces is not stable in the standard spaces, see e.g. [29]. Mandel, [20], suggested a
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change of the subspaces. In [14], the space of the edge bubbles E has been changed to a modified
space Ẽ. Based on the theoretical estimates in [24], [25], the stability proof has been obtained
for the decomposition of the Schur complement related to the element boundaries into the Schur
complement related to the face bubbles on each face separately and the wire-basket corresponding
to vertex and edge bubble functions. In [6], see also [5] for the refined estimates, a first solver for
the interior bubbles is developed in the basis of the integrated Legendre polynomials (1.3).
This solver uses a basis [Ψ] = [ψI,i]

p
i=2 ⊂ Bp,0 = {u ∈ Pp(−1, 1), u(±1) = 0} which satisfies the

following properties:

• There exist a diagonal matrix DM and a diagonal matrix DK such that the norm equivalences

u>DKu ∼‖ [Ψ]u ‖2H1
0 (−1,1) and u>DMu ∼‖ [Ψ]u ‖2L2(−1,1) (1.4)

hold for all u ∈ Rp−1, where the constants do not depend on p.

• The basis transformation from the basis of the integrated Legendre polynomials into the basis
[Ψ] requires O(p) operations.

The basis [Ψ] is called p-wavelet basis. In [18], a first preconditioner is proposed on the face
bubbles based on multi-resolution analysis, see [6]. The wire basket is solved optimally with
respect to the polynomial degree but not with respect to the number of elements. Based on the
optimal solvers for the interior bubbles and the face bubbles, the approximate discrete harmonic
extensions are replaced by nearly exact solutions for the interior bubbles. This is optimal due
to the arithmetical complexity, a direct application of an explicit extension operator is much
faster. Another approach is using overlapping preconditioners as developed in [23], see also [21]
for the tetrahedral case. This avoids the usage of difficult extension operators. Moreover, the
part of the system which corresponds to the h-part is decoupled from the p-part of the system.
The overlapping preconditioner, which was proposed by Pavarino [23], requires only the solution of
high-order systems on patches consisting of about 8 hexahedrons. It is necessary to use polynomial
degrees p between 10 and 20 on some elements, see [12] for some examples. Therefore, we need a
solver for a patch structure with relatively high polynomial degree.
In this paper, we propose fast solvers for the patch structure. The total complexity for the solution
of the system of linear algebraic equations is O(p3 logκ p) with κ < 2, i.e. quasioptimal with respect
to the number of unknowns. The main goal is the development of another p-wavelet basis with
properties as in (1.4) for spaces of the type Bp,1 = {u ∈ Pp(−1, 1), u(1) = 0}. This is an extension
of the results presented in [6], [5]. Moreover, the solvers use the tensor product structure of the
elements and patches directly.
The outline of this paper is as follows. Section 2 explains the Pavarino preconditioner. Moreover,
we determine the corresponding one-dimensional model problem of the tensor product structure.
The main part of this paper is Section 3. Here, we investigate several wavelet preconditioners for
this one-dimensional model problem based on norm equivalences as in (1.4). In Section 4, we define
the solver related to the patches. Furthermore, several numerical experiments show the efficiency
of the proposed method. This includes also the comparison to direct solvers. Section 5 is devoted
to possible generalizations of the presented results and concludes the work.
Throughout this paper, the integer p denotes the polynomial degree. For two real symmetric
and positive definite n × n matrices A,B, the relation A � B means that A − cB is negative
definite, where c > 0 is a constant independent of n, or p. The relation A ∼ B means A � B and
B � A, i.e. the matrices A and B are spectrally equivalent. The isomorphism between a function
u =

∑
i uiψi ∈ L2 and the vector of coefficients u = [ui]i with respect to the basis [Ψ] = [ψ1, ψ2, . . .]

is denoted as u = [Ψ]u.
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2 Domain decomposition

In this section, we present an overlapping preconditioner which has been developed by Pavarino,
[23]. It decouples the h-part of the system from the p-part system. For the definition of the
preconditioner, some notation is introduced. Let

V0 =
{
u ∈ H1

Γ1
(Ω), u |4s= ũ(F−1

s (x, y, z)), ũ ∈ Q1

}
(2.1)

be the space of all finite element functions of maximal polynomial degree 1. Moreover, let

Ωv = {∪s4s, v ⊂ 4s}

be the closed patch to a node v of the finite element mesh. Then, for each node v of the finite
element mesh, we introduce

Vv = {u ∈M, supp u ⊂ Ωv} (2.2)

as the patch space, cf. Figure 1.

v

Figure 1: Patch Ωv of a node v (2D).

Theorem 2.1. Let Vv and V0 be defined via (2.2) and (2.1), respectively. Then, we have

a(u, u) ∼ a(u0, u0) +
∑
v

a(uv, uv), ∀u = u0 +
∑
v

uv, u0 ∈ V0, uv ∈ Vv.

The constants depend neither on h nor on p.

Proof. This result has been proved by Pavarino [23].

Therefore, it suffices to solve systems on the subspaces V0 and Vv where v is running over all nodes
v. The system onV0 corresponds to the h-part of the global system. Here, many solvers in the sense
of inexact additive Schwarz preconditioners are available in order to solve the system in optimal
arithmetical complexity. Examples are multigrid methods, [15], and the BPX-preconditioner, [7],
for structured meshes and algebraic multigrid methods (AMG) for unstructured meshes.
For low local polynomial degrees, the systems related to Vv can be handled by a direct solver.
However, if the local polynomial degree p is increasing, this is too expensive, cf. Table 1 for
the dimensions of the local subspaces. Therefore, if p is large, an iterative solver with a suitable
preconditioner should be preferred. In the standard case, a patch consists of eight hexahedrons
(2 × 2 × 2). Moreover, a moderate deformation of the hexahedrons into unit cubes leads to a
spectrally equivalent system with respect to the polynomial degree. The condition number depends
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p 1 3 5 7 9 11 13
Dimension of Vv 1 125 729 2197 4913 9261 15625

Table 1: Dimension of Vv for a patch of 2× 2× 2 cubes.

only on the angles of the involved, possibly curvilinear, elements 4s, [16]. Hence, the situation
with 2 × 2 × 2 cubes and Dirichlet boundary conditions is the typical model problem in order to
derive a solver for Vv for high p.
This problem has a tensor product structure. The corresponding one-dimensional problem is the
situation with two elements, i.e. the intervals (−2, 0) and (0, 2) and Dirichlet boundary conditions
at x = ±2, i.e. find u ∈ Bp = {u ∈ H1

0 (−2, 2), u |(−2,0)∈ Pp, u |(0,2)∈ Pp} such that∫ 2

−2

u′v′ dx+
∫ 2

−2

uv dx = g ∀v ∈ Bp. (2.3)

Let [Φp] be some basis of Bp. Then, the solution of (2.3) is equivalent to the solution of the linear
system (KΦp +MΦp)u = g with the mass and stiffness matrix

KΦp =
∫ 2

−2

d
dx

[Φp]>
d
dx

[Φp] dx and MΦp =
∫ 2

−2

[Φp]>[Φp] dx, (2.4)

respectively. Then the solution of the model problem for Vv is the solution of a system with the
matrix

K3 = KΦp ⊗MΦp ⊗MΦp +MΦp ⊗KΦp ⊗MΦp +MΦp ⊗MΦp ⊗KΦp . (2.5)

Our aim is to derive preconditioners CM and CK for MΦp and KΦp , respectively. These precondi-
tioners are of the form

C
−1
M = WD−1

M W> and C
−1
K = WD−1

K W>, (2.6)

where the multiplications Wu and W>u require O(p) floating point operations, and the matrices
DM and DK are diagonal matrices. Then, the matrix C3, which is defined via

C−1
3 = (W ⊗W ⊗W )(DK⊗DM⊗DM +DM⊗DK⊗DM +DM⊗DM⊗DK)−1(W ⊗W ⊗W )>, (2.7)

is a preconditioner for K3 (2.5), where the action C−1
3 r requires O(p3) floating point operations.

In the next section, we derive the preconditioners (2.6). In Section 4, we return to the three-
dimensional problem.

3 The one-dimensional model problem

In this section, we consider problem (2.3). In subsection 3.1, we define a basis of the space Bp.
Moreover, we give some interpretations of the mass and stiffness matrix (2.4) as discretization
matrices for the h-version of the FEM. Subsections 3.2 and 3.3 consider wavelet solvers on the
one-dimensional reference element (−1, 1) and for problem (2.3), respectively.

3.1 Structure of mass and stiffness matrix

3.1.1 Definition of the basis functions

In order to determine mass and stiffness matrix, we have to specify our basis functions of the space
Bp. First, the functions on the reference interval (−1, 1) are defined. For reasons of simplicity, let
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us assume that p is odd. Now, we define

L̃i(x) :=

√
(2i− 1)

4(2i− 3)(2i+ 1)
L̂i(x) =

1
4
(2i− 1)

∫ x

−1

Li−1(s) ds, i ≥ 2 (3.1)

as the i-th integrated Legendre polynomial in [−1, 1] with another scaling as in (1.3). Moreover,
let L̃0/1(x) := 1±x

2 .
The local functions on the elements (0, 2) and (−2, 0) are obtained by the affine translation y =
x± 1. This defines the basis functions on Bp, i.e.

φ̃1(x) =
1
2

 2 + x x ∈ [−2, 0]
2− x x ∈ [0, 2]

0 else
,

φ̃i(x+ 1) =
{
L̃i(x) |x| ≤ 1

0 else
, i = 2, . . . , p, (3.2)

φ̃p+i−1(x− 1) =
{

(−1)iL̃i(x) |x| ≤ 1
0 else

, i = 2, . . . , p

where [L̃] denotes the integrated Legendre polynomials (3.1). Then

[L̃(−2,2)] =
[
φ̃i

]2p−1

i=1
(3.3)

forms a basis of Bp. The matrices

KL̃(−2,2) =
∫ 2

−2

d
dx

[L̃(−2,2)]>
d
dx

[L̃(−2,2)] dx and M L̃(−2,2) =
∫ 2

−2

[L̃(−2,2)]>[L̃(−2,2)] dx (3.4)

are the result of assembling the local stiffness and mass matrices on the two intervals (−2, 0) and
(0, 2). In order to compute the entries of the matrices in (3.4), we have to consider the matrices on
the reference element (−1, 1). Note that the structure of the space Bp with the Dirichlet boundary
conditions at x = ±2 implies that exactly one hat function is required on each of the two elements.
Using the properties of the integrated Legendre polynomials, the mass and stiffness matrix on
the reference interval (−1, 1) can be computed explicitly. In order to get some structure in the
matrices, the integrated Legendre polynomials (3.1) are ordered in the following way:

• first the odd polynomials starting from the highest polynomial,

• then one of the hat functions, i.e. L̃1(x) or L̃0(x),

• and finally the even polynomials starting from the lowest polynomial,

e.g.
[L̃(−1,1)] =

[
L̃p, L̃p−2, . . . , L̃3(x), L̃1(x), L̃2(x), L̃4(x), . . . L̃p−1(x)

]
(3.5)
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Consequently for the Dirichlet boundary condition on (−1, 1) at x = −1, we have

M L̃(−1,1) :=
∫ 1

−1

[L̃(−1,1)]>[L̃(−1,1)] dx (3.6)

=
1
4



2
2p+1 + 2

2p−3 − 2
2p−3 0 . . . . . . 0
. . . . . .

...
0 − 2

11
2
7 + 2

11 − 2
7 0 0 0 . . . 0

. . . 0 − 2
7

2
7 + 2

3 − 2
3 0 0 . . . 0

0 . . . 0 − 2
3

8
3 −2 0 . . . 0

0 . . . 0 −2 12
5 − 2

5 0 . . .
0 . . . 0 − 2

5
2
9 + 2

5 − 2
9 0

...
. . . . . .

...
0 . . . . . . 0 − 2

2p−5
2

2p−5 + 2
2p−1


.

Moreover, the orthogonality of the Legendre polynomials implies

KL̃(−1,1) :=
∫ 1

−1

d
dx

[L̃(−1,1)]>
d
dx

[L̃(−1,1)] dx (3.7)

=
1
4
diag [4p− 2, 4p− 10, . . . , 18, 10, 2, 6, 14, . . . , 4p− 14, 4p− 6] .

In the case the Dirichlet boundary condition on (−1, 1) at x = 1, we replace [L̃(−1,1)] by the

modified basis [Φ0,p] =
[
−L̃p(x),−L̃p−2(x), . . . ,−L̃3(x), L̃0(x), L̃2(x), L̃4(x), . . . L̃p−1(x)

]
see (3.2)

and obtain the same result for mass and stiffness matrix as in (3.6), (3.7). The matrices M L̃(−2,2)

and KL̃(−2,2) (3.4) are obtained by a simple assembling of M L̃(−1,1) (3.6) and KL̃(−1,1) (3.7). For
p = 7, the matrices and all shape functions of Bp are displayed in Appendix A.

3.1.2 Interpretations of mass and stiffness matrix

The solvers presented in [6] based on the norm equivalences (1.4) use h-FEM interpretations of the
corresponding mass and stiffness matrix in the basis of the integrated Legendre polynomials. A
similar approach is possible for K1 (3.7) and M1 (3.6), respectively. However, we have to modify
the corresponding weight functions. The matrix M1 is a weakly diagonal dominant, tridiagonal
and positive definite matrix with negative off diagonal entries. Hence, this matrix is also a stiffness
matrix for an h-FEM method on the unit interval with an appropriate weight function specified
below. Moreover, we derive a spectrally equivalent matrix for K1 (3.7) that is a mass matrix for an
h-FEM method and an appropriate weight function ω on the unit interval [−1, 1]. For this reason,
we even abandon the diagonal structure and admit diagonally dominant tridiagonal matrices.
To this end, we study the following auxiliary variational problem:
Let

H1
ω1,ω2

(−1, 1) := {u ∈ L2(−1, 1), u(±1) = 0,
∫ 1

−1

ω2
2(x)u2(x) dx <∞,∫ 1

−1

ω2
1(x)(u′)2(x) dx <∞}.

Find u ∈ H1
ω1,ω2

(−1, 1) such that

a1(u, v) = 〈u, v〉ω2 + 〈u′, v′〉ω1 = 〈g, v〉 (3.8)
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holds for all v ∈ H1
ω1,ω2

(−1, 1), where

〈u, v〉ω :=
∫ 1

−1

ω2(x)u(x)v(x) dx and ‖ v ‖2ω:= 〈v, v〉ω. (3.9)

The weight functions ωi, i = 1, 2 will be specified later. The one-dimensional problem (3.8) is
discretized by linear finite elements on the equidistant mesh Tn =

⋃n−1
i=−n τ

n
i where τni =

(
i
n ,

i+1
n

)
and n = p+1

2 . The one-dimensional hat functions on this mesh,

φni (x) =

 nx− (i− 1) on τni−1,
(i+ 1)− nx on τni ,

0 otherwise,
i = −n+ 1, . . . , n− 1, (3.10)

are a basis of the finite element space Vn = span[φni ]
n−1
i=−n+1 = span[Φ1

n]. The Galerkin projection
onto Vn for (3.8) can be described as follows: Find un ∈ Vn such that

a1(un, vn) = 〈g, vn〉 ∀vn ∈ Vn. (3.11)

This gives rise to the linear equation (Kφ
ω1

+Mφ
ω2

)u = g with

Kφ
ω1

:=
[
〈(φnj )′, (φni )′〉ω1

]n−1

i,j=−n+1
and Mφ

ω2
:=

[
〈φnj , φni 〉ω2

]n−1

i,j=−n+1
. (3.12)

Then, un =
∑n−1
i=−n+1 φ

n
i ui := [Φ1

n]u is the solution of (3.11).
We prove now the following result.

Lemma 3.1. Let n = p+1
2 . Let KL̃(−1,1) be defined according to (3.7). Then we have the spectral

equivalence
KL̃(−1,1) ∼ n2Mφ

ω2(x)=
√
|x|
. (3.13)

Proof. We compute the element stiffness matrix Mφ
ω2,i

on the element τi, i ≥ 1 and obtain

Mφ
ω2,i

=
1

12n2

[
4i− 3 2i− 1
2i− 1 4i+ 1

]
.

We define

F̃i =
1

12n2

[
4i− 3 0

0 4i+ 1

]
and Fi =

1
12n2

[
4i− 3 0

0 4i− 1

]
.

Since 2i−1√
(4i−3)(4i+1)

≥ 2i−1
4i−1 ≥

1
2 for i ≥ 1, we can conclude that

1
2
F̃i ≤Mφ

ω2.i
≤ 3

2
F̃i, i ≥ 1. (3.14)

Moreover, a simple computation shows that

3
5
F̃i ≤ Fi ≤ F̃i, i ≥ 1. (3.15)

Combining (3.14) and (3.15), we have 1
2Fi ≤ Mφ

ω2,i
≤ 5

2Fi. By symmetry of the weight function,
we have Mφ

ω2,i
= Mφ

ω2,−i+1. The assembling of Mφ
ω2,i

yields to Mφ
ω2

, whereas the assembling of Fi
gives the matrix

F = diag [4p+ 4, 4p− 4, . . . , 16, 8, 2, 8, 16, . . . , 4p− 4, 4p+ 4] ∈ R2n−1,2n−1.

Since F ∼ KL̃(−1,1) , the assertion follows by an argument for assembled matrices, [30].
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For the matrix M L̃(−1,1) (3.6), a similar result can be shown. However, we have to introduce the
discrete weight function ω1

ω1(x) =

{
1√
|x|

if |x| > 1
n√

|n| if |x| ≤ 1
n

. (3.16)

Lemma 3.2. Let ω1 be defined by (3.16). Moreover, let Kφ
ω1

and M L̃(−1,1) be defined by (3.12)
and (3.7), respectively. Then, we have Kφ

ω1
∼ n2M L̃(−1,1) .

Proof. As in the proof of the previous Lemma 3.1, the assertion follows from the structure of the
local stiffness matrices, [30].

Remark 3.3. In [6], we have chosen differently scaled integrated Legendre polynomials L̂i(x)
(1.3). In that case, a similar interpretation of the mass and the stiffness matrix is possible. The
disadvantage of the functions L̂i(x) is that this approach is limited to the interior bubbles. If one of
the hat functions 1±x

2 is added to the basis functions, the p-FEM mass matrix looses its dominance
on the diagonal. Hence, a similar interpretation which also includes one hat function is not possible
in the basis of the [L̂i]i.

Remark 3.4. For the parts of M L̃(−1,1) (3.6) and KL̃(−1,1) (3.7) which correspond to the even
polynomials, similar interpretations are possible. It is only necessary to replace the interval (−1, 1)
in (3.9) by (0, 1) and to introduce a Neumann boundary condition at x = 0. More precisely, the
matrices

M
L̃(−1,1)
even :=

1
4


2 −2 0 . . . 0
−2 2 + 2

5 − 2
5 0 . . .

0 − 2
5

2
9 + 2

5 − 2
9 0

...
. . . . . .

...
0 . . . 0 − 2

2p−5
2

2p−5 + 2
2p−1

 and

K
L̃(−1,1)
even :=

1
4
diag [2, 6, 14, . . . , 4p− 14, 4p− 6]

are the matrices for the even part. The above interpretations follow now by the same arguments.

3.2 Wavelet solver on one element

In view of (2.5) and Lemmas 3.1 and 3.2, our goal is to derive preconditioners for Kronecker prod-
ucts between a weighted stiffness matrix, i.e. Kφ

ω1
(3.16) (orM L̃(−1,1)), and a weighted mass matrix,

i.e. M
ω2=

√
|x| (3.12) (or KL̃(−1,1)). Our approach is using wavelet preconditioners. Similar to (2.6),

we consider preconditioners C−1
M and C−1

K for M L̃(−1,1) (3.6) and KL̃(−1,1) (3.7), respectively, which
are of the form

C−1
M = QkD

−1
M Q>k and C−1

K = QkD
−1
K Q>k .

The matrices DM and DK are proper diagonal or blockdiagonal matrices. The matrix Qk corre-
sponds to the wavelet basis transformation, i.e.

[Ψk] = [ψlj ](j,l)∈Îk
= [Φ1

n]Qk,

where the index set Îk is defined by

Îk =
{
(i, l) ∈ N2, 1 ≤ l ≤ k, i = 2m− 1, − 2l−1 ≤ m ≤ 2l−1, m ∈ N

}
; (3.17)

9



see [9, 26, 10]. The index k denotes the level number, i.e. n = 2k.
In subsubsection 3.2.1, we present theoretical estimates which show that wavelet preconditioners
for KL̃(−1,1) and M L̃(−1,1) lead to quasioptimal solvers. In subsubsection 3.2.2, we present some
numerical results which confirm the theoretical estimates. In subsubsection 3.2.3, a modified
wavelet solver is developed. This solver decreases the condition number of the preconditioned
systems with out loss of arithmetical complexity.

3.2.1 Condition number estimates

For getting a wavelet preconditioner for the matrix Mφ
ω2

(3.12) we have to deal with the mass
matrix Mφ

ω(x)=
√
|x|

for a singular weight at x = 0. First, we consider the case of the interval (0, 1)

with Neumann boundary conditions at the singularity x = 0 and the weight ω2(x) =
√
x.

Let
Îk,+ =

{
(i, l) ∈ N2, 1 ≤ l ≤ k, i = 2m− 1, 0 ≤ m ≤ 2l−1, m ∈ N

}
.

For α ∈ R, let ω(x) = xα be a weight function and Mψ,∞
ω2

be the infinite matrix

Mψ,∞
ω =

[∫ 1

0

ω2(x)ψlj(x)ψ
l′

j′(x) dx
]
(j,l),(j′,l′)∈∪∞k=1Îk,+

. (3.18)

In general this matrix is not diagonal when we have a wavelet basis.
Following [6] we require some properties of the wavelets.

Assumption 3.5. Let [Ψ] =
[
ψlj

]
(j,l)∈∪∞k=1Îk,+

be a basis of L2(0, 1) with piecewise linear functions

ψlj. There is a biorthogonal, or dual, Riesz basis [Ψ̃] =
[
ψ̃lj

]
(j,l)

such that

•
(
ψ̃lj , ψ

l′

j′

)
= δj,j′δl,l′ ,

• ψlj ∈W0 ⊂W 1,∞(0, 1), and ψ̃lj ∈ W̃0 ⊂W 1,∞(0, 1).

Furthermore, every v ∈ L2(0, 1) has a representation

v =
∞∑
l=1

∑
j

〈v, ψlj〉ψ̃lj =
∞∑
l=1

∑
j

〈v, ψ̃lj〉ψlj =
∞∑
1

∑
j

vljψ
l
j = [Ψ]v,

and the following norm equivalences hold:

‖v‖20 ∼
∞∑
l=1

∑
j

|〈v, ψlj〉|2 ∼
∞∑
l=1

∑
j

|〈v, ψ̃lj〉|2,

|v|21 ∼
∞∑
l=1

22l
∑
j

|
(
v, ψ̃lj

)
|2 =

∞∑
l=1

22l
∑
j

vlj . (3.19)

We have proved the following result.

Theorem 3.6. For α ∈ R, let ω(x) = xα be a weight function and let [Ψ] be a wavelet basis which
satisfies Assumption 3.5. Moreover, let MΨ,∞

ω be defined via (3.18). If

• all piecewise linear functions ψlj with 0 ∈ supp ψlj satisfy ψlj(0) = 0 and α > − 3
2 , or

• α > − 1
2 ,

10



then we have
MΨ,∞
ω � diag

[
max{ω2(2−lj), ω2(2−l−1)}

]
.

Proof. The proof has been given in [6, Theorem 3.2].

Therefore, we introduce the preconditioner

C−1
M = QkD

−1
M Q>k with DM = diag

[
max{ω2

2(2−lj), ω2
2(2−l−1)}

]
(3.20)

for Mφ
ω2=

√
x

(3.12).

Theorem 3.7. Let the assumptions of Theorem 3.6 be satisfied. Moreover, let Mφ
ω2=

√
x

and C−1
M be

defined as in (3.12) and (3.20), where the integral runs from (0, 1) instead of (−1, 1), respectively.
Then for any χ > 1, we have

1
log n logχ log n

CM �Mφ
ω2=

√
x
� CM . (3.21)

Proof. We give only a sketch of the proof. A detailed proof requires several technical lemmas as
in [6] and will be presented in a forthcoming paper.
The upper estimate follows from Theorem 3.6 with α = 1

2 . For the lower estimate, an application
of this theorem is not possible. Instead of the weight ω2

2(x) = x, we consider the modified weight
ω̃2

2(x) = x log |2x| logχ log |2x| with some χ > 1 and introduce the mass matrix

Mφ
ω̃2

:=
[
〈φnj , φni 〉ω̃2,(0,1)

]n−1

i,j=0
.

The definition of the weight functions ω2 and ω̃2 implies the estimate

Mφ
ω2
� 1

log n logχ log n
Mφ
ω̃2
.

The biorthogonality of the wavelets implies

MΨ,∞
ω̃2

=
(
MΨ,∞

(eω2)−1

)−1

For the matrix Mφ
(eω2)−1 , we are able to apply the above Theorem 3.6 with the dual weight function

ω̃−1
2 (x) =

1
x log |2x| logχ log |2x|

. Finally, we obtain

Q−>k DM̃Q
−1
k �Mφeω2

with DM̃ = diag
[
max{ω̃2

2(2−lj), ω̃2(2−l−1)}
]
.

Since ω2(x) � ω̃2(x), we have DM � DM̃ which implies CM = Q−>k DMQ
−1
k � Q−>k DM̃Q

−1
K . This

gives the lower estimate.

Next, we consider the wavelet preconditioner for Kφ
ω1

(3.16).

C−1
K = QkD

−1
K Q>k with DK = diag

[
22lω2

1(2−lj)
]

(3.22)

be the preconditioner for Kφ
ω1

(3.16).

Theorem 3.8. Let us assume that the assumptions of Theorem 3.6 are satisfied. Moreover, let
Kφ
ω1

and C−1
K be defined via (3.16) and (3.22), respectively. Then for any χ > 1, we have

CK � Kφ
ω1
� log n logχ log n CK . (3.23)
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Proof. As in the proof of Theorem 3.7, only the idea of the proof is presented. The lower estimate
follows directly from Theorem 3.6 applied to the dual weight 1

ω1(x)
= x. For the upper estimate,

we introduce the matrix

Kφ
ω̃1

=
[
〈(φnj )′, (φni )′〉ω̃1,(0,1)

]n−1

i,j=0
with ω̃1(x) =

1
x log |2x| logχ log |2x|

.

Then, one easily concludes that

Kφ
ω1
� log n logχ log n Kφ

ω̃1
.

Now, we are able to apply Theorem 3.6 and obtain the desired result as in the proof of Theorem
3.7.

3.2.2 First numerical experiments

The purpose of this subsection is to present first numerical experiments concerning the quality
of the preconditioners C−1

M (3.20) and C−1
K (3.22) for the matrices KL̃(−1,1) (3.7) and M L̃(−1,1)

(3.6), respectively. Our wavelet preconditioners are developed for the interval (0, 1), whereas the
interpretations of M L̃(−1,1) and KL̃(−1,1) are given for the interval (−1, 1), cf. Lemmas 3.1 and 3.2.
Therefore, we have to adapt the matrices M L̃(−1,1) and KL̃(−1,1) , cf. Remark 3.4. This means that

we first test our preconditioners only to the matrices KL̃(−1,1)
even and M L̃(−1,1)

even .
In all experiments, we choose the family of wavelets which is generated by the wavelet ψ22. This
wavelet consists of two vanishing moments on the primal and the dual side. Figure 2 depicts a
picture of ψ22 and its dual function.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

0

0.5

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 2: Plot of wavelet ψ22 (left) and its dual ψ̃22 (right)

The maximal and minimal eigenvalue of C−1
K M

L̃(−1,1)
even and C−1

M K
L̃(−1,1)
even are displayed in Figure 3.

In both experiments, we have replaced the diagonal matrices DM and DK in (3.20) and (3.22) by
the diagonal parts of

Q>kK
L̃(−1,1)
even Qk and Q>kM

L̃(−1,1)
even Qk.

This is the best possible choice of a diagonal matrix. From the experiments, a moderate dependence
of the eigenvalue bounds from the polynomial degree p can be seen. However, three of the four
eigenvalue bounds are quite far away from one.

3.2.3 Improvement of the constants by a block diagonal scaling

As we have observed in the previous subsection, the constants are too large. The reasons are the
diagonal scaling for the coarse grid problem on level 0 (Neumann problem) and the difficulties

12
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Figure 3: Maximal and minimal eigenvalue of C−1
K M

L̃(−1,1)
even (constants ck,1 and ck,2) and

C−1
M K

L̃(−1,1)
even (constants cm,1 and cm,2).

with the weight function at the singular boundary. In order to reduce the constants, we use an
idea which has been proposed in [6] for a similar problem. We replace the diagonal matrices DM

and DK in (3.20) and (3.22) by block diagonal matrices. For all wavelets ψlj with ψlj(0) 6= 0, i.e.
with j ≥ 1, we use again a diagonal scaling with respect to the wavelet basis. For the boundary
wavelets, i.e. wavelets with ψlj(0) 6= 0 or j = 0, the corresponding block is inverted exactly. The
size of the block is about k = log2 n, i.e. it is small in comparison to the original matrix. More
precisely, the matrix DM in (3.20) is replaced by the matrix

(D̃M )(j,l),(j′,l′) =
{

Mψ
l,l′ j = j′ = 0

(DM )(j,l),(j′,l′) else
with Mψ

l,l′ =
∫ 1

0

xψl0ψ
l′

0 dx (3.24)

and the matrix DK in (3.22) is replaced by the matrix

(D̃K)(j,l),(j′,l′) =
{

Kψ
l,l′ j = j′ = 0

(DK)(j,l),(j′,l′) else
with Kψ

l,l′ =
∫ 1

0

ω2
1(x)(ψl0)

′(ψl
′

0 )′ dx. (3.25)

Figure 4 shows that this approach reduces the eigenvalue bounds dramatically. Now, all eigenvalue
bounds are close to 1. For the relevant computational range up to a maximal polynomial degree
of p = 31, all constants are essentially bounded by 2.
In a next step, we develop the preconditioners for the matrices Kφ

ω1
(3.16) and Mφ

ω2
(3.12) on the

interval (−1, 1). Now, the singularities of the weight function lie in the interior of the interval at
x = 0. Again, we intend to use a wavelet preconditioner. As we have observed from the previous
examples, see Figures 3 and 4, the main difficulty is the coupling between wavelets with ψlj(0) = 0.
Hence, we propose preconditioners of the form

C−1
K = Qk(DK)−1Q>k and C−1

M = Qk(DM )−1Q>k (3.26)

for Kφ
ω1

(3.16) and Mφ
ω2

(3.12), respectively, where Qk denotes the corresponding wavelet trans-
formation matrix from the basis [Φ1

n] to the wavelet basis [Ψk], cf. (3.17). The matrices DM and
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Figure 4: Maximal and minimal eigenvalue of C−1
K M1,even (constants ck,1 and ck,2) and C−1

M K1,even

(constants cm,1 and cm,2) with block diagonal scaling.

DK are defined as

(DM )(j,l),(j′,l′) =
{

Mψ
l,l′ j = j′ = 0

δjj′δll′ω
2
2(2−lj) else

with Mψ
l,l′ =

∫ 1

−1

xψl0ψ
l′

0 dx, (3.27)

(DK)(j,l),(j′,l′) =
{

Kψl,l′ j = j′ = 0
δjj′δll′22lω2

1(2−lj) else
(3.28)

with Kψl,l′ =
∫ 1

−1

ω2
1(x)(ψl0)

′(ψl
′

0 )′ dx,

where δij denotes the Kronecker delta. This is similar to (3.24), (3.25).
Due to Lemmas 3.1 and 3.2, the preconditioners CK and CM (3.26) can also be used as precondi-
tioners for M L̃(−1,1) (3.6) and KL̃(−1,1) (3.7), respectively. Using Lemma 3.1 and Theorem 3.7, we
obtain

p2

log p logχ log p
CM � KL̃(−1,1) � p2CM (3.29)

with n = p+1
2 . By Lemma 3.2 and Theorem 3.8, one can conclude that

CK � p2M L̃(−1,1) � log p logχ log p CK with χ > 1. (3.30)

A direct consequence of the definition of the preconditioners in (3.26) and relations (3.29), (3.30)
is the following result about the stability of the basis

[Ψpol,p,[−1,1]] = [L̃(−1,1)]Qk (3.31)

in L2(−1, 1) and H1(−1, 1).

Lemma 3.9. Let [Ψpol,p,[−1,1]] be defined via (3.31). Then, there exist two blockdiagonal matri-

ces Dψ
M = blockdiag

[
Dψ
M,1, D

ψ
M,2

]
and Dψ

K = blockdiag
[
Dψ
K,1, D

ψ
K,2

]
which have the following

properties

• The matrices Dψ
K,1 ∈ Rm,m and Dψ

M,1 ∈ Rm,m are dense where m ≈ log2 p.

• The matrices Dψ
K,2 and Dψ

M,2 are diagonal.
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Moreover, for any u =
[
Ψpol,p,[−1,1]

]
u, we have(

Dψ
Mu, u

)
� ‖ u ‖2L2(−1,1) � log p logχ log p

(
Dψ
Mu, u

)
, (3.32)

1
log p logχ log p

(
Dψ
Ku, u

)
� |u|2H1(−1,1) �

(
Dψ
Ku, u

)
(3.33)

for any χ > 1.

3.3 Wavelets solvers on two elements

3.3.1 Extension to neighboring elements

In the previous subsection, quasioptimal solvers for KL̃(−1,1) and M L̃(−1,1) have been developed.
Now, we have to consider the preconditioners for the assembled matrices M L̃(−2,2) and KL̃(−2,2) .
Therefore, we have to investigate the extension of the functions (3.31) to the neightbouring element.
We consider now the model problem (2.3) with two elements (−2, 0) and (0, 2). In the basis of
the integrated Legendre polynomials, see (3.5), only the hat function is nonzero at x = 0. In the
previous subsection, we have transformed all basis functions on one element locally to another
basis [Ψpol,p,[−1,1]] (3.31). Let [Ψpol,p,[0,2]] = [ψpol,i]

p−1
i=0 be the similar functions on [0, 2] under the

affine transformation y = x+ 1, i.e. [Ψpol,p,[0,2]] = [Ψpol,p,[−1,1]] ◦ (·+ 1). Due to the definition of
the matrix Qk, about m+ 1 ≈ log2 p functions of Ψpol,p,[0,2] are nonzero at x = 0. Without loss of
generality let us assume that

ψpol,i(0) 6= 0 ↔ i = 0, . . . ,m.

None of these functions can continuously be extended by 0 to the neighboring element [−2, 0]. Let
ψpol,0 be the function which corresponds to the wavelet ψ0

0 (coarse hat-function). Then, we define

ψ̃p,j(x) =



{
ψpol,j(x) x ∈ [0, 2]

ψpol,j(0)
ψpol,0(0)

ψpol,0(−x) x ∈ [−2, 0] j = 0, . . . , p− 1{
ψpol,j(−x) x ∈ [−2, 0]

ψpol,j(0)
ψpol,0(0)

ψpol,0(x) x ∈ [0, 2] j = 1− p, . . . ,−1
. (3.34)

Note that ψ̃p,j(x) |(−2,0)= 0 if j ≥ m. Moreover, let

[Ψ̃p] =
[
ψ̃p,j

]p−1

j=−p+1
(3.35)

denote corresponding vector of basis functions. We now have to prove the linear independence
of the functions ψ̃p,j . Moreover, a stability result as in (3.32), (3.33) is required. Therefore, two
theoretical results have to be shown.

Lemma 3.10. Assume that α 6= 0, q, r ∈ Rn×1 and W ∈ Rn×n. Moreover, let
[
α r>

q W

]
be

nonsingular. Then, the matrix

Wg =

 W q α−1qr>

r> α r>

α−1qr> q W


is nonsingular.
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Proof. We prove that ker Wg = 0. According to the partition of Wg, we set x =

 x−
x0

x+

. The

relation Wgx = 0 implies the equations

r>x− + αx0 + r>x+ = 0,

Wx− + qx0 + α−1qr>x+ = 0, and

α−1qr>x− + qx0 +Wx+ = 0.

Multiplying the first equation by α−1q and subtracting this from the second and the third equation
gives

(W − α−1qr>)x+ = (W − α−1qr>)x− = 0.

Since the matrix
[
α r>

q W

]
is nonsingular, the Schur complement (W − α−1qr>) is nonsingular,

too. This gives x+ = x− = 0. With α 6= 0, we have x0 = 0. This proves the assertion.

The second lemma is similar to a result on assembled matrices, [30].

Lemma 3.11. Let [Ψ] = [ψi]
n
i=−n be a basis of continuous functions on the interval I = (a1, a3).

Moreover, let I1 = (a1, a2) and I2 = (a2, a3) with a1 < a2 < a3. Let us assume that the basis [Ψ]
satisfies the following properties:

1. There exists an integer m with 0 < m < n such that

ψi(x) |I2= 0 ∀i > m and ψi(x) |I1= 0 ∀x ∈ I1, i < −m. (3.36)

Moreover, there exist real numbers αi ∈ R such that

ψi(x) |I2= αiψ0(x) ∀i = 1, . . . ,m and ψi(x) |I1= αiψ0(x) ∀ − i = 1, . . . ,m. (3.37)

2. For j = 1, 2, let Dj =
[
Dj,1 0
0 Dj,2

]
∈ Rn+1×n+1, where Dj,1 ∈ Rm+1×m+1 and Dj,2 are

diagonal matrices. Let ‖ · ‖I be some norm of a function space of functions f : I 7→ R which
is induced by a scalar product (·, ·)I . Moreover, let us assume that the estimates

c−1
1 u>1 D1u1 ≤‖ u1 ‖2I1≤ c2u

>
1 D1u1 (3.38)

c−1
1 u>2 D2u2 ≤‖ u2 ‖2I2≤ c2u

>
2 D2u2

are valid for any u1 = [ψi]
n
i=0 u1 and any u2 = [ψ−i]

n
i=0 u2 where c1 and c2 denote some

constants.

Then the estimates
c−1
1 u>Du ≤‖ u ‖2I≤ c2u

>Du

hold for any u = [Ψ]u, where

D =

 D2,2 0 0
0 R 0
0 0 D1,2


with some matrix R ∈ R2m+1×2m+1.
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Proof. We have

‖ u ‖2I = ‖ [Ψ]u ‖2I = ‖
n∑

i=−n
uiψi ‖2I

= ‖
n∑

i=−n
uiψi ‖2I1 + ‖

n∑
i=−n

uiψi ‖2I2

= ‖
n∑

i=−m
uiψi ‖2I1 + ‖

m∑
i=−n

uiψi ‖2I2

= ‖ ũ0ψ0 +
n∑
i=1

uiψi ‖2I1 + ‖ û0ψ0 +
−1∑
i=−n

uiψi ‖2I2

by (3.36) and (3.37) with ũ0 = u0 +
∑−1
i=−m uiαi and û0 = u0 +

∑m
i=1 uiαi. Let u+ = [ui]

n
i=m+1,

u− = [ui]
−m−1
i=−n , u0 = [ui]

m
i=−m. Using (3.38), we can conclude that

c−1
2 (‖ u ‖2I1 + ‖ u ‖2I2) ≤

 u−
u0

u+

>  0 0 0
0 R1 0
0 0 D1,2

 u−
u0

u+


+

 u−
u0

u+

>  D2,2 0 0
0 R2 0
0 0 0

 u−
u0

u+


=

 u−
u0

u+

>  D2,2 0 0
0 R 0
0 0 D1,2

 u−
u0

u+


with some symmetric and positive definite matrices Rj ∈ R2m+1×2m+1, j = 1, 2 and R = R1 +R2.
This proves the upper estimate. The lower estimate can be proved in the same way.

Now, we are able to return to the basis [Ψ̃p] and introduce the sparse matrices

(D̃M )ij =

{ ∫ 2

−2
ψ̃i(x)ψ̃j(x) dx |i|, |j| ≤ m∫ 2

−2
ψ̃i(x)ψ̃j(x) dx · δij else

}
and (3.39)

(D̃K)ij =

{ ∫ 2

−2
ψ̃′i(x)ψ̃

′
j(x) dx |i|, |j| ≤ m∫ 2

−2
ψ̃i(x)ψ̃j(x) dx · δij else

}
.

Lemma 3.12. Let [Ψ̃p] be defined via (3.35) and let D̃M and D̃K be defined via (3.39). Then the
functions ψ̃i are linearly independent. Moreover, the relations

c−1
M,1

(
D̃Mu, u

)
≤‖ u ‖2L2(−2,2)≤ cM,2

(
D̃Mu, u

)
, (3.40)

and
c−1
K,1

(
D̃Ku, u

)
≤‖ u ‖2H1(−2,2)≤ cK,2

(
D̃Ku, u

)
(3.41)

hold for any u = [Ψ̃p]u ∈ Bp. The constants cM,1 and cK,2 are independent of the polynomial
degree p, whereas cM,2 = cK,1 = O(log p logχ log p) with some χ > 1.
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Proof. Due to the construction of our basis functions in (3.34), the assumptions of Lemmas 3.10
and 3.11 are satisfied. The linear independence of the basis functions follows from Lemma 3.10.
For the proof of (3.40), we use Lemma 3.10 with ‖ · ‖I=‖ · ‖L2(−2,2). The definition (3.34)
implies the assumptions (3.36) and (3.37). Inequality (3.30) implies relation (3.38) with c1 = O(1)
and c2 = O(log p logχ log p). This proves (3.40). For (3.41), we use Lemma 3.10 again with
‖ · ‖I=‖ · ‖H1(−2,2) and relation (3.29).

Relation (3.39) implies that the matrices D̃K and D̃M are block-diagonal matrices, i.e

D̃M =

 DM,− 0 0
0 M 0
0 0 DM,+

 and D̃K =

 DK,− 0 0
0 K 0
0 0 DK,+

 (3.42)

where DM/K,+/− ∈ Rn−m×n−m are diagonal matrices. Therefore block-diagonal matrices D̃M and
D̃K are required in order to prove the stability results (3.40) and (3.41), respectively. In order to
prove similar results with diagonal matrices DK and DM , the basis functions ψ̃i, −m ≤ i ≤ m,
have to be modified. Therefore, we consider the generalized eigenvalue problem

Kx = λMx. (3.43)

Let G and Λ be the matrix of the eigenvectors and the diagonal matrix of the eigenvalues, respec-
tively, i.e.

G>KG = Λ and G>MG = I. (3.44)

Moreover, let

[ψp,i]mi=−m = [ψ̃p,i]mi=−mG, ψp,i(x) = ψ̃p,i(x), |i| ≥ m, and [Ψp] = [ψp,i]
p−1
i=−p+1 . (3.45)

The basis transformation between the basis [Ψp] (3.45) and the basis of the integrated Legendre
polynomials [L̃(−2,2)] (3.3) is expressed via

[Ψp] = [L̃(−2,2)]Wp (3.46)

where Wp ∈ R2p−1×2p−1 is a nonsingular matrix. Finally, we introduce the diagonal matrices

DM =

 DM,− 0 0
0 I 0
0 0 DM,+

 and DK =

 DK,− 0 0
0 Λ 0
0 0 DK,+

 (3.47)

with DM/K,+/− ∈ Rn−m×n−m of (3.42). Now, we are able to prove the following stability result
for the basis [Ψp].

Theorem 3.13. Let [Ψp], DM and DK be defined via (3.45) and (3.47), respectively. Then the
relations

c−1
m,1 (DMu, u) ≤‖ u ‖2L2(−2,2)≤ cm,2 (DMu, u) , (3.48)

and
c−1
k,1 (DKu, u) ≤‖ u ‖2H1(−2,2)≤ ck,2 (DKu, u) (3.49)

hold for any u = [Ψp]u ∈ Bp. The constants cm,1, ck,2, cm,2 and ck,1 are the constants of (3.40)
and (3.41), i.e. cm,2 = ck,1 = O(log p logχ log p) with some χ > 1, whereas cm,1 and ck,2 are
independent of p. Moreover, the operations Wpx and W>

p x require O(p) floating point operations.
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Proof. The assertions (3.48) and (3.49) are direct consequences of (3.40) and (3.41) using (3.47)
and (3.44). The basis transformation matrix Wp (3.46) involves two basis transformations:

• the wavelet transformation,

• the eigenvalue basis transformation (3.44).

The first one is preformed in O(p) operations. The second one requires the solution of a eigenvalue
problem of size 2m+ 1, where m ≈ log2 p. Hence, the solution of (3.43) requires O(log3

2 p) flops, a
multiplication with the matrix G requires O(log2

2 p) flops. Therefore, the total cost is O(p).

3.3.2 Refinements for general p

In subsection 3.2, we have assumed that n = 2k and n = p+1
2 . Therefore, the norm equivalences in

Theorem 3.12 are only valid for p = 2k − 1, i.e. for p = 3, 7, 15, . . .. However, in order to develop
a solver, we need also a similar result for general p. In order to define a preconditioner there, a
wavelet transformation and refinement strategy for general n 6= 2k is required. Here, we use a
two level argument. Let k = [log2 n] be the largest integer of [log2 n] which is not greater than
[log2 n] and set n0 = 2k0 . In a first step, we do now a symbolic refinement from n grid points to
n0 grid points. For the remaining n0 grid points, we can now apply our wavelet transformation.
The question arises, where the local refinement has to be done. Three possibilities are proposed:

v1 local refinement at the nonsingular boundaries x = ±1,

v2 by an averaging argument, i.e. the nodes ±[ j n
n−n0

], j = 1, . . . , n − n0 are the new nodes on
level k0 + 1,

v3 local refinement at the singularity x = 0,

cf. also Figure 5. For the two-level wavelet transformation from n to n0, the wavelet ψ22 is used
for v1 and v3 in the interior of the refinement. Otherwise, the wavelet ψ20 is used, see also Figure
5.

3.3.3 Numerical experiments

The first example considers the case p = 2k − 1. In all experiments, the wavelet ψ22 is used for
the refinement from n0 to n0

2 ,
n0
4 , . . . . Table 2 displays the constants cm,r and ck,r, r = 1, 2, of the

p 3 7 15 31 63 127 255 511 1023
ck,2 1.00 1.34 1.58 1.80 1.97 2.06 2.12 2.16 2.19
c−1
k,1 1.00 1.51 2.00 2.41 2.79 3.12 3.41 3.65 3.86
cm,2 1.00 1.40 1.59 1.74 1.88 2.03 2.17 2.31 2.46
c−1
m,1 1.00 1.66 1.92 2.10 2.25 2.42 2.60 2.80 3.00

Table 2: Constants cm,r and ck,r, r = 1, 2, of (3.40) and (3.41) for p = 2k − 1.

norm equivalences (3.40), (3.41), respectively for different polynomial degrees. From the results it
can be seen that all constants are very close to 1. Moreover, the constants are either uniformly
bounded or increase logarithmically with respect to the polynomial degree p.
In the next experiment, we consider the quality of our wavelet transformation for general p. Figure
6 displays the results for the different versions v1, v2 and v3. For all versions, the constants do
depend only moderately on the polynomial degree p. The best results are obtained for v3, where
the values are lower than for the next p = 2k − 1.
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V1

V2

V3

Figure 5: Refinement strategies for p = 11: v3 (below), v2 (middle) and v1 (above). Fine nodes
are marked red, coarse nodes are marked black, the wavelets are marked yellow or blue.

10
0

10
1

10
2

10
3

1

1.5

2

2.5

3

3.5

4

4.5

5

polynomial degree

co
ns

ta
nt

s

 

 

c
k,2

c−1
k,1

c
m,2

c
m,1
−1

10
0

10
1

10
2

10
3

1

2

3

4

5

6

polynomial degree

co
ns

ta
nt

s

 

 

c
k,2

c−1
k,1

c
m,2

c
m,1
−1

10
0

10
1

10
2

10
3

1

1.5

2

2.5

3

3.5

4

polynomial degree

co
ns

ta
nt

s

 

 

c
k,2

c−1
k,1

c
m,2

c
m,1
−1

Figure 6: Constants cm,r and ck,r, r = 1, 2, of (3.40) and (3.41) for general p, v1 (above, left), v2
(above, right), v3 (below).
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4 The 3D-solver

4.1 Condition number estimates

We are now in the position to define the wavelet solver for the three-dimensional model problem
(2.5). Let Wp be defined via (3.46). Moreover, let DM and DK be defined via (3.47). Then, we
introduce

C−1
3 = (Wp⊗Wp⊗Wp)(DK⊗DM⊗DM+DM⊗DK⊗DM+DM⊗DM⊗DK)−1(Wp⊗Wp⊗Wp)>. (4.1)

Theorem 4.1. Let C3 and K3 be defined via (4.1) and (2.5), respectively. Then we have the
spectral estimate

1
log p logχ log p

C3 � K3 � (log p logχ log p)2C3 (4.2)

for any χ > 1. Moreover, the operation C−1
3 w requires O(p3) operations.

Proof. Using (2.5), we have

K3 = KL̃(−2,2)⊗M L̃(−2,2)⊗M L̃(−2,2)+M L̃(−2,2)⊗KL̃(−2,2)⊗M L̃(−2,2)+M L̃(−2,2)⊗M L̃(−2,2)⊗KL̃(−2,2) .

By (3.48) and (3.49), one obtains

DM � W>
p M

L̃(−2,2)Wp � log p logχ log p DM ,
1

log p logχ log p
DK � W>

p K
L̃(−2,2)Wp � DK ,

respectively. These two inequalities are equivalent to

W−>
p DMW

−1
p � M L̃(−2,2) � log p logχ log p W−>

p DMW
−1
p and (4.3)

1
log p logχ log p

W−>
p DKW

−1
p � KL̃(−2,2) �W−>

p DKW
−1
p .

The assertion (4.2) follows now from (4.1) by the properties of the Kronecker product.
Since DM and DK (3.47) are diagonal matrices, the solution of

(DK ⊗ DM ⊗ DM + DM ⊗ DK ⊗ DM + DM ⊗ DM ⊗ DK)−1

requires O(p3) operations. This proves the theorem.

Remark 4.2. The preconditioner C−1
3 is not robust for differential operators with an anisotropic

diffusion matrix A = diag[a1, a2, a3] in (1.1). Instead of K3 (2.5), the matrix

K̃3 = a1K
L̃(−2,2) ⊗M L̃(−2,2) ⊗M L̃(−2,2)

+a2M
L̃(−2,2) ⊗KL̃(−2,2) ⊗M L̃(−2,2) + a3M

L̃(−2,2) ⊗M L̃(−2,2) ⊗KL̃(−2,2)

has to be considered. Then, the matrix

C̃−1
3 = (Wp⊗Wp⊗Wp)(a1DK⊗DM⊗DM+a2DM⊗DK⊗DM+a3DM⊗DM⊗DK)−1(Wp⊗Wp⊗Wp)>.

is a quasioptimal and robust preconditioner for K̃3. With an similar argument, anisotropies of the
elements and the polynomial degree p can be handled, see [6].
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Figure 7: PCG-iterations for K3u = f using the preconditioner C3 (4.1).

4.2 Numerical experiments

In this subsection, the system K3u = f is solved by a PCG-method with the preconditioner C−1
3

(4.1). In all experiments, the right hand side f = [1, . . . , 1]> is chosen. The relative accuracy is
10−6. Figure 7 displays the numbers of iterations for the polynomial degrees p = 5, 7, 9, . . . , 45.
In all experiments, a moderate increase of the iteration numbers can be observed for v1, v2, and
v3. The preconditioner which uses the refinement strategy v3, needs about 15, . . . , 30 iterations,
whereas the preconditioners with v1 and v2 need sometimes more than 50 iterations. Therefore
the refinement strategy v3 should be preferred.

4.3 Comparisons to direct solvers

In this subsection, the solution time of K3u = f by the PCG method with the preconditioner
(4.1) is compared with sparse direct solvers. All experiments are performed on a Centrino 5, 1.6
GHz. The first experiment considers a comparison to a sparse Cholesky decomposition based on an
approximate minimum degree permutation, [11]. The iterative solvers use a p-dependent relative
accuracy of 10−5−p/3 in order to simulate the exponential convergence order of the hp-version of the
FEM. Figure 8 displays the solution time for p = 3, 5, . . . , 15. Note that the wavelet preconditioner
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Figure 8: Comparison PCG-method with wavelet preconditioner vs. sparse direct solver

C−1
3 (4.1) is the exact solver for p = 3 and p = 5. For p = 7, the direct solver is faster than the
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iterative solver. For p ≥ 9, the iterative solver outperforms the direct solver.

5 Conclusions and Outlook

We have presented a solver for the system of linear equations arising from the discretization of
2× 2× 2 cubes by means of the p-version of the FEM. This solver is embedded in an overlapping
preconditioner [23]. The total solver time is O(p3 log3/2 p(logχ log p)3/2) with some χ > 1. The
solver can be applied to any situation of 2× 2× 2 elements. This solver is also robust with respect
to anisotropies which have their origin in the differential operator or the structure of the elements.
In general, some vertex patches will not have the topological structure of 2 × 2 × 2 elements.
However, the ideas presented in the paper using the generalization of Theorem 3.13 simplify the
development of difficult to implement nonoverlapping domain decomposition preconditioners with
extension operators. More precisely, the wavelet construction helps to develop optimal and fast
extension operators acting from the boundary of the elements to the interior and from the face
boundaries to the faces.

A Basis functions and matrices

In Appendix A, we present the plots of the considered basis functions. The plots of the functions
in the basis [Φ3] are displayed in Figure 9. The plots of the functions [Ψ31] in (-2,0) are displayed
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Figure 9: Integrated Legendre polynomials as basis functions of B3.

in Figure 10. The functions are enumerated in the following way:

• Firstly the function ψ0 corresponding to the hierarchical functions,

• then the functions ψb1, . . . , ψ
b
8 with ψbj(0) 6= 0 ( 2 per level, i.e. in total 8),

• the functions ψi9 and ψi10 with ψij(0) = 0 corresponding to level 1,

• the functions ψi11, . . . , ψ
i
16 with ψij(0) = 0 corresponding to level 2,

• and finally the functions ψ17, . . . , ψ30 with ψj(0) = 0 corresponding to the fine level.

Moreover, we present the structure of the matrices Kp and Mp (2.4) for p = 7. The functions are
ordered in the following way:

• Firstly, the hat function,

• the even polynomials of the first element (−2, 0),
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Figure 10: Plots of the functions of [Ψ31] on (−2, 0).
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• the odd polynomials of the first element (−2, 0),

• the even polynomials of the second element (0, 2),

• and finally the odd polynomials of the second element (0, 2).

The polynomials are ordered in increasing order. In this basis, one easily concludes

KL̃(−2,2) =
1
4
diag [4, 6, 14, 22, 10, 18, 26, 6, 14, 22, 10, 18, 22] . (A.1)

Moreover, a simple computation shows that

M L̃(−2,2) =
1
4


16
3 a>1 a>2 a>1 a>2
a1 B1 0 0 0
a2 0 B2 0 0
a1 0 0 B1 0
a2 0 0 0 B2


with the vectors

a1 =
[
−2 0 0

]>
,

a2 =
[
− 2

3 0 0
]>

and the matrices

B1 =

 12
5 − 2

5 0
− 2

5
2
5 + 2

9 − 2
9

0 − 2
9

2
9 + 2

13

 ,
B2 =

 2
3 + 2

7 − 2
7 0

− 2
7

2
7 + 2

11 − 2
11

0 − 2
11

2
11 + 2

15

 .
B Algorithmic Aspects

In this section, some implementational details for the fast evaluation of the preconditioning op-
eration C−1

3 w (4.1) are presented. The preconditioning action requires the multiplication with
the matrices Wp and W>

p and a diagonal scaling with a Kronecker product between the diagonal
matrices DM and DK . Some steps can be performed before starting the solution process. The
multiplication Wpw requires actually two muliplications,

• the basis transformation from the basis [L̃(−2,2)] into the basis [Ψ̃p] = [L̃(−2,2)]W̃p, i.e. the
multiplication with the matrix W̃p, (3.35) and

• the multiplication with the eigenvector matrix G in (3.44).

The first one is performed by the routine
y = trafo(x, p):

Input: polynomial degree p (odd)
vector x ∈ R2p−1, components ordered according to
(A.1).

Output: y ∈ R2p−1.
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• Set n = p+ 1, k = p−1
2 and m = 2p− 1.

• Call [r, s] = auxiliary(p).

• Set h1 = [x2, . . . , xk+1, x1/2, xk+2, . . . , xp] and h2 = [xp+1, . . . , xp+k, x1/2, xp+k+1, . . . , xm].

• Set a =
√

2(h1, r)s and b =
√

2(h2, r)s.

• Call u = trafo22(h1, n) and v = trafot22(h2, n).

• Set

y = [uk+1 + vk+1, a1 + u1, . . . , ak + uk, ak+2 + uk+2, . . . , ap + up,

b1 + v1, . . . , bk + vk, bk+2 + vk+2, . . . , bp + vp] .

This subroutine calls [x, y] = auxiliary(p), x = trafo22(y, n) and x = trafot22(y, n). The
subroutine auxiliary computes two auxiliary vectors x, y ∈ Rp, where p is odd:

• Set m = p+1
2 , h = [0, . . . , 0] ∈ Rp, h(m) = 1.

• Call x = trafo22(h, p+ 1) and y = trafot22(h, p+ 1).

The next routine is x = trafo22(y, n). The input is the vector y ∈ Rn−1 which contains the
coeffcients of a piecewise linear function f in the basis of the usual hat functions. Output are
the coefficients of f in the used wavelet basis. The basis functions of the nodal and wavelet basis
are ordered with respect to the midpoint of their support. The subroutine x = trafot22(y, n)
performs the transposed operation.
The matrix G has to be computed before starting the solution process. This requires two sparse
matrices D̃M and D̃K in (3.39). They are computed via the subroutine [D̃M ,M] = genmass(p)
which computes the required entries in (3.39) of the matrix∫ 1

−1

[Ψ̃p]>[Ψ̃p] dx =
∫ 1

−1

W̃>
p [L̃(−2,2)]>W̃p[L̃(−2,2)] dx

using the formula W̃>
p M

L̃(−2,2)W̃p.
[D̃M ,M] = genmass(p)

Input: polynomial degree p (odd)

Output: diagonal part of D̃M
dense block M in (3.42)

• Call M = masslegendre(p)

• Call [r, s] = extension(p)

• FOR I = 1, 2p− 1

– e = [0, . . . , 0] ∈ R2p−1, e(I) = 1.

– Call x = trafo(e, p)

– D̃M (I, I) = x>Mx

– IF r(I) 6= 0 THEN

∗ FOR J = 1, 2p− 1
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· g = [0, . . . , 0] ∈ R2p−1, g(J) = 1.
· Call y = trafo(g, p)

· IF r(J) 6= 0 THEN M(I, J) = y>Mx

∗ ENDFOR

– ENDIF

• ENDFOR

This subroutine calls masslegendre(p) which computes M L̃(−2,2) using the explicit structure given
in (3.3). Note that the diagonal matrices DM,− and DM,+ are saved in one diagonal matrix. The
subroutine [D̃K ,K] = genstiff(p) replaces masslegendre by a routine for the computation of
KL̃(−2,2) . Once the structure of M and K is known, the matrix G is obtained as the eigenvector
of the generalized eigenvalue problem Kx = λMx (3.43), see also (3.44) and can be computed by
the implicit QL-algorithm. This gives us also the matrices DM and DK in (3.47). For an efficient
implementation, the matrices DM and DK can also be computed before once starting the solution
process. Since M,K ∈ Rm,m with m ≈ log2 p, the total cost for the generation of all matrices is
O(p2) +O(p2 log2

2 p) +O(log3
2 p).
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