Wavelet solvers for hp-FEM discretizations in 3D using
hexahedral elements

Sven Beuchler*

Institute of Computational Mathematics
Johannes-Kepler University Linz
Altenberger Strafie 69
A-4040 Linz, Austria
sven.beuchler@jku.at

October 18, 2007

Abstract

In this paper we investigate the discretization of an elliptic boundary value problem in 3D
by means of the hp-version of the finite element method using a mesh of hexahedrons. The
corresponding linear system is solved by a preconditioned conjugate gradient method with
an overlapping preconditioner as inexact additive Schwarz preconditioner. The remaining
subproblems are treated by a tensor product based preconditioner. This preconditioner uses
a basis transformation into a basis which is stable in Lo and H'. Several numerical examples
show the efficiency of the proposed method.

1 Introduction

In this paper, we investigate the following boundary value problem: Let Q C R? be a bounded
domain and let f € Lo(Q), fi € L2(8Q). Find v € HE () = {u € H'(Q),u = 0 on T'1},
I''NTy =0, T Uy = 00 such that

= W) Vo = v 1= (f,v 1,0 .
a(u,w.f/Q(m v /Qf + [ = (ot o, (L1)

holds for all v € H{ (€2). Problem (1.1) will be discretized by means of the hp-version of the finite
element method using hexahedral elements A,, s = 1,...,nel. Let A = (—1,1)3 be the reference
hexahedron and Fy : A — A, be the isoparametric mapping to the element A,.

We define the finite element space M := {u € Hf (Q),u |a,= 4(F; ' (2,y,2)), 4 € Qp}, where Q,
is the space of all polynomials of maximal degree p in each variable. By [Z] = ((1,...,{N), We
denote a basis for M in which the functions (i, ..., (,, are the usual hat functions. The functions
Cro+(—1)(p—1)+1> - - - » Cny+j(p—1) correspond to the edge e; of the mesh, and vanish on all other
edges, i.e. satisfy the condition ¢, 4 (j—1)(p—1)+k—1 le;= 0;,1Pk, Where py is a polynomial of degree

k, k = 2,...,p. The support of an edge function is formed by those elements which have the

(p=1)(p—2)

corresponding edge e; in common. One defines 5

face shapes which are polynomial on the
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defining face and vanish on all other faces. The support of these face-based functions is formed
by the two elements sharing the defining face. The remaining basis functions are interior bubble
functions consisting of a support containing one element only. These functions vanish on each face
of the mesh. With this definition, the basis functions (; can be divided into four groups,

e the vertex functions (V),

e the edge bubble functions (E),

e face bubble functions (F),

e the interior bubble functions (I),

locally on each element Ay, and globally on €.
The Galerkin projection of (1.1) onto M leads to the linear system of algebraic finite element
equations

Keu=f, where K¢=[aa(GG)mys £, =[G)+ (fi,Gralic, (1.2)

Using the vector u, an approximation u, = [Z]u of the exact solution u of (1.1) can be built from
the usual finite element isomorphism. In the case of smooth solutions u in parts of the domain 2,
spectral methods, [17], and finite elements of high order (p-version), see e.g. [27], [28], [12] and
the references therein, have become more and more popular for twenty years. For the h-version
of the FEM, the polynomial degree p of the shape functions on the elements is kept constant
and the mesh-size h is decreased. This is in contrast to the p-version of the FEM in which the
polynomial degree p is increased and the mesh-size h is kept constant. Both ideas, mesh refinement
and increasing the polynomial degree, can be combined. This is called the Ap-version of the FEM.
The advantage of the p-version in comparison to the h-version is that the solution converges faster
to the exact solution with respect to the number of unknowns N. However, the solution of the
system (1.2) is more difficult. The matrix K¢ and therefore the numerical solution of (1.2) depends
on the choice of the basis functions and an appropriate preconditioner.

For 2 <i <p, let

x

Li(z) = %\/(21‘ —3)(2i — 1)(2i + 1)/ Li_1(s) ds (1.3)

-1

be the i-th integrated Legendre polynomial where L;(z) = 51 dd—;(mQ—l)i denotes the i-th Legendre
polynomial. Moreover, let Lo n(x) = %—z In the case of parallelepipedal elements, the stiffness
matrix with respect to the tensor products of the integrated Legendre polynomials (1.3) has O(p®)
nonzero matrix entries. Therefore, the solution time of the system (1.2) should require O(p®) flops
up to some logarithmic terms.

It is known from literature, see [29], that domain decomposition (DD) methods are a powerful tool
for the development of parallel preconditioners for the h-version as well as for the p-version of the
FEM. In the two-dimensional case, nonoverlapping DD preconditioners with inexact subproblem
solvers on the subdomains are preferred since the coupling between the high order functions, i.e.
edge bubbles and interior bubbles, and the vertex functions can be removed by paying a logp
term in the condition number estimates, [2]. This preconditioner requires a solver related to the
Dirichlet problem on the elements A, see [19, 3, 6, 13], a solver related to the Schur complement
corresponding to the subdomain boundaries, see [16, 1], and an approximate discrete harmonic
extension from 0A to Ay, see [2, 22, 4, 8].

In the three-dimensional case, the situation is much more difficult due to the coupling between
the face bubble (F), edge bubble (E) and vertex based functions (V). More precisely, a splitting
into different spaces is not stable in the standard spaces, see e.g. [29]. Mandel, [20], suggested a



change of the subspaces. In [14], the space of the edge bubbles E has been changed to a modified
space E. Based on the theoretical estimates in [24], [25], the stability proof has been obtained
for the decomposition of the Schur complement related to the element boundaries into the Schur
complement related to the face bubbles on each face separately and the wire-basket corresponding
to vertex and edge bubble functions. In [6], see also [5] for the refined estimates, a first solver for
the interior bubbles is developed in the basis of the integrated Legendre polynomials (1.3).

This solver uses a basis [¥] = [¢1;]7_, C Bpo = {u € Pp(—1,1),u(+1) = 0} which satisfies the
following properties:

e There exist a diagonal matrix Dj; and a diagonal matrix Dg such that the norm equivalences
u'Du~| [Plulf ) and  w Dyu~| [Plu 7,1y (1.4)

hold for all w € RP~!, where the constants do not depend on p.

e The basis transformation from the basis of the integrated Legendre polynomials into the basis
[¥] requires O(p) operations.

The basis [U] is called p-wavelet basis. In [18], a first preconditioner is proposed on the face
bubbles based on multi-resolution analysis, see [6]. The wire basket is solved optimally with
respect to the polynomial degree but not with respect to the number of elements. Based on the
optimal solvers for the interior bubbles and the face bubbles, the approximate discrete harmonic
extensions are replaced by nearly exact solutions for the interior bubbles. This is optimal due
to the arithmetical complexity, a direct application of an explicit extension operator is much
faster. Another approach is using overlapping preconditioners as developed in [23], see also [21]
for the tetrahedral case. This avoids the usage of difficult extension operators. Moreover, the
part of the system which corresponds to the h-part is decoupled from the p-part of the system.
The overlapping preconditioner, which was proposed by Pavarino [23], requires only the solution of
high-order systems on patches consisting of about 8 hexahedrons. It is necessary to use polynomial
degrees p between 10 and 20 on some elements, see [12] for some examples. Therefore, we need a
solver for a patch structure with relatively high polynomial degree.

In this paper, we propose fast solvers for the patch structure. The total complexity for the solution
of the system of linear algebraic equations is O(p? log” p) with k < 2, i.e. quasioptimal with respect
to the number of unknowns. The main goal is the development of another p-wavelet basis with
properties as in (1.4) for spaces of the type By, 1 = {u € P,,(—1,1),u(1) = 0}. This is an extension
of the results presented in [6], [5]. Moreover, the solvers use the tensor product structure of the
elements and patches directly.

The outline of this paper is as follows. Section 2 explains the Pavarino preconditioner. Moreover,
we determine the corresponding one-dimensional model problem of the tensor product structure.
The main part of this paper is Section 3. Here, we investigate several wavelet preconditioners for
this one-dimensional model problem based on norm equivalences as in (1.4). In Section 4, we define
the solver related to the patches. Furthermore, several numerical experiments show the efficiency
of the proposed method. This includes also the comparison to direct solvers. Section 5 is devoted
to possible generalizations of the presented results and concludes the work.

Throughout this paper, the integer p denotes the polynomial degree. For two real symmetric
and positive definite n X n matrices A, B, the relation A < B means that A — ¢B is negative
definite, where ¢ > 0 is a constant independent of n, or p. The relation A ~ B means A < B and
B < A, i.e. the matrices A and B are spectrally equivalent. The isomorphism between a function
u=>,u;1; € L? and the vector of coefficients u = [u;]; with respect to the basis [¥] = [¢)1, 12, .. ]
is denoted as u = [¥]u.



2 Domain decomposition

In this section, we present an overlapping preconditioner which has been developed by Pavarino,
[23]. Tt decouples the h-part of the system from the p-part system. For the definition of the
preconditioner, some notation is introduced. Let

Vo = {u€ Hy, (Q),ula,=a(F7(2,y,2)), @ € Qu} (2.1)
be the space of all finite element functions of maximal polynomial degree 1. Moreover, let
Q= {UB.,0 C Do)

be the closed patch to a node v of the finite element mesh. Then, for each node v of the finite

element mesh, we introduce
WV, ={u € M,supp u C Q,} (2.2)

as the patch space, cf. Figure 1.
/

Figure 1: Patch Q, of a node v (2D).

Theorem 2.1. Let V, and Vg be defined via (2.2) and (2.1), respectively. Then, we have

a(u,u) ~ a(ug, ug) + Za(uv,uv), Yu = ug + Zuv,uo € Vo, uy € V.

The constants depend neither on h nor on p.
Proof. This result has been proved by Pavarino [23]. O

Therefore, it suffices to solve systems on the subspaces V and V,, where v is running over all nodes
v. The system on V( corresponds to the h-part of the global system. Here, many solvers in the sense
of inexact additive Schwarz preconditioners are available in order to solve the system in optimal
arithmetical complexity. Examples are multigrid methods, [15], and the BPX-preconditioner, [7],
for structured meshes and algebraic multigrid methods (AMG) for unstructured meshes.

For low local polynomial degrees, the systems related to V, can be handled by a direct solver.
However, if the local polynomial degree p is increasing, this is too expensive, cf. Table 1 for
the dimensions of the local subspaces. Therefore, if p is large, an iterative solver with a suitable
preconditioner should be preferred. In the standard case, a patch consists of eight hexahedrons
(2 x 2 x 2). Moreover, a moderate deformation of the hexahedrons into unit cubes leads to a
spectrally equivalent system with respect to the polynomial degree. The condition number depends



pl1 3 5 7 9 11 13
Dimension of V, | 1 125 729 2197 4913 9261 15625

Table 1: Dimension of V,, for a patch of 2 x 2 x 2 cubes.

only on the angles of the involved, possibly curvilinear, elements A, [16]. Hence, the situation
with 2 X 2 X 2 cubes and Dirichlet boundary conditions is the typical model problem in order to
derive a solver for V, for high p.

This problem has a tensor product structure. The corresponding one-dimensional problem is the
situation with two elements, i.e. the intervals (—2,0) and (0, 2) and Dirichlet boundary conditions
at . = £2, i.e. find uw € By, = {u € H}(—2,2),u |(—2,0)€ Py, u |(0,2)€ Pp} such that

2 2
/ u'v' dx + / wdr =g VYveB,. (2.3)
-2 -2

Let [®,] be some basis of B,. Then, the solution of (2.3) is equivalent to the solution of the linear
system (K®» + M®»)u = g with the mass and stiffness matrix

2 d d 2
K® = / . a[c1>,,]Ta[cI>,p} dzr and M®%» = / 2[<1>p]T[<I>,,] du, (2.4)

respectively. Then the solution of the model problem for V, is the solution of a system with the
matrix
K3 =K% @M% @ M* + M® @ K% @ M* + M @ M®* @ K% . (2.5)

Our aim is to derive preconditioners €,; and € for M®» and K®», respectively. These precondi-
tioners are of the form

¢ =W, W' and €' =WB/WT, (2.6)

where the multiplications Wu and W Tu require O(p) floating point operations, and the matrices
Ry and By are diagonal matrices. Then, the matrix C3, which is defined via

Oyl =WaWeW)Bx @By @By +By @Bk @By +By @By @By) {(WeWeW)', (2.7)

is a preconditioner for K3 (2.5), where the action Cj 'r requires O(p?) floating point operations.
In the next section, we derive the preconditioners (2.6). In Section 4, we return to the three-
dimensional problem.

3 The one-dimensional model problem

In this section, we consider problem (2.3). In subsection 3.1, we define a basis of the space IB,.
Moreover, we give some interpretations of the mass and stiffness matrix (2.4) as discretization
matrices for the h-version of the FEM. Subsections 3.2 and 3.3 consider wavelet solvers on the
one-dimensional reference element (—1,1) and for problem (2.3), respectively.

3.1 Structure of mass and stiffness matrix

3.1.1 Definition of the basis functions

In order to determine mass and stiffness matrix, we have to specify our basis functions of the space
B,. First, the functions on the reference interval (—1,1) are defined. For reasons of simplicity, let



us assume that p is odd. Now, we define

Li(z) == \/Zmﬁi(gg) = i(zi —1) /7«1 Li_1(s)ds, i>2 (3.1)

as the i-th integrated Legendre polynomial in [—1, 1] with another scaling as in (1.3). Moreover,
let fjo/l(l‘) = 1:571;

The local functions on the elements (0,2) and (—2,0) are obtained by the affine translation y =
2 £ 1. This defines the basis functions on IB,, i.e.

2+z x€[-2,0]

1
d1(z) = =4 2—x =xz€][0,2] ,
2
0 else
Y _ [ Lix) Jzl<1
di(x+1) = { 0 e 1T 2,...,D, (3.2)
ey = { CDLi(@) Jxl<1
¢p+z—1(x 1) - { 0 else 77'*23"'ap
where [L] denotes the integrated Legendre polynomials (3.1). Then
- ~72p-1
Lan] =[] _ (3.3)

forms a basis of B,. The matrices

2

2
. d - d - - - N
KL(—2,2):/ - [L—22)]"——[L(-2,2)] dz and ML<*212>:/ [Li—22)] [Li—2,2)]dz (3.4)
5 dx dx 9

are the result of assembling the local stiffness and mass matrices on the two intervals (—2,0) and
(0,2). In order to compute the entries of the matrices in (3.4), we have to consider the matrices on
the reference element (—1,1). Note that the structure of the space B, with the Dirichlet boundary
conditions at ¥ = +2 implies that exactly one hat function is required on each of the two elements.
Using the properties of the integrated Legendre polynomials, the mass and stiffness matrix on
the reference interval (—1,1) can be computed explicitly. In order to get some structure in the
matrices, the integrated Legendre polynomials (3.1) are ordered in the following way:

e first the odd polynomials starting from the highest polynomial,
e then one of the hat functions, i.e. L;(x) or Lo(x),

e and finally the even polynomials starting from the lowest polynomial,

e.g.

[i(fl,l)} = Ep, Lp_g, ey Lg(x), L1 (J,‘), LQ(J?), L4(.I‘), e f/p_l(a:) (35)



Consequently for the Dirichlet boundary condition on (—1,1) at z = —1, we have

- 1 5
MED 3:/ (L) [L1p] dz (3.6)
-1
r 2 2 2 B
T T s 33 0 0
0 -2 Z2+2 -2 0 0 0 0
011 T, +72 2 0 0
1 7 7 T3 3
= 0 0 -2 8 -2 0 0
0 o -2 2 -2 0
2 2 2 2
0 0 -5 g+t5 —3% 0
i 0 R ==

Moreover, the orthogonality of the Legendre polynomials implies

1
~ d - d -
KL(—I,l) = /1 a[[/(_lﬂ)]—ra[[/(_l’l)} dl’ (3'7)

1
= Zdiag[4p—2,4p—10,...,18,10,2,6,14,...,4})—14,4p—6}.

In the case the Dirichlet boundary condition on (—1,1) at * = 1, we replace [i(q,l)] by the
modified basis [®,] = [fi,,(x),fip_g(x),...,fig(x)io(x),ig(x),i4(x)7...i,,_l(x)} see (3.2)

and obtain the same result for mass and stiffness matrix as in (3.6), (3.7). The matrices M Li-22)
and KT(-22 (3.4) are obtained by a simple assembling of MZ(-1.1 (3.6) and KZ-1.1 (3.7). For
p = 7, the matrices and all shape functions of B, are displayed in Appendix A.

3.1.2 Interpretations of mass and stiffness matrix

The solvers presented in [6] based on the norm equivalences (1.4) use h-FEM interpretations of the
corresponding mass and stiffness matrix in the basis of the integrated Legendre polynomials. A
similar approach is possible for K7 (3.7) and M; (3.6), respectively. However, we have to modify
the corresponding weight functions. The matrix M; is a weakly diagonal dominant, tridiagonal
and positive definite matrix with negative off diagonal entries. Hence, this matrix is also a stiffness
matrix for an A-FEM method on the unit interval with an appropriate weight function specified
below. Moreover, we derive a spectrally equivalent matrix for K; (3.7) that is a mass matrix for an
h-FEM method and an appropriate weight function w on the unit interval [—1, 1]. For this reason,
we even abandon the diagonal structure and admit diagonally dominant tridiagonal matrices.

To this end, we study the following auxiliary variational problem:

Let
1
HY o, (-1,1) = {ueL*(-1,1),u(+l) = o,/ w2 (z)u?(z) da < oo,
-1
1
/ wi(z)(v)?(z) dz < oo}.
-1
Find u € H}, ,,(—1,1) such that

ai (’LLJ)) = <u’ U>w2 + <ulavl>w1 = <gvv> (38)



holds for all v € H!  (—1,1), where

1
(u, vy, := [1 Wz )u(z)v(r)de and || v %= (v,0),. (3.9)

The weight functions w;, ¢ = 1,2 will be specified later. The one-dimensional problem (3.8) is

discretized by linear finite elements on the equidistant mesh T, = |J}~, 77" where 77 = (£, i£1)
and n = %. The one-dimensional hat functions on this mesh,
ne—(i—1) on7l,,
or(x)=4¢ (i+1)—nz on71l, i=-n+1,...,n—1, (3.10)

0 otherwise,

are a basis of the finite element space V,, = span[¢?]7~ " +1 = span[®}]. The Galerkin projection
onto V,, for (3.8) can be described as follows: Find " € V,, such that

ap(u™,v") = (g,v") Yo" € V,. (3.11)

This gives rise to the linear equation (Kg + M2 )u = g with

K = [((61) (61 )]} and M2, := [(67, 00 )en]} L1y (3.12)

i,j=—n+1
Then, u" = Z:L:_jwrl ¢Tu, = [®L]u is the solution of (3.11).
We prove now the following result.

Lemma 3.1. Letn = p—;l. Let KL pe defined according to (3.7). Then we have the spectral
equivalence

Klein o p?M? : 3.13
w2(2)=v/z| (3.13)
Proof. We compute the element stiffness matrix ijw» on the element 7;, ¢ > 1 and obtain
o 1 4i—3 2i—1
wad T 192 | 20—1 4i+1 |°
We define
~ 1 4i—3 0 1 4i — 3 0
' 12n? { 0 4+l ] and Fi =505 { 0 4@-1}'
. 2i—1 2i—1 1 .
Since T as > 5123 for ¢ > 1, we can conclude that
1 - 3 = .
Shi < M? < SFn i1 (3.14)
Moreover, a simple computation shows that
3 .
gFi <F,<F, i>1 (3.15)

Combining (3.14) and (3.15), we have $F; < Mfw‘ < 2F,. By symmetry of the weight function,
we have M® . = M?® _it1- The assembling of Mj;l yields to M

wa2,1 wa w2
gives the matrix

whereas the assembling of F;

F =diag[4p+4,4p —4,...,16,8,2,8,16,...,4p — 4,4p + 4] € R*"~ 1.2~ 1,

Since F ~ KL(-11) the assertion follows by an argument for assembled matrices, [30]. O



For the matrix ML (3.6), a similar result can be shown. However, we have to introduce the
discrete weight function wq

w1 () { Vel it el > (3.16)

Vinl if - z| <

Lemma 3.2. Let wy be defined by (3.16). Moreover, let K$ and ML pe defined by (3.12)
and (3.7), respectively. Then, we have Kfl ~nPME-Ly,

Sl 3=

Proof. As in the proof of the previous Lemma 3.1, the assertion follows from the structure of the
local stiffness matrices, [30]. O

Remark 3.3. In [6], we have chosen differently scaled integrated Legendre polynomials fq(x)
(1.3). In that case, a similar interpretation of the mass and the stiffness matriz is possible. The
disadvantage of the functions L(m) 18 that this approach is limited to the interior bubbles. If one of
the hat functions &?z 1s added to the basis functions, the p-FEM mass matriz looses its dominance

on the diagonal. Hence, a similar interpretation which also includes one hat function is not possible
in the basis of the [L;];.

Remark 3.4. For the parts of ML-1.1) (3.6) and KL (3.7) which correspond to the even
polynomials, similar interpretations are possible. It is only necessary to replace the interval (—1,1)
n (3.9) by (0,1) and to introduce a Neumann boundary condition at x = 0. More precisely, the
matrices

9 -2 0 0
-2 242 -2 0
I3 2 2 2 2
MEGEY = i 0 -5 §+5 —§ 0 and
A ' 2 2 : 2
0o ... 0 -3 Es+5
; 1
KEGin = Jdiag[2,6,14,... . 4p — 14,4p — 6]

are the matrices for the even part. The above interpretations follow now by the same arguments.

3.2 Wavelet solver on one element

In view of (2.5) and Lemmas 3.1 and 3.2, our goal is to derive preconditioners for Kronecker prod-
ucts between a weighted stiffness matrix, i.e. K& (3.16) (or M*-1.0), and a weighted mass matrix,
ie. MwZ:\/m (3.12) (or KL-1.1). Our approach is using wavelet preconditioners. Similar to (2.6),

we consider preconditioners Cj;fl and CI_(l for MLc-1n (3.6) and KL (3.7), respectively, which
are of the form

Oyt = QxD;y/ Q) and Cx' = QrD'Q).

The matrices Djy; and Dy are proper diagonal or blockdiagonal matrices. The matrix @ corre-
sponds to the wavelet basis transformation, i.e.

(W] = [wé](j,l)efk = [‘I’}L]Qk,
where the index set I, is defined by

Li={(G,)eN? 1<i<k, i=2m—1, —2""'<m <27 meN}; (3.17)



see [9, 26, 10]. The index k denotes the level number, i.e. n = 2F.

In subsubsection 3.2.1, we present theoretical estimates which show that wavelet preconditioners
for KL-1.0 and ML-11 lead to quasioptimal solvers. In subsubsection 3.2.2, we present some
numerical results which confirm the theoretical estimates. In subsubsection 3.2.3, a modified
wavelet solver is developed. This solver decreases the condition number of the preconditioned
systems with out loss of arithmetical complexity.

3.2.1 Condition number estimates

For getting a wavelet preconditioner for the matrix M% (3.12) we have to deal with the mass

(x)=v/l=z|
with Neumann boundary conditions at the singularity = 0 and the weight ws(x) = v/x.
Let

matrix M? i for a singular weight at « = 0. First, we consider the case of the interval (0,1)
w

Iy ={(i,) eEN? 1<I<k, i=2m—1,0<m <2, meN}.
For a € R, let w(z) = z% be a weight function and M:f’z"’o be the infinite matrix
¥,00 o ! v
MY = { /O (@) () (2) dx] s i (3.18)

In general this matrix is not diagonal when we have a wavelet basis.
Following [6] we require some properties of the wavelets.

Assumption 3.5. Let [¥] = be a basis of L*(0,1) with piecewise linear functions

l
W'](g‘ Heue Iy ¢
Wt. There is a biorthogonal, or dual, Riesz baszs [ | = [wl] such that

J
( wl/> J]/5l 1,
o Yl e WO Cc Wh(0,1), and ¢! € WO Cc Wh>(0,1).

Furthermore, every v € L?(0,1) has a representation

v=> "> ()P =N el =D Tulyl = [Ww
=1 j =1 j 1
and the following norm equivalences hold:

(Bl

ZZ|
Z (v ¢l> Z 92l Zv (3.19)

=1 j
Jol? Z
=1 =1
We have proved the following result.

Theorem 3.6. For a € R, let w(x) = % be a weight function and let [U] be a wavelet basis which
satisfies Assumption 3.5. Moreover, let MY->° be defined via (3.18). If

o all piecewise linear functions w; with 0 € supp ¢§ satisfy wé( )=0 and a > —;, or

oa>—%,

10



then we have
Mg’"’o < diag [max{w2(2_lj),w2(2_l_1)}] .

Proof. The proof has been given in [6, Theorem 3.2]. O
Therefore, we introduce the preconditioner
Cy = QiDy/QF  with Dy = diag [max{w3(27'5),w3 (27" 1)}] (3.20)

for M? _ _ (3.12).

s

Theorem 3.7. Let the assumptions of Theorem 3.6 be satisfied. Moreover, let Mi:ﬁ and C’le be

defined as in (3.12) and (3.20), where the integral runs from (0,1) instead of (—1,1), respectively.
Then for any x > 1, we have

1

— Oy <M’ < Cy. 3.21
log nlogXlogn M= w =M (3:21)

wa=\ZT
Proof. We give only a sketch of the proof. A detailed proof requires several technical lemmas as
in [6] and will be presented in a forthcoming paper.

The upper estimate follows from Theorem 3.6 with o = % For the lower estimate, an application
of this theorem is not possible. Instead of the weight w2(z) = x, we consider the modified weight

©3(x) = xlog |2z|logX log |2x| with some x > 1 and introduce the mass matrix

n—1

M2, = [(6% M) am 0]

The definition of the weight functions ws and @9 implies the estimate

1,7=0"

1
MO L e
“2 =~ lognlogXlogn “2

The biorthogonality of the wavelets implies

M{g;,oo _ (M‘ll,oo )_

(@2)~1
For the matrix M (%2),17 we are able to apply the above Theorem 3.6 with the dual weight function

&y (2)

- - Finall btai
xlog |2z]log* log | 2| Inally, we obtain

Qr 'DyQy' 2 M2 with Dy = diag [max{®3(27"j), 0227 1)}] .

Since wa(x) = @a(x), we have Dy = Dy which implies Cy = Q,;TDMQ,;1 = Q,;TDMQ;. This
gives the lower estimate. O

Next, we consider the wavelet preconditioner for K (3.16).
Cx' = QiDE'Qf  with Dy = diag 22w} (2715)] (3.22)
be the preconditioner for K& (3.16).

Theorem 3.8. Let us assume that the assumptions of Theorem 3.6 are satisfied. Moreover, let
Kfl and C’I}1 be defined via (3.16) and (3.22), respectively. Then for any x > 1, we have

Ck = Kfl < lognlog*logn Ck. (3.23)
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Proof. As in the proof of Theorem 3.7, only the idea of the proof is presented. The lower estimate
follows directly from Theorem 3.6 applied to the dual weight —— = x. For the upper estimate,

w1 ()

we introduce the matrix

1

ith & = .
b @1(x) xlog |2z|logX log |2x|

K2 = [((62), (67) )ar. 0] o

4,7=0

Then, one easily concludes that
¢
Kfjl =< lognlog®logn K .

Now, we are able to apply Theorem 3.6 and obtain the desired result as in the proof of Theorem
3.7. O

3.2.2 First numerical experiments

The purpose of this subsection is to present first numerical experiments concerning the quality
of the preconditioners C;; (3.20) and C' (3.22) for the matrices KL (3.7) and ML
(3.6), respectively. Our wavelet preconditioners are developed for the interval (0, 1), whereas the
interpretations of ML and KE10) are given for the interval (—1,1), cf. Lemmas 3.1 and 3.2.
Therefore, we have to adapt the matrices ML and KEFLU, cf. Remark 3.4. This means that

we first test our preconditioners only to the matrices KEGHY and MEGHY.

In all experiments, we choose the family of wavelets which is generated by the wavelet 195. This
wavelet consists of two vanishing moments on the primal and the dual side. Figure 2 depicts a
picture of 95 and its dual function.

Figure 2: Plot of wavelet 199 (left) and its dual oo (right)

The maximal and minimal eigenvalue of Cj(lMeI;,(e}f‘l) and C’]\?K@LJQJ D are displayed in Figure 3.

In both experiments, we have replaced the diagonal matrices Dy and Dy in (3.20) and (3.22) by

the diagonal parts of

L Li_
Q;Kev(enl’l)Qk and Q; ev(enl’l)Qk-

This is the best possible choice of a diagonal matrix. From the experiments, a moderate dependence
of the eigenvalue bounds from the polynomial degree p can be seen. However, three of the four
eigenvalue bounds are quite far away from one.

3.2.3 Improvement of the constants by a block diagonal scaling

As we have observed in the previous subsection, the constants are too large. The reasons are the
diagonal scaling for the coarse grid problem on level 0 (Neumann problem) and the difficulties

12



constants

_____
.....
______
_____
_______

polynomial degree

. . .. . _ L_
Figure 3: Maximal and minimal eigenvalue of Cy'Me\en " (constants cg; and cg2) and

1L
CMlKev(eﬁ'l) (constants ¢, 1 and ¢, 2).

with the weight function at the singular boundary. In order to reduce the constants, we use an
idea which has been proposed in [6] for a similar problem. We replace the diagonal matrices Dy
and Dy in (3.20) and (3.22) by block diagonal matrices. For all wavelets 1/)5» with 7,/1;(0) # 0, ie.
with 7 > 1, we use again a diagonal scaling with respect to the wavelet basis. For the boundary
wavelets, i.e. wavelets with wé(O) # 0 or 7 = 0, the corresponding block is inverted exactly. The
size of the block is about k = logy n, i.e. it is small in comparison to the original matrix. More
precisely, the matrix Dy in (3.20) is replaced by the matrix

(Dar) i cor i = M}, I=7"=0 G MY —/1wl¢l,d$ (3.24)
M) (5,0, 1) (D) ).y else BT O .

and the matrix Dg in (3.22) is replaced by the matrix

> Kw/ j=j"=0 ith K¢ /1 2 INAAY:
D : gy = Ll wit ;) = w d . 325
( K)(J,l)(J 1) { (D )(j,z),(j/,l') else 1 1,1 o 1(35)(1/10) (1/’0) z. ( )

Figure 4 shows that this approach reduces the eigenvalue bounds dramatically. Now, all eigenvalue
bounds are close to 1. For the relevant computational range up to a maximal polynomial degree
of p = 31, all constants are essentially bounded by 2.

In a next step, we develop the preconditioners for the matrices K$ (3.16) and M2, (3.12) on the
interval (—1,1). Now, the singularities of the weight function lie in the interior of the interval at
x = 0. Again, we intend to use a wavelet preconditioner. As we have observed from the previous
examples, see Figures 3 and 4, the main difficulty is the coupling between wavelets with 1/15 (0) =0.
Hence, we propose preconditioners of the form

Cxl = Qu(Dr)'Q) and Cy' = Qu(Dn) 1 QL (3.26)

for Kfjl (3.16) and Mfz (3.12), respectively, where Q) denotes the corresponding wavelet trans-
formation matrix from the basis [®L] to the wavelet basis [U], cf. (3.17). The matrices Djys and

13



Ck%
4 Cy
- Cle Lo
350.4-Cm Lot
o
2 3 s
g .
g - "
. e
© 250 Lt
. -
"- - -
b
.
¢ -~
o> >
15 .2
10" 10° 10°

polynomial degree

Figure 4: Maximal and minimal eigenvalue of C’I_(lMl,even (constants ¢y 1 and ¢y 2) and C’J\_/I1 K1 even
(constants ¢,,,1 and ¢, 2) with block diagonal scaling.

Dy are defined as

D).y = { My 7=7=0 Gin MY, :/1 aybl dz, (3.27)
2:t),(3"%; 6jj’§ll’w%(2ilj) else 1,1 _1
K, j=7=0
DG,y = P 3.28
( K)(],l),(] 1) { 5jj’6ll’22lw%(2ilj) else ( )

1

with K}, = / wi () (W) (v )’ de,

—1

where ¢;; denotes the Kronecker delta. This is similar to (3.24), (3.25).
Due to Lemmas 3.1 and 3.2, the preconditioners Cx and Cps (3.26) can also be used as precondi-

tioners for ML-10 (3.6) and KLl (3.7), respectively. Using Lemma 3.1 and Theorem 3.7, we

obtain ,
D

log plogXlogp

. By Lemma 3.2 and Theorem 3.8, one can conclude that

Cur < KL10 < p2cy, (3.29)

with n = p—;l

Cr < p2ML-10 < logplog¥logp Cx  with x > 1. (3.30)

A direct consequence of the definition of the preconditioners in (3.26) and relations (3.29), (3.30)
is the following result about the stability of the basis

(ot p,~1,1)] = [L(=1,1)] Ok (3.31)
in Ly(—1,1) and H'(—1,1).

Lemma 3.9. Let [Vp, (—1,1]] be defined via (3.31). Then, there exist two blockdiagonal matri-
ces Dﬂ = blockdiag [DwM}l,DwMQ] and D% = blockdiag [Dﬁ,pD%z] which have the following
properties

o The matrices D}p( 1 ER™™ and D}(} 1 ER™™ are dense where m = log, p.

o The matrices D}p(’z and DwM’2 are diagonal.

14



Moreover, for any u = [\Ilpol,p,[—l,l]:l u, we have

(Dfiwu) = Nlul, 1, =logplog*logp (Dfu.u), (3.32)

1
- - Y 2 b
log plogX log p (DK%E) = |U|H1(*1,1) = (DK%@) (3.33)

for any x > 1.

3.3 Wavelets solvers on two elements
3.3.1 Extension to neighboring elements

In the previous subsection, quasioptimal solvers for K“-1.10 and M1 have been developed.
Now, we have to consider the preconditioners for the assembled matrices M (-22 and K22,
Therefore, we have to investigate the extension of the functions (3.31) to the neightbouring element.
We consider now the model problem (2.3) with two elements (—2,0) and (0,2). In the basis of
the integrated Legendre polynomials, see (3.5), only the hat function is nonzero at = 0. In the
previous subsection, we have transformed all basis functions on one element locally to another
basis W01 p,1—1,17] (3.31). Let [¥,01,10,2]] = [1/1,,0171-]?;01 be the similar functions on [0, 2] under the
affine transformation y = x 4+ 1, i.e. [Wpop10,21] = [Wpot,p,—1,1]] © (- +1). Due to the definition of
the matrix Qy, about m + 1 = log, p functions of ¥, ;, 10,2) are nonzero at x = 0. Without loss of
generality let us assume that
Ypot,i(0) #0 < i=0,...,m.

None of these functions can continuously be extended by 0 to the neighboring element [—2,0]. Let
Ypot,0 be the function which corresponds to the wavelet 99 (coarse hat-function). Then, we define

Ypol () x € [0,2] .
) { Yoots@ oy o(-a) wel-2,00 T OoopTl
Ypy(T) = Voots(—z) € [=2,0] - (3.34)
bl () wefo2) TR
Note that ip,j(x) l(=2,0)= 0 if j > m. Moreover, let
~ ~ p—1
() = [dns] (3.35)

denote corresponding vector of basis functions. We now have to prove the linear independence
of the functions 1, ;. Moreover, a stability result as in (3.32), (3.33) is required. Therefore, two
theoretical results have to be shown.

.
Lemma 3.10. Assume that a # 0, q,1 € R and W € R™ ™. Moreover, let { %/V } be

R Q

nonsingular. Then, the matrix

W Q a—lgz"l'
Wy = rl « rl
a lgrT q w

is monsingular.

15



X _
Proof. We prove that ker W, = 0. According to the partition of Wy, we set z = | z¢ |. The

X
+
IelatiOIl ” g& Q iIIlplieS th'e equa‘tiCIls

r'z_+avg+r'z, = 0,
Wz_ +qzo+ a_lgz—rg+ = 0, and
oflngg_ +qro+Wz, = 0.

Multiplying the first equation by o! g and subtracting this from the second and the third equation
gives
(W—atgrNz, =(W—-a'gr")z_=0.

7fr

W
too. This gives z, =2 = 0. With a # 0, we have x¢ = 0. This proves the assertion. O

Since the matrix [ } is nonsingular, the Schur complement (W — o~} QfT) is nonsingular,

e ©

The second lemma is similar to a result on assembled matrices, [30].

Lemma 3.11. Let [U] = [¢;]; . be a basis of continuous functions on the interval I = (a1, as).
Moreover, let Iy = (a1,a2) and Iy = (az,a3) with a1 < az < az. Let us assume that the basis V]
satisfies the following properties:

1. There exists an integer m with 0 < m < n such that
Yi(x) |,=0 Vi>m and i(z)|=0 VYrel,i<-—m. (3.36)
Moreover, there exist real numbers «; € R such that

Yi(z) = abo(z) Yi=1,....m and ;(z)|=apo(x) Y—i=1,...,m. (3.37)

. D;
2. For j =1,2, let D; = (J)’l D(;2 € RHX"H where Dj 1 € R™TY>*™FL and D5 are
diagonal matrices. Let || - ||1 be some norm of a function space of functions f : I — R which

is induced by a scalar product (-,-);. Moreover, let us assume that the estimates
cr'ul Dy <|lw [|7,< couf Digy (3.38)

cilug Douy <[ uz ||7,<  couy Douy

are valid for any uy = [;];_qu; and any uy = [1h_;];_,u, where ¢; and cy denote some
constants.

Then the estimates
cr'u"Du<|| u||3< cou' Du

hold for any u = [V]u, where

Dys 0 O
D=| 0 R 0
0 0 D,

with some matriz R € R2m1x2m+1,

16



Proof. We have

n
lullf = [Wulf = | D weill
1=—n
n n
= > w7+ 1D wa |,
i=—n i=—n
n m
= > w7, Y w3,
i=—m i=—n

n -1
I dotbo + Y it |17, + Il ot + Y withi |[7,

i=1 i=—n

by (3.36) and (3.37) with @y = ug + Zi_:l_m wioy; and o = wo + Yo wiei. Let uy = [wili, .1,
u_ = [ui]fmfl m

_ 7wy = [w];— . Using (3.38), we can conclude that

T -

u_ 0 0 0 U_
e (lullf, +lwli,) < | u 0 R 0 U,
Uy 0 0 Dip | Uy
u_ T D272 0 0 1T u_ 1
+ Uy 0 Ry O Uy
Uy 0 0 0] [ uy |
u_ T DQ,Q 0 0 1T u_ 1
- yo 0 R O UO
Uy 0 0 D1,2 1 LYy |

with some symmetric and positive definite matrices R; € R?*™T1x2m+1 5 =1 2 and R = Ry + Ra.
This proves the upper estimate. The lower estimate can be proved in the same way. O

Now, we are able to return to the basis [\Pp] and introduce the sparse matrices

() (x) do |i|,|j|3m} i (3.39)

(
i(x) da - 655 else
(@) (@) dz il || <m
o Vi(x);(x) da - 0y else .

Lemma 3.12. Let [U,] be defined via (3.35) and let By and By be defined via (3.39). Then the
functions ; are linearly independent. Moreover, the relations

Cata (EMQ, Q) <[l ll7,(—o2)< em2 (EM% 2) ; (3.40)
and ~ ~

Cra (ZBKQ7M) <|lul[Fr(—22)< ek (Exuu) (3.41)
hold for any u = [\ilp]g € B,. The constants cpr1 and ci 2 are independent of the polynomial

degree p, whereas cpr2 = cx,1 = O(log plogXlogp) with some x > 1.

17



Proof. Due to the construction of our basis functions in (3.34), the assumptions of Lemmas 3.10
and 3.11 are satisfied. The linear independence of the basis functions follows from Lemma 3.10.
For the proof of (3.40), we use Lemma 3.10 with || - [[;=]| - ||z,(—2,2)- The definition (3.34)
implies the assumptions (3.36) and (3.37). Inequality (3.30) implies relation (3.38) with ¢; = O(1)
and ca = O(logplogXlogp). This proves (3.40). For (3.41), we use Lemma 3.10 again with
|| - [[7=]l - |1 (~2,2) and relation (3.29). O

Relation (3.39) implies that the matrices By and By, are block-diagonal matrices, i.e

) Dy 0 O ) Dy 0 0
By = 0 Mm 0 and By = 0 # 0 (3.42)
0 0 By 0 0 Bgy

where B/ i )~ € RP7™*" ™™ are diagonal matrices. Therefore block-diagonal matrices By, and

B are required in order to prove the stability results (3.40) and (3.41), respectively. In order to
prove similar results with diagonal matrices Bg and Bps, the basis functions v;, —m < i < m,
have to be modified. Therefore, we consider the generalized eigenvalue problem

Kx = \Mz. (3.43)

Let G and A be the matrix of the eigenvectors and the diagonal matrix of the eigenvalues, respec-

tively, i.e.
GG =A and G MG =1 (3.44)

Moreover, let
[ p,i];i—m = [&pw’]gi—va wp,i(x) = qu,i(CC% |z| >m, and [\IJP] = [wp,i}f;ip+1‘ (?"45)

The basis transformation between the basis [¥,] (3.45) and the basis of the integrated Legendre
polynomials [L(_z )] (3.3) is expressed via

(W] = [L(—2,2)]W, (3.46)

where W, € R?~1*2P~1 i a nonsingular matrix. Finally, we introduce the diagonal matrices

By,— O 0 Bg_ 0 0
By = o I 0 and By = O A O (3.47)
0 0 By, 0 0 By,

with Bys i 4/— € R?P*"7™ of (3.42). Now, we are able to prove the following stability result
for the basis [¥,].

Theorem 3.13. Let [V,], By and By be defined via (3.45) and (3.47), respectively. Then the
relations
Ct (Borte, 1) <[l [, 0.9)< 2 (Barw ), (3.48)

and
6 Bt ) <J w3z < ez (B, ) (3.49)

hold for any w = [Vplu € B,. The constants ¢m 1, Ck2, Cm2 and cp1 are the constants of (3.40)
and (3.41), i.e. cmo = cx1 = O(logplog*logp) with some x > 1, whereas c¢y,1 and cpo are
independent of p. Moreover, the operations W,z and W, require O(p) floating point operations.
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Proof. The assertions (3.48) and (3.49) are direct consequences of (3.40) and (3.41) using (3.47)
and (3.44). The basis transformation matrix W, (3.46) involves two basis transformations:

e the wavelet transformation,
o the eigenvalue basis transformation (3.44).

The first one is preformed in O(p) operations. The second one requires the solution of a eigenvalue
problem of size 2m + 1, where m ~ log, p. Hence, the solution of (3.43) requires O(log3 p) flops, a
multiplication with the matrix G requires O(log2 p) flops. Therefore, the total cost is O(p). O

3.3.2 Refinements for general p

In subsection 3.2, we have assumed that n = 2¥ and n = p—;l. Therefore, the norm equivalences in
Theorem 3.12 are only valid for p = 2% — 1, i.e. for p = 3,7,15,.... However, in order to develop
a solver, we need also a similar result for general p. In order to define a preconditioner there, a
wavelet transformation and refinement strategy for general n # 2F is required. Here, we use a
two level argument. Let k = [logy n] be the largest integer of [log, n] which is not greater than
[log, ] and set ng = 2¥0. In a first step, we do now a symbolic refinement from n grid points to
ng grid points. For the remaining ng grid points, we can now apply our wavelet transformation.
The question arises, where the local refinement has to be done. Three possibilities are proposed:

vl local refinement at the nonsingular boundaries z = +1,

jn
n—ng

v2 by an averaging argument, i.e. the nodes =+
level kg + 1,

l, i=1,...,n — ng are the new nodes on

v3 local refinement at the singularity = = 0,

cf. also Figure 5. For the two-level wavelet transformation from n to ng, the wavelet 159 is used
for v1 and v3 in the interior of the refinement. Otherwise, the wavelet 15 is used, see also Figure
5.

3.3.3 Numerical experiments

The first example considers the case p = 2¥ — 1. In all experiments, the wavelet 199 is used for

the refinement from ng to =2, %2, . ... Table 2 displays the constants ¢, and ¢, 7 = 1,2, of the

p | 3 7 15 31 63 127 255 511 1023
cke | 1.00 1.34 158 1.80 1.97 206 212 216 219
Cey | 1000 151 200 241 279 312 341 3.65 3.86
Cma2 | 1.00 140 159 1.74 1.88 2.03 217 231 246
¢y [ 1.00 1.66 192 210 225 242 260 2.80 3.00

m,1

Table 2: Constants ¢, , and ¢k, r = 1,2, of (3.40) and (3.41) for p = 2% — 1.

norm equivalences (3.40), (3.41), respectively for different polynomial degrees. From the results it
can be seen that all constants are very close to 1. Moreover, the constants are either uniformly
bounded or increase logarithmically with respect to the polynomial degree p.

In the next experiment, we consider the quality of our wavelet transformation for general p. Figure
6 displays the results for the different versions v1, v2 and v3. For all versions, the constants do
depend only moderately on the polynomial degree p. The best results are obtained for v3, where
the values are lower than for the next p = 2% — 1.
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4 The 3D-solver

4.1 Condition number estimates

We are now in the position to define the wavelet solver for the three-dimensional model problem
(2.5). Let W, be defined via (3.46). Moreover, let By, and B be defined via (3.47). Then, we
introduce

C5' = (WpoeW,eW,) (B @By @By +By @Bk @B +By @By @B )~ (W,@W,0W,) . (4.1)
Theorem 4.1. Let C3 and K3 be defined via (4.1) and (2.5), respectively. Then we have the

spectral estimate
1

- (3= K3 = (logplogXl 2c 4.2
oz plogXlogp 3 = (logplogXlogp)~Cs (4.2)

or any x > 1. Moreover, the operation C’71Q requires O p3 operations.
3

Proof. Using (2.5), we have
K3 = KLz gpleen g plezo g plien g kL2 g Loz Ll g Loz g gLz,
By (3.48) and (3.49), one obtains

B

PN

WJMQ*?@WP < logplogX log p By,
1

@g=< W KLeaw, <B
logplog¥logp P po=

respectively. These two inequalities are equivalent to

W][,_TEMVVP_1 < MlLe2 < log plogX log p W]D_TEZ\/[VVP_1 and  (4.3)
1
log plogX logp

A

W, TBW,

Li_s -7 -1
» K=z W) BKWp .

The assertion (4.2) follows now from (4.1) by the properties of the Kronecker product.
Since Bys and Bk (3.47) are diagonal matrices, the solution of

B @By @By + By @Br @By + By @By @ Bye) !

requires O(p®) operations. This proves the theorem. O

Remark 4.2. The preconditioner Cgl is not robust for differential operators with an anisotropic
diffusion matriz A = diaglay, ag, ag] in (1.1). Instead of K3 (2.5), the matriz

Ky = a KL= @ MLl g plee
tfagML22 @ KE22 @ MEc22 4 ggME22 @ ML22 @ KLe22)
has to be considered. Then, the matrix

Cy!' = (W,@W,0W,) (a1 Bx @By @Bar+aBy @By @Bar+a3 By @By @By ) ~H (W@ W,2W,) T

is a quasioptimal and robust preconditioner for K. With an similar argument, anisotropies of the
elements and the polynomial degree p can be handled, see [6].
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Figure 7: PCG-iterations for K3u = f using the preconditioner C3 (4.1).

4.2 Numerical experiments

In this subsection, the system Kzu = f is solved by a PCG-method with the preconditioner Cy 1
(4.1). In all experiments, the right hand side f = [1,...,1]T is chosen. The relative accuracy is
10-5. Figure 7 displays the numbers of iterations for the polynomial degrees p = 5,7,9,...,45.
In all experiments, a moderate increase of the iteration numbers can be observed for vi, v2, and
v3. The preconditioner which uses the refinement strategy v3, needs about 15,...,30 iterations,
whereas the preconditioners with v1 and v2 need sometimes more than 50 iterations. Therefore

the refinement strategy v3 should be preferred.

4.3 Comparisons to direct solvers

In this subsection, the solution time of K3u = f by the PCG method with the preconditioner
(4.1) is compared with sparse direct solvers. All experiments are performed on a Centrino 5, 1.6
GHz. The first experiment considers a comparison to a sparse Cholesky decomposition based on an
approximate minimum degree permutation, [11]. The iterative solvers use a p-dependent relative
accuracy of 10~°~?/3 in order to simulate the exponential convergence order of the hp-version of the
FEM. Figure 8 displays the solution time for p = 3,5, ...,15. Note that the wavelet preconditioner

10

10" }
% 10°
(]
2,
£
S107

1072

-+ direct
3 ——Wavelet
10 : : ‘
0 10 20 30 40

P
Figure 8: Comparison PCG-method with wavelet preconditioner vs. sparse direct solver

C’gl (4.1) is the exact solver for p = 3 and p = 5. For p = 7, the direct solver is faster than the
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iterative solver. For p > 9, the iterative solver outperforms the direct solver.

5 Conclusions and Outlook

We have presented a solver for the system of linear equations arising from the discretization of
2 x 2 x 2 cubes by means of the p-version of the FEM. This solver is embedded in an overlapping
preconditioner [23]. The total solver time is O(p®log®? p(logX log p)3/2) with some y > 1. The
solver can be applied to any situation of 2 x 2 x 2 elements. This solver is also robust with respect
to anisotropies which have their origin in the differential operator or the structure of the elements.
In general, some vertex patches will not have the topological structure of 2 x 2 x 2 elements.
However, the ideas presented in the paper using the generalization of Theorem 3.13 simplify the
development of difficult to implement nonoverlapping domain decomposition preconditioners with
extension operators. More precisely, the wavelet construction helps to develop optimal and fast
extension operators acting from the boundary of the elements to the interior and from the face
boundaries to the faces.

A Basis functions and matrices

In Appendix A, we present the plots of the considered basis functions. The plots of the functions
in the basis [®3] are displayed in Figure 9. The plots of the functions [¥51] in (-2,0) are displayed

2 -16 -12 08 -04 0 04 08 12 16 2

Figure 9: Integrated Legendre polynomials as basis functions of Bs.

in Figure 10. The functions are enumerated in the following way:

e Firstly the function vy corresponding to the hierarchical functions,

then the functions %, ... 1§ with 1/)?(0) # 0 ( 2 per level, i.e. in total 8),

the functions 9§ and ¢, with ¥%(0) = 0 corresponding to level 1,

the functions ¢{,, ..., ¥ with ¢%(0) = 0 corresponding to level 2,
e and finally the functions 17, .., 130 with ¢;(0) = 0 corresponding to the fine level.

Moreover, we present the structure of the matrices K, and M, (2.4) for p = 7. The functions are
ordered in the following way:

e Firstly, the hat function,

e the even polynomials of the first element (—2,0),
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Figure 10: Plots of the functions of [¥s1] on (—2,0).
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e the odd polynomials of the first element (—2,0),
e the even polynomials of the second element (0, 2),
e and finally the odd polynomials of the second element (0, 2).

The polynomials are ordered in increasing order. In this basis, one easily concludes
7 1
Kl22 = idiag [4,6,14,22,10,18,26, 6,14, 22,10, 18, 22] . (A.1)

Moreover, a simple computation shows that

16 T T T T
3 1

) (@ B0 0 o0
ML<*2=2>:1 a, 0 By 0 0
a; 0 0 B 0
a 0 0 0 B
with the vectors
a = [-2 0 0],
.
w = [} 00]
and the matrices
r 1 2
2 2 0
5 5
2 2 2 2
Bio= | =5 5+5 =5, |
L 5 §t13
r 2
iti o7 0
B, = ~2 24,2 _2
2 7 7 , 1T,
L 0 11 11T 1

B Algorithmic Aspects

In this section, some implementational details for the fast evaluation of the preconditioning op-
eration Cj5 Yw (4.1) are presented. The preconditioning action requires the multiplication with
the matrices W), and VVpT and a diagonal scaling with a Kronecker product between the diagonal
matrices By; and Bg. Some steps can be performed before starting the solution process. The
multiplication W,w requires actually two muliplications,

e the basis transformation from the basis [L(_5 )] into the basis [,] = [L(_o2)|W,, i.e. the
multiplication with the matrix W, (3.35) and

e the multiplication with the eigenvector matrix G in (3.44).

The first one is performed by the routine
y = trafo(z,p):
Input:  polynomial degree p (odd)
vector z € R?’~!, components ordered according to
(A.1).
Output: y € R?~L
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. Setn:p—l—l,k:%andmzﬁa—l.

e Call [r, s] = auxiliary(p).

Set by = [T2,- -, Tht1,T1/2, Thyo, - - -, Tp] and hy = [Tpt1, -+, Tptks ©1/2, Tptktis - - - T

Set a = V2(hy,7)s and b = v/2(h,,1)s.

e Call u = trafo22(hy,n) and v = trafo;22(hy,n).
o Set

Yy = [Ukg1+ Vkg1,01 F UL, A+ Uk, Qg2 + Upg2, - - -, Gp + Up,

by +v1,. .., bk + Uk, bpgo + Vg, ... by +0p)

This subroutine calls [z,y] = auxiliary(p), z = trafo22(y,n) and z = trafo.22(y,n). The
subroutine auxiliary computes two auxiliary vectors x,y € RP, where p is odd:

e Set m=2H h=10,...,0] € RP, h(m) = 1.
e Call z = trafo22(h,p+ 1) and y = trafo.22(h,p + 1).

The next routine is z = trafo22(y,n). The input is the vector y € R"~! which contains the
coeffcients of a piecewise linear function f in the basis of the usual hat functions. Output are
the coefficients of f in the used wavelet basis. The basis functions of the nodal and wavelet basis
are ordered with respect to the midpoint of their support. The subroutine z = trafo.22(y,n)
performs the transposed operation. B
The matrix G has to be computed before starting the solution process. This requires two sparse
matrices By, and B in (3.39). They are computed via the subroutine [@y;, M] = genmass(p)
which computes the required entries in (3.39) of the matrix

1 1
/1[‘1/1,]T[\pr] d],‘ = /1 WJ[L(,Q’Q)]TWP[L(,Q’Q)] dl‘
using the formula VNI/JMQ*?,?)WP.

[Brr, M] = genmass(p)
Input:  polynomial degree p (odd)

Output: diagonal part of By,
dense block M in (3.42)

e Call M = masslegendre(p)
e Call [r, s] = extension(p)
e FORI=1,2p 1

—e=10,...,00 e R 1 ¢(I)=1.
— Call x = trafo(e,p)
— By (I,I) =z "Mz
IF r(I) # 0 THEN
« FOR J=1,2p—1
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-g=10,...,0] € R~ g(J) =1
- Call y = trafo(g,p)
- IF r(J) # 0 THEN #(I,J) =y Mz
+ ENDFOR B
— ENDIF

e ENDFOR

This subroutine calls masslegendre(p) which computes M*(-22 using the explicit structure given
in (3.3). Note that the diagonal matrices Bps,— and By 4 are saved in one diagonal matrix. The
subroutine [Bx,%] = genstiff(p) replaces masslegendre by a routine for the computation of
KT-22_ Once the structure of # and % is known, the matrix G is obtained as the eigenvector
of the generalized eigenvalue problem &z = Az (3.43), see also (3.44) and can be computed by
the implicit QL-algorithm. This gives us also the matrices By and By in (3.47). For an efficient
implementation, the matrices By, and Wi can also be computed before once starting the solution
process. Since M, & € R™™ with m =~ log, p, the total cost for the generation of all matrices is

O(p?) + O(p? logj p) + O(logj p).
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