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Abstract. We describe a Mathematica package for dealing with q-holonomic sequences and
power series. The package is intended as a q-analogue of the Maple package gfun and the
Mathematica package GeneratingFunctions. It provides commands for addition, multiplication,
and substitution of these objects, for converting between various representations (q-differential
equations, q-recurrence equations, q-shift equations), for computing sequence terms and power
series coefficients, and for guessing recurrence equations given initial terms of a sequence.

1. Introduction

Computer algebra packages for dealing with recurrence equations are of great relevance as they
make a lot of time-consuming, tedious and errorprone hand computations obsolete. This is why,
for instance, computer algebra implementations of algorithms for hypergeometric summation [15,
14, 1] enjoy a large and still increasing community of users with a broad variety of different
backgrounds. Even more so than in the ordinary case, computations in q-calculus tend to involve
large expressions that can be tackled by computer algebra much faster and much more reliably than
by hand. Algorithms for ordinary hypergeometric summation have therefore been generalized to
summation for q-hypergeometric terms [22, 8, 13, 17, 18], and implementations of these algorithms
are also widely used.

In contrast, no software package was available so far that would deal with univariate q-holonomic
sequences and power series like the Maple package gfun [20] or its Mathematica cousin Generating-
Functions [10] do for ordinary univariate holonomic sequences and power series. The class of these
objects is closed under a certain number of operations, and there are algorithms for computing a
recurrence/differential equation for the result of such an operation given recurrences/differential
equations of the operands (“executing closure properties”). These algorithms are at the heart of
gfun and GeneratingFunctions.

The packages have become an indispensable tool for proving special function identities via com-
puter algebra. They proved particularly useful in connection with hypergeometric summation
algorithms, but are also used frequently in experimental mathematics, e.g., for automatically
guessing recurrence equations from sample values of otherwise unknown sequences. Naturally,
a q-version of gfun/GeneratingFunctions could considerably facilitate the work with q-holonomic
objects along the same lines.

It follows from general considerations in Ore rings [5] that the closure properties as well as the
corresponding algorithms carry over to the q-case. Direct proofs were also given recently by Koepf
et al. [7]. The purpose of the present paper is to present a Mathematica implementation of these
and other algorithms for univariate q-holonomic sequences and power series. Besides executing
closure properties, our package allows for converting different representations of sequences and
power series to each other, for computing sequence values or coefficients of power series, and
for automatically guessing q-recurrence equations of q-holonomic sequences given by some finite
sample of values. Our package is available for download from

http://www.risc.uni-linz.ac.at/research/combinat/software/
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2 MANUEL KAUERS AND CHRISTOPH KOUTSCHAN

In Sections 2–4 of this paper, we give descriptions of the commands provided by our package,
along with simple examples and the relevant theoretical background. In Section 5, we present a
collection of some typical example applications.

To begin with, we load the package into Mathematica.

In[1]:=
���

qgfun � m
q-GFUN Package by Christoph Koutschan – c© RISC Linz – V 1.0 (11.07.2007)

2. q-holonomic Sequences and Power Series

Let � = � (q) with q transcendental. For a formal power series a(x) ∈ � [[x]], the q-derivative is
defined via

Dq

∞
∑

n=0

anxn :=

∞
∑

n=1

an
qn − 1

q − 1
xn−1.

Definition 1. (1) A sequence (an) in � is called q-holonomic if there exist p, p0, . . . , pr ∈
� [x], not all zero, such that

p0(q
n)an + p1(q

n)an+1 + · · · + pr(q
n)an+r = p(qn) (n ∈ � ).

(2) A power series a(x) over � is called q-holonomic if there exist p, p0, . . . , pr ∈ � [x], not

all zero, such that

p0(x)a(x) + p1(x)Dqa(x) + · · · + pr(x)Dr
qa(x) = p(x).

A q-holonomic sequence is specified by a q-recurrence as above, plus possibly some initial values.
If no initial values are given, the results returned by the package will be true for any choice of
initial values. If sufficiently many initial values are given, the data specifies a sequence uniquely.
Likewise, a q-holonomic power series is specified by a q-differential equation as above, plus possibly
some initial values. Again, initial values may be omitted, and in this case generic results will be
produced.

It is not essential to Definition 1 that the defining equations may be inhomogeneous, as any inho-
mogeneous recurrence or differential equation can easily be replaced by an equivalent homogeneous
one whenever necessary.

A sequence (an) is q-holonomic if and only if its generating function a(x) =
∑

∞

n=0 anxn is q-
holonomic. A specification for a(x) can be computed given a specification for (an), and vice versa.
Our package provides the commands

QRE2DE
[

spec , fun1 [ var1 ], fun2 [ var2 ]
]

QDE2RE
[

spec , fun1 [ var1 ], fun2 [ var2 ]
]

for this purpose. The argument fun1 [ var1 ] declares the function name and the variable in which
the specification of the sequence/power series is given. The argument fun2 [ var2 ] declares the
function name and the variable which should be used in the output specification:

In[2]:= QRE2DE[ ��� [ 	 ] == ( 
�� + 1) � [ 	� 1] ��� [0] == 1 ����� [ 	 ] ��� [ � ]]
Out[2]= � −(q − 1)qA′[t]t2 + (−qt − t + 1)A[t] − 1 == 0, A[0] == 1 �
In[3]:= QDE2RE[ �� ( 
� 1) ��� [ � ] � 2 + ( �
����� + 1) � [ � ]  1 == 0 ��� [0] == 1 ����� [ � ] � � [ 	 ]]

Out[3]= � a[n] == −(−q
n − 1)a[n − 1], a[0] == 1 �

The q-derivative can be entered with the usual prime (′) for derivatives; this symbol also appears
in the output. Internally, however, every prime will be replaced by the symbol QDerivative in
order to avoid conflicts with Mathematica’s symbol Derivative for the ordinary derivative.

Alternatively, a power series may also be specified by a q-shift equation, i.e., an equation involving
expressions of the form f [qx], f [q2x], etc. Initial coefficients are referred to via 〈1〉[f [x]], 〈x〉[f [x]],
〈x2〉[f [x]], etc. (i.e., AngleBracket[1][f [x]], AngleBracket[x][f [x]], AngleBracket[x2][f [x]], etc.).
Conversion between q-shift equations and q-differential equations is also supported by the package.
In fact, q-derivatives and q-shifts can always be mixed arbitrarily in input. The abbreviations SE
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and DE are therefore synonymous with respect to input; they only differ with respect to output
format.

In[4]:= QRE2SE[ ��� [ 	 ] == ( 
 � + 1) � [ 	  1] ��� [0] == 1 ��� � [ 	 ] ��� [ � ]]
Out[4]= � (1 − t)A[t] − qtA[qt] − 1 == 0, 〈1〉[A[t]] == 1 �
In[5]:= QSE2RE[ � (1  � ) � [ � ]  
�� � [ 
�� ]  1 == 0 � � 1 � [ � [ � ]] == 1 ����� [ � ] � � [ 	 ]]

Out[5]= � a[n] == −(−q
n − 1)a[n − 1], a[0] == 1 �

In[6]:= QSE2DE[ � (1 �� ) � [ � ] �
�� � [ 
�� ]  1 == 0 � � 1 � [ � [ � ]] == 1 � ��� [ � ]]
Out[6]= � −(q − 1)qt2A′[t] + (−qt − t + 1)A[t] − 1 == 0, A[0] == 1 �
In[7]:= QDE2SE[ �� ( 
� 1) 
�� 2 ��� [ � ] + (  
�� �� + 1) � [ � ]  1 == 0 ��� [0] == 1 ����� [ � ]]

Out[7]= � (1 − t)A[t] − qtA[qt] − 1 == 0, 〈1〉[A[t]] == 1 �

3. Closure Properties

We say that the class of q-holonomic sequences (or power series) is closed under an operation F
if F(a1, a2) is q-holonomic whenever a1, a2 are. Some useful closure properties are discussed in
this section. For all of these, our package provides a command for computing a defining equation
for F(a1, a2) from defining equations for a1, a2. As the proofs are analogous to the ordinary
case [21, 10, 7], we will confine ourselves to provide the proof idea.

3.1. Sum.

Theorem 1. (1) If (an) and (bn) are q-holonomic sequences, then so is (an + bn).
(2) If a(x) and b(x) are q-holonomic power series, then so is a(x) + b(x).

Proof idea. (1) If (an) and (bn) are q-holonomic, they satisfy homogeneous linear recurrence
equations, say of orders r1 and r2, respectively. Let cn := an + bn. Using the recurrence
equations, every term an+k +bn+k (k ∈ � ) can be rewritten as a � (qn)-linear combination
of an+i and bn+j for i = 0, . . . , r1 − 1 and j = 0, . . . , r2 − 1. It follows that at most r1 + r2

terms cn+k can be linearly independent. Therefore cn, . . . , cn+r1+r2
are linearly dependent.

The dependence is the desired recurrence.
(2) Follows from (1).

�

A specification for the sum of two q-holonomic sequences (power series) can be computed from
specifications of the two summands, using one of the following commands:

QREPlus
[

spec1 , spec2 , fun [ var ]
]

,

QDEPlus
[

spec1 , spec2 , fun [ var ]
]

,

QSEPlus
[

spec1 , spec2 , fun [ var ]
]

.

Here, spec1 and spec2 are specifications for the summands, both given using fun as function
symbol and var as variable. These symbols will be used again in the output specification of the
sum.

Example 1.

In[8]:= QREPlus[ ��� [ 	 ] == 
 � � [ 	  1] � � [0] == 1 � � ��� [ 	 ] == 2 � [ 	  1] � � [0] == 1 � ��� [ 	 ]]

Out[8]= � (2q − q
n)a[n] == 2q

n(qn − 2)a[n − 2] − (q2n − 4q)a[n − 1], a[0] == 2, a[1] == q + 2 �
In[9]:= QDEPlus[ ��� � [ � ] �� � [ � ] == 0 ��� [0] == 1 ������� � [ � ]  2 � [ � ] == 0 � � [0] == 1 � � � [ � ]]

Out[9]= � 2(qx2 − 2x + 1)a[x] + (3 − qx
2)a′[x] + (x − 2)a′′[x] == 0, a[0] == 2, a

′[0] == 2 �
In[10]:= QSEPlus[ � (1 �� ) � [ 
�� ]  � [ � ] == 0 � � [0] == 1 ��� ��� [ 
�� ]  � [ � ] == 0 ��� [0] == 1 � � � [ � ]]

Out[10]= � −qa[x] + (−xq + q + 1)a[qx] + (qx − 1)a[q2
x] == 0, 〈1〉[a[x]] == 2, 〈x〉[a[x]] == 1

q−1
�
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3.2. Hadamard Product.

Theorem 2. (1) If (an) and (bn) are q-holonomic sequences, then so is their Hadamard
product (anbn).

(2) If a(x) =
∑

∞

n=0 anxn and b(x) =
∑

∞

n=0 bnxn are q-holonomic power series, then so is

their Hadamard product a(x) � b(x) :=
∑

∞

n=0 anbnxn.

Proof idea. (1) If (an) and (bn) are q-holonomic, they satisfy homogeneous linear recurrence
equations, say of orders r1 and r2, respectively. Let cn := anbn. Using the recurrence
equations, every term an+kbn+k (k ∈ � ) can be rewritten as a � (qn)-linear combination
of terms an+ibn+j for i = 0, . . . , r1 − 1 and j = 0, . . . , r2 − 1. It follows that at most r1r2

terms cn+k can be linearly independent. Therefore cn, . . . , cn+r1r2
are linearly dependent.

The dependence is the desired recurrence.
(2) Follows from (1).

�

A specification for the Hadamard product of two q-holonomic sequences (power series) can be
computed from specifications of the two factors, using one of the following commands:

QREHadamard
[

spec1 , spec2 , fun [ var ]
]

,

QDEHadamard
[

spec1 , spec2 , fun [ var ]
]

,

QSEHadamard
[

spec1 , spec2 , fun [ var ]
]

.

Example 2.

In[11]:= QREHadamard[ ��� [ 	 ] == 
 � � [ 	  1] ��� [0] == 1 ������� [ 	 ] == 2 � [ 	  1] ��� [0] == 1 ��� � [ 	 ]]

Out[11]= � a[n] == 2q
n
a[n − 1], a[0] == 1 �

In[12]:= QDEHadamard[ � � � [ � ]  � � [ � ] == 0 � � [0] == 1 ��� � � � [ � ]  2 � [ � ] == 0 � � [0] == 1 ����� [ � ]]
Out[12]= � −xq

2
a
(3)[x] + (−q − 1)a′′[x] + 4a[x] == 0, a[0] == 1, a

′[0] == 0, a
′′[0] == 4

q+1 �
In[13]:= QSEHadamard[ � (1 �� ) � [ 
�� ] �� [ � ] == 0 ��� [0] == 1 ���

��� [ 
�� ]  � [ � ] == 0 � � [0] == 1 � � � [ � ]]
Out[13]= � a[x] + (qx − 2)a[qx] + (1 − qx)a[q2

x] == 0, 〈1〉[a[x]] == 1, 〈x〉[a[x]] == 0 �

3.3. Cauchy Product.

Theorem 3. (1) If (an) and (bn) are q-holonomic sequences, then so is their Cauchy product
(
∑n

k=0 akbn−k).
(2) If a(x) and b(x) are q-holonomic power series, then so is their Cauchy product a(x)b(x).

Proof idea. (1) Follows from (2).
(2) If a(x) and b(x) are q-holonomic, they satisfy homogeneous linear differential equations, say

of orders r1 and r2, respectively. Let c(x) = a(x)b(x). Using the differential equations,
every term Dk

q c(x) (k ∈ � ) can be rewritten as a � (x)-linear combination of terms

Di
qa(x)Dj

qb(x) for i = 0, . . . , r1−1 and j = 0, . . . , r2−1. It follows that at most r1r2 terms

Dk
q c(x) can be linearly independent. Therefore cn, . . . , cn+r1r2

are linearly dependent. The
dependence is the desired differential equation.

�

A specification for the Cauchy product of two q-holonomic sequences (power series) can be com-
puted from specifications of the two factors, using one of the following commands:

QRECauchy
[

spec1 , spec2 , fun [ var ]
]

,

QDECauchy
[

spec1 , spec2 , fun [ var ]
]

,

QSECauchy
[

spec1 , spec2 , fun [ var ]
]

.
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Example 3.

In[14]:= QRECauchy[ ��� [ 	 ] == 
 � � [ 	  1] ��� [0] == 1 ������� [ 	 ] == 2 � [ 	  1] ��� [0] == 1 ��� � [ 	 ]]

Out[14]= � a[n] == −2q
n
a[n − 2] − (−q

n − 2)a[n − 1], a[0] == 1, a[1] == q + 2 �
In[15]:= QDECauchy[ ��� � [ � ]  � � [ � ] == 0 � � [0] == 1 ��� ��� � [ � ]  2 � [ � ] == 0 � � [0] == 1 ��� � [ � ]]

Out[15]= � (2qx
2 − 2x

2 + x + 2)a[x] − a
′[x] == 0, a[0] == 1 �

In[16]:= QSECauchy[ � (1 �� ) � [ 
�� ] �� [ � ] == 0 ��� [0] == 1 ���
��� [ 
�� ]  (1  
�� 2) � [ � ] == 0 ��� [0] == 
 2 ��� � [ � ]]

Out[16]= � (1 − qx
2)a[x] + (x − 1)a[qx] == 0, 〈1〉[a[x]] == q

2 �

3.4. Substitution.

Theorem 4. (1) If (an) is a q-holonomic sequence, then so is (aαn+β) for any α ≥ 0, β ≥ 0.
(2) If a(x) is a q-holonomic power series, then so is a(xα) for any α ∈ � .

Proof idea. (1) If (an) is q-holonomic, it satisfies a homogeneous linear recurrence equation,
say of order r. Let cn := aαn+β . Using the recurrence equation, every term cn+k (k ∈ � )
can be rewritten as a � (qn)-linear combination of an+β+i for i = 0, . . . , r − 1. It follows
that at most r terms cn+k can be linearly independent. Therefore cn, . . . , cn+r are linearly
dependent. The dependence is the desired recurrence.

(2) If a(x) is q-holonomic, it satisfies a homogeneous linear q-shift equation, say of order r.
Using this equation, every term a(qαkx) (k ∈ � ) can be rewritten as a � (x)-linear com-
bination of a(qix) for i = 0, . . . , r − 1. It follows that at most r terms a(qαkx) can be
linearly independent. Therefore, a(x), a(qαx), . . . , a(qαrx) are linearly dependent. After
the substitution x → xα, their dependence yields the desired q-shift equation.

�

The class of ordinary holonomic power series is even closed under substitution with algebraic power
series [21]. Statement (2) of the preceding theorem corresponds only to a rather limited special
case of this. A q-analogue of the more general result is not available.

A specification for the sequence (resp. power series) resulting from substituting n 7→ αn+β (resp.
x 7→ xα) into a sequence (resp. power series) can be computed from a specification of the latter,
by one of the following commands:

QRESubstitute
[

spec , fun [ var ], α var + β
]

,

QDESubstitute
[

spec , fun [ var ], var α
]

,

QSESubstitute
[

spec , fun [ var ], var α
]

.

Example 4.

In[17]:= QRESubstitute[ � � [ 	 ] = 
 � � [ 	  1] + � [ 	  2] ��� [0] == 1 ��� [1] == 
 ��� � [ 	 ] � 2 	 + 3]

Out[17]= � a[n] == −q
2
a[n − 2] − (−q

4n+5 − q
2 − 1)a[n − 1],

a[0] == q(q5 + q2 + 1), a[1] == q(q + 1)(q2 + 1)(q2 − q + 1)(q4 + 1)(q5 − q3 + 1) �
In[18]:= QDESubstitute[ ��� � [ � ]  ( 
� � ) � [ � ] == 0 ��� [0] == 1 ��� � [ � ] � � 2]

Out[18]= � x(−q
3
x

6 + q
2
x

6 + q
4
x

4 − q
2
x

4 − q
4
x

2 + q
3
x

2 + q
2
x

2 + x
2 − q

2 − q)a[x] + a
′[x] == 0, a[0] == 1 �

In[19]:= QSESubstitute[ � (1 �� ) � [ 
�� ] �� [ � ] == 0 ��� [0] == 1 ��� � [ � ] � � 2]

Out[19]= � (x − 1)(x + 1)(qx2 − 1)a[qx] − a[x] == 0, 〈1〉[a[x]] == 1 �
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4. Additional Functions

4.1. Evaluation. Given a specification of a q-holonomic sequence or power series, we can compute
its first terms (resp. coefficients) a0, . . . , ak using the commands

QRE2L
[

spec , fun [ var ], range
]

,

QDE2L
[

spec , fun [ var ], range
]

,

QSE2L
[

spec , fun [ var ], range
]

.

Example 5.

In[20]:= values = QRE2L[ ��� [ 	 + 1] == ( 
 � + 1) � [ 	 ] ��� [0] == 1 ����� [ 	 ] � 9]
Out[20]= � 1, q + 1, (q + 1)(q2 + 1), (q + 1)2(q2 + 1)(q2 − q + 1), (q + 1)2(q2 + 1)(q2 − q + 1)(q4 + 1),

(q + 1)3(q2 + 1)(q2 − q + 1)(q4 + 1)(q4 − q3 + q2 − q + 1), . . .

(q + 1)5(q2 + 1)2(q2 − q + 1)2(q4 + 1)(q4 − q2 + 1)(q4 − q3 + q2 − q + 1)
×(q6 − q3 + 1)(q6 − q5 + q4 − q3 + q2 − q + 1)(q8 + 1) �

In[21]:= QDE2L[ ��� � [ � ] == ( � �
 ) � [ � ] � � [0] == 1 ����� [ � ] � 4]
Out[21]= � 1,−q, q

2+1
q+1

,− q(q2+q+2)

(q+1)(q2+q+1)
, 2q

4+2q
3+4q

2+q+1
(q+1)2(q2+1)(q2+q+1)

�
In[22]:= QSE2L[ ��� [ 
�� ] == (1 �� ) � [ � ] � � [0] == 1 � ��� [ � ] � 4]

Out[22]= � 1,− 1
q−1

, 1
(q−1)2(q+1)

,− 1
(q−1)3(q+1)(q2+q+1)

, 1
(q−1)4(q+1)2(q2+1)(q2+q+1)

�

4.2. Guessing. A reverse function is provided which makes it possible to guess a recurrence
equation satisfied by a list of values:

QREGuess
[

list , fun [ var ]
]

.

We have included this function for the sake of completeness, although there is already more
sophisticated guessing machinery for q-sequences available [9, 19].

Example 6.

In[23]:= QREGuess[values ��� [ 	 ]]

Out[23]= � −a[n] == −(1 + q
n)a[n − 1], a[0] == 1 �

4.3. Equation Manipulation Tools. In general, the recurrence or differential equation returned
by our commands are inhomogeneous. At the cost of increasing their order, they can be converted
into equivalent homogeneous equations by using one of the commands

QREHomogeneous
[

spec , fun [ var ]
]

,

QDEHomogeneous
[

spec , fun [ var ]
]

,

QSEHomogeneous
[

spec , fun [ var ]
]

.

Example 7.

In[24]:= QREHomogeneous[ ��� [ 	 ] == (1 + 
 � ) � [ 	� 1] �
 � ��� [0] == 1 ��� � [ 	 ]]

Out[24]= � a[n] == −(qn + q)a[n − 2] − (−q
n − q − 1)a[n − 1], a[0] == 1, a[1] == 1 �

In[25]:= QDEHomogeneous[ � � � [ � ] == � � [ � ] + 1 ��� [0] == 1 ��� � [ � ]]
Out[25]= � −a[x] − qxa

′[x] + a
′′[x] == 0, a[0] == 1, a

′[0] == 1, a
′′[0] == 1 �

In[26]:= QSEHomogeneous[ � (1  � ) � [ 
�� ] == � � [ � ] + 1 � � [0] == 1 ��� � [ � ]]
Out[26]= � xa[x] + (−qx + x − 1)a[qx] + (1 − qx)a[q2

x] == 0,

〈1〉[a[x]] == 1, 〈x〉[a[x]] == 2
q
, 〈x2〉[a[x]] == 2(q+1)

q3 �
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5. Applications

5.1. q-Hypergeometric Identities. Recurrence equations satisfied by q-hypergeometric sums
can be computed with a q-analogue of Zeilberger’s algorithm implemented in Mathematica by
Paule and Riese [13]. This package in connection with ours allows for proving q-hypergeometric
summation identities effortlessly. As an example, consider Bressoud’s identity [4]

n
∑

k=0

qk2

[

n

k

]

q

=
n

∑

k=−n

(−1)kqk(5k+1)/2

[

2n

n + 2k

]

q

,

which, in connection with Jacobi’s triple product identity, implies the Rogers-Ramanujan identi-
ties.

We prove this identity by first computing recurrence equations for both sides of the equation.

In[27]:=
���

qZeil � m
q-Zeilberger Package by Axel Riese – c© RISC Linz – V 2.42 (02/18/05)

In[28]:= rec1 = qZeil[ 
 � 2
qBinomial[ 	 � � � 
 ] � � � � 0 ��	 ����	 ]

Out[28]= SUM[n] == −
−q2n + qn+1 − q2 − q

q
SUM[n − 1] − q(1 − q

n−1)SUM[n − 2]

In[29]:= rec2 = qZeil[(  1)
� 
 �

(5
�
+1) � 2qBinomial[2 	 � 	 + 2

� � 
 ] � � � �  	 � 	 ����	 ]

Out[29]= SUM[n] ==
q2n + q2n+1 + q2n+2 + q7 + q6 + q5 + q4 + q3

q3
SUM[n − 1]

+ (. . . messy. . . ) + (1 − q2n−9)(1 − q2n−8)q10SUM[n − 5]

As we obtain different recurrence equations, the identity is not yet evident at this point. Recurrence
equations of lower order can often be obtained by applying clever tricks to the sums in question
(such as “creative symmetrizing” [12]), but this requires human expertise, which we prefer to
avoid. We continue the proof mechanically by combining the above recurrence equations to a
recurrence equation satisfied by the difference of left hand side and right hand side.

In[30]:= QREPlus[rec1 � rec2 � SUM[ 	 ]]

Out[30]= � q12SUM[n] == (q2n + q
2n+1 + q

2n+2 + q
7 + q

6 + q
5 + q

4 + q
3)q9SUM[n − 1]

+ (. . . messy. . . ) − (q4 − qn)(qn + q4)(q9 − q2n)q5SUM[n − 5] �
As this recurrence has order five, the proof of the identity is completed by checking five initial
values, which is easily done. (We may regard it as an irrelevant coincidence that the resulting
recurrence is identical to rec2.)

In[31]:= Table[

Sum[ 
 � 2
qBinomial[ 	 � � � 
 ] � � � � 0 � 	 � ]

== Sum[(  1)
� 
 �

(5
�
+1) � 2qBinomial[2 	 � 	 + 2

� � 
 ] ��� � �  	 � 	 � ] �
� 	 � 0 � 4 � ] ��� qSimplify ��� FullSimplify

Out[31]= {True, True, True, True, True}

In the same way, finite versions of further identities like the Goellnitz-Gordon identity or the
Rogers-Selberg identity [11] can now be done without any human preprocessing.

5.2. q-Trigonometric Functions. Two q-analogues of sine and cosine are given by

sinq(x) =

∞
∑

n=0

(−1)nx2n+1

(q; q)2n+1
, Sinq(x) =

∞
∑

n=0

(−1)nq(2n+1)nx2n+1

(q; q)2n+1
,

cosq(x) =

∞
∑

n=0

(−1)nx2n

(q; q)2n
, Cosq(x) =

∞
∑

n=0

(−1)nq(2n−1)nx2n

(q; q)2n
.

Exercise 1.14 of Gasper/Rahman [16] asks for proving the relations

(1) sinq(x) Sinq(x) + cosq(x) Cosq(x) = 1,
(2) sinq(x) Cosq(x) − Sinq(x) cosq(x) = 0.
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The exercise can be solved by typing the following commands.

In[32]:= sinDe = QRE2DE[ ��� [ 	 ] ==  � [ 	  2] ��� (1  
 � )(1  
 ��� 1) ���
� [0] == 0 ��� [1] == 1 � (1  
 ) ��� � [ 	 ] ��� [ � ]];

In[33]:= SinDe = QRE2DE[ ��� [ 	 ] == �
 2 ��� 3 � [ 	  2] ��� (1  
 � )(1 �
 ��� 1) � �
� [0] == 0 ��� [1] == 1 � (1  
 ) ��� � [ 	 ] ��� [ � ]];

In[34]:= cosDe = QRE2DE[ ��� [ 	 ] == �� [ 	  2] ��� (1 �
 � )(1  
 ��� 1) � �
� [0] == 1 ��� [1] == 0 ��� � [ 	 ] ��� [ � ]];

In[35]:= CosDe = QRE2DE[ ��� [ 	 ] ==  
 2 ��� 3 � [ 	  2] ��� (1 �
 � )(1  
 ��� 1) � �
� [0] == 1 ��� [1] == 0 ��� � [ 	 ] ��� [ � ]];

In[36]:= QDEPlus[
QDECauchy[sinDe � SinDe ��� [ � ]] �
QDECauchy[cosDe � CosDe ��� [ � ]] �
� [ � ]]

Out[36]= � (x2
q
4 + 1)(q − 1)2f (3)[x] + q(q + 1)(q2 + 1)(q − 1)xf

′′[x] + (q + 1)(q2 + 1)f ′[x] == 0,

f [0] == 1, f ′[0] == 0, f ′′[0] == 0 �
This proves (1), because the differential equation together with f ′[0] == f ′′[0] == 0 implies
f (n)[0] == 0 for all n ≥ 1. Likewise, (2) is proven by

In[37]:= QDEPlus[
QDECauchy[sinDe � CosDe �	� [ � ]] �
QDECauchy[ �
� [ � ] ==  1 � � SinDe � cosDe �	� [ � ]] �
� [ � ]]

Out[37]= � (x2
q
4 + 1)(q − 1)2f (3)[x] + q(q + 1)(q2 + 1)(q − 1)xf

′′[x] + (q + 1)(q2 + 1)f ′[x] == 0,

f [0] == 0, f ′[0] == 0, f ′′[0] == 0 �

5.3. q-Fibonacci Numbers. Andrews et al. [3] have given the identity

dnen+1 − dn+1en = (−1)nq(
n

2) (n ≥ 0)

for (dn), (en) defined by

dn+2 = dn+1 + qndn, d0 = 1, d1 = 0,

en+2 = en+1 + qnen, e0 = 0, e1 = 1.

For q = 1, this identity reduces to Cassini’s identity for Fibonacci numbers. We can show the
identity with our package, by typing the following commands.

In[38]:= defD = ��� [ 	 + 2] == � [ 	 + 1] + 
 � � [ 	 ] � � [0] == 1 ��� [1] == 0 � ;
In[39]:= defE = ��� [ 	 + 2] == � [ 	 + 1] + 
 � � [ 	 ] ��� [0] == 0 ��� [1] == 1 � ;
In[40]:= lhs = QREPlus[

QREHadamard[defD � QRESubstitute[defE � � [ 	 ] ��	 + 1] ��� [ 	 ]] �
QREHadamard[ ��� [ 	 ] ==  1 ��� QRESubstitute[defD � � [ 	 ] � 	 + 1] � defE � � [ 	 ]] �
� [ 	 ]]

Out[40]= � q11
a[n] == −q

4n
a[n − 4] + (q + 1)(qn + q

2)qn+7
a[n − 2] + q

2n+7
a[n − 3] + q

11
a[n − 1],

a[0] == 1, a[1] == −1, a[2] == q, a[3] == q2 + q − (q + 1)(q2 + 1) + 1 �
In[41]:= QREPlus[lhs � ��� [ 	 ] ==  
 ��� 1 � [ 	� 1] � � [0] ==  1 ��� � [ 	 ]]

Out[41]= � a[n] == 0 �

5.4. Sequences Arising in the Borwein-Conjecture. The first Borwein-conjecture [2] states
that if An, Bn, Cn are polynomials such that

n
∏

j=1

(1 − q3j−2)(1 − q3j−1) = An(q3) − qBn(q3) − q2Cn(q3),

then these polynomials have positive coefficients.
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The sequences An, Bn, Cn are q-holonomic, but it is not clear at first glance how to obtain defining
recurrence equations for them using closure properties. In such situations, automated guessing is
often useful. For example, a recurrence candidate for the An can be found as follows.

In[42]:= polysA = Table[Expand[Product[(1  
 3� � 2)(1 �
 3 � � 1) � ��� � 1 � 	 � ]] � � 	 � 0 � 45 � ]
� � 
�� � :� If [Mod[ � � 3] == 0 � 
�� � 3 � 0];

In[43]:= QREGuess[polysA � � [ 	 ]]

Out[43]= $Failed

By default, the QREGuess command searches for recurrence equations of order at most two with
coefficients quadratically depending on qn. The above result asserts that no such recurrence exists
for the sequence in question. A higher order and a higher degree for the coefficients has to be
tried.

In[44]:= QREGuess[polysA � � [ 	 ] � MaxOrder � 4 � MaxDegree � 6]

Out[44]= � −q
12

a[n] == −(q2n − q
n+2 + q

2n+1 + q
2n+2 + q

5 + q
4 + q

3)q9
a[n − 1]

+(q4n−qn+6−qn+7+q2n+4 +2q2n+5 +q2n+6−q3n+2−q3n+3 +q4n+1 +q4n+2+q10 +q9+q8)q5a[n−2]
−(q6n − qn+12 + q2n+10 − q3n+7 − q3n+8 + q4n+5 − q5n+2 + q15)a[n − 3],

a[0] = (q2 + 1)(q2 + q + 1) �

Andrews [2] has given a sum representation for the An for which the qZeil package delivers the
same recurrence, so the recurrence guessed by our package is indeed correct.

5.5. q-Orthogonal Polynomials. The q-Hermite polynomials, which are defined by the recur-
rence equation

2xHn(x|q) = Hn+1(x|q) + (1 − qn)Hn−1(x|q), H0(x|q) = 1, H1(x|q) = 2x,

satisfy the identity

Hn(x|q)2

(q; q)2n
=

n
∑

k=0

H2n−2k(x|q)

(q; q)k(q; q)2n−k

.

In order to prove this identity, we first determine a specification for the left hand side.

In[45]:= recH = � 2 �
	 [ 	 ] == 	 [ 	 + 1] + (1 �
�� ) 	 [ 	  1] ��	 [0] == 1 ��	 [1] == 2 ��� ;
In[46]:= recFac = ��	 [ 	 ] == 	 [ 	  1] � (1  
 � ) �	 [0] == 1 � ;
In[47]:= recFac2 = QREHadamard[recFac � recFac �	 [ 	 ]];
In[48]:= recLHS = QREHadamard[recH � recH � recFac2 �	 [ 	 ]]

Out[48]= � q(q − q
n)(qn − 1)2h[n] == (q − q

n)(qn + 4x
2
q − q)h[n − 1] − (qn + 4x

2
q − q)qh[n − 2] + q

2
h[n − 3],

h[0] == 1, h[1] == 4x
2

(q−1)2
, h[2] == (4x

2+q−1)2

(q−1)4(q+1)2
�

In a second step we determine a specification for the right hand side.

In[49]:= recH2 = QRESubstitute[recH ��	 [ 	 ] � 2 	 ];
In[50]:= recRHS = QRECauchy[QREHadamard[recH2 � recFac2 ��	 [ 	 ]] � recFac �	 [ 	 ]]

Out[50]= � −q(q−q
n)(qn −1)2h[n] == −(q−q

n)(qn +4x
2
q−q)h[n−1]+(qn +4x

2
q−q)qh[n−2]−q

2
h[n−3],

h[0] == 1, h[1] == 4x
2

(q−1)2
, h[2] == (4x

2+q−1)2

(q−1)4(q+1)2
�

As the two specifications agree, the claim follows.

The identity just proven is a special case of the product linearization formula [6, Thm. 3.4]

Hm(x|q)Hn(x|q) =

min(m,n)
∑

k=0

(q; q)m(q; q)n

(q; q)k(q; q)m−k(q; q)n−k
Hm+n−2k(x|q),

which can be also proven automatically in full generality. As this computation is a little more
lengthy, we leave it to the reader as an exercise.
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[15] Marko Petkovšek, Herbert Wilf, and Doron Zeilberger. A = B. AK Peters, Ltd., 1997.
[16] George Gasper Mizan Rahman. Basic Hypergeometric Series. Cambridge University Press, 2nd edition, 2004.
[17] Axel Riese. Contributions to Symbolic q-Hypergeometric Summation. PhD thesis, RISC-Linz, 1997.
[18] Axel Riese. qMultiSum — a package for proving q-hypergeometric multiple summation identities. Journal of

Symbolic Computation, 35:349–376, 2003.
[19] Martin Rubey. Extended Rate, more GFUN. arXiv:math/0702086, 2007.
[20] Bruno Salvy and Paul Zimmermann. Gfun: a Maple package for the manipulation of generating and holonomic

functions in one variable. ACM Transactions on Mathematical Software, 20(2):163–177, 1994.
[21] Richard P. Stanley. Enumerative Combinatorics, Volume 2. Cambridge Studies in Advanced Mathematics 62.

Cambridge University Press, 1999.
[22] Herb S. Wilf and Doron Zeilberger. An algorithmic proof theory for hypergeometric (ordinary and q) multi-

sum/integral identities. Inventiones mathematicae, 108:575–633, 1992.

Manuel Kauers, Research Institute for Symbolic Computation, J. Kepler University Linz, Austria

E-mail address: mkauers@risc.uni-linz.ac.at

Christoph Koutschan, Research Institute for Symbolic Computation, J. Kepler University Linz, Austria

E-mail address: ckoutsch@risc.uni-linz.ac.at


