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Abstract

Motivated by boundary problems for linear ordinary and partial dif-
ferential equations, we define an abstract boundary problem as a pair con-
sisting of a surjective linear map (representing the differential operator)
and a subspace of the dual space (specifying the boundary conditions).
This subspace is finite dimensional in the ordinary case, but infinite di-
mensional for partial differential equations. For so-called regular bound-
ary problems, the given operator has a unique right inverse (called the
Green’s operator) satisfying the boundary conditions.

The main idea of our approach consists in the passage from a single
problem to a compositional structure on boundary problems. We define
the composition of boundary problems such that it corresponds to the
composition of their Green’s operators in reverse order. If the defining
operators are endomorphisms, we can interpret the composition as the
multiplication in a semidirect product of certain monoids. Given a factor-
ization of the linear operator defining the problem, we characterize and
construct all factorizations of a boundary problem into two factors.

In the setting of differential equations, the factor problems have lower
order and are often easier to solve. For the case of ordinary differential
equations, all the main results can be made algorithmic (in particular
the determination of the factor problems). As a first example for partial
differential equations, we conclude with a factorization of a boundary
problem for the wave equation.

1 Introduction

To motivate our algebraic setting and the terminology, let us first recall the
classical setting of a two-point boundary problem on a finite interval, see for
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example Stakgold [19]. Such a problem is given by a linear ordinary differential
equation and boundary conditions describing linear combinations of some values
of the solution and its derivatives at both endpoints of the interval. For example,
consider the following simple boundary problem: Given a forcing function f , find
a solution u such that

u′′ = f,
u(0) = u(1) = 0.

(1)

A boundary problem is called regular if for every forcing function there ex-
ists exactly one solution of the differential equation that satisfies the boundary
conditions. The Green’s operator for a regular problem maps every forcing func-
tion to its unique solution. If both the differential equation and the boundary
conditions are linear, the Green’s operator is a linear map. In the classical set-
ting, it turns out that the Green’s operator can be represented in the form of
an integral operator

Gf(x) =
∫ b

a

g(x, ξ)f(ξ) dξ

with a uniquely determined g, called the Green’s function for the regular bound-
ary problem.

Based on an operator approach first presented in [16], a symbolic method
for computing the Green’s operator of two-point boundary problems with con-
stant coefficients was given in [15]. We describe a symbolic framework to treat
boundary problems for arbitrary linear ordinary differential equations in [17].
A crucial step in the algorithms is the computation of normal forms using a
suitable noncommutative Gröbner basis that reflects the essential interactions
between certain basic operators. Gröbner bases were introduced by Buchberger
in [2] and [3].

Let us reformulate the boundary problem (1). We write V for the complex
vector space C∞[0, 1] and D : V → V for the usual derivation. The boundary
conditions can be expressed in terms of the two linear functionals L : f 7→ f(0)
and R : f 7→ f(1). We want to find a solution of the differential equation that
is annihilated by any linear combination of these two functionals. Using this
notation, we can describe the boundary problem (1) by

(D2, [L,R]), (2)

where D2 is a surjective linear map on V and [L,R] is a subspace of the dual
space V ∗ generated by L and R.

As a second example consider the following boundary problem for the wave
equation on the domain Ω = R × R≥0, now writing V for C∞(Ω): Given a
forcing function f ∈ V , find a solution u ∈ V such that

utt − uxx = f,
u(x, 0) = ut(x, 0) = 0,

(3)

where the subscripts x and t denote differentiation with respect to the first
and second variable, respectively. Note that we use the term “boundary condi-
tion/problem” in the general sense of linear conditions. Usually one refers to the
above problem as an initial value problem; for a “genuine” boundary problem
see the last example of Section 11. We prefer the term “boundary problem” to
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the more common expression “boundary value problem” since the latter would
suggest that boundary conditions are always point evaluation—which is not true
in general as one can see in the examples in Section 11.

In (3) we are concerned with the differential operator ∂2
t − ∂2

x : V → V and
the boundary conditions expressed by the infinite family of linear functionals

Lx = u 7→ u(x, 0), Mx = u 7→ ut(x, 0) for all x ∈ R.

In analogy to the previous example, we denote this boundary problem by

(∂2
t − ∂2

x, [Lx,Mx]x∈R).

Note that if u is annihilated by these functionals, it is also annihilated for
example by the functionals

∫ x

0
u(η, 0) dη. More precisely, it vanishes on the

orthogonal closure (see Section 2) of the subspace generated by the boundary
conditions; this is the space denoted by [. . .] above.

Abstracting from the above examples, we arrive in Section 5 at the defi-
nition of a boundary problem, as a pair consisting of a surjective linear map
and an orthogonally closed subspace of the dual space. Every finite-dimensional
vector space of the dual is orthogonally closed, but we need the notion of or-
thogonal closure to deal with infinite dimensional vector spaces (as in the wave
equation above) if we are to remain in an algebraic setting without topological
assumptions on the vector space or field.

One motivation for us was that understanding algebraic aspects of bound-
ary problems is important for treating boundary problems for linear differential
equations by symbolic computation, where one usually considers those manip-
ulations of the operators that are independent of the space they act on. Since
the surjective linear map may also be a matrix differential operator, this ap-
proach can be extended to boundary problems for systems of linear differential
equations.

It would be interesting to investigate and extend our results on factoring
boundary problems such that additional topological assumptions on the vector
spaces and operators are taken into account. For example, it should be possible
to use a dual pairing [12] instead of a vector space and its algebraic dual. See
Wyler [23] for an approach along these lines that deals with generalized Green’s
operators.

A boundary problem is called regular if the boundary conditions specify
a complement of the kernel of the defining linear operator. Computing the
Green’s operator of a regular boundary problem means determining the right
inverse corresponding to the prescribed complement of the kernel of the defining
operator. We recall and discuss several results for left and right inverses in
Section 4. Going back from a Green’s operator to the defining operator can be
interpreted as solving a suitably defined dual boundary problem, described in
Section 5.

In the boundary problems (2) and (3), there is an obvious factorization of
the differential operator. So a natural question to ask is if one can find two
regular first-order boundary problems along this factorization such that the
composition of the corresponding Green’s operators is the Green’s operator for
the given problem. Or a similar question: Which boundary problem is solved
by the composition of the Green’s operators of two given problems?
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Answering the second question leads us to the composition of boundary prob-
lems, discussed in Section 6. Given two boundary problems, we define a new
boundary problem as follows: We compose the two linear maps and compute
the new boundary conditions by mapping the conditions of the first problem via
the transpose of the second linear map and adding them to the boundary con-
ditions of the second problem. See Section 3 for further details on the transpose
(in particular, the fact that it maps orthogonally closed subspaces to orthog-
onally closed subspaces). The composition of two regular boundary problems
is again regular, and the corresponding Green’s operator is the composition of
the Green’s operators in reverse order. Analogous results hold for dual bound-
ary problems. Moreover, we show that the solution process can be seen as an
anti-isomorphism between the category of regular boundary problems and the
category of regular dual boundary problems. For the special case of endomor-
phisms, we give in Section 8 an interpretation of the composition of boundary
problems in terms of a multiplication in a semidirect product of suitably defined
monoids and actions.

In Section 7, we characterize all factorizations of a boundary problem into two
smaller boundary problems. This yields a method for constructing all factoriza-
tions of a boundary problem along a given factorization of the defining operator.
Factorization of boundary problems is important in the setting of differential
equations, where it allows us to split a problem of higher order into subproblems
of lower order if we can factor the differential operator. This can be used for
solving the given problem by applying symbolic, numeric or hybrid methods
to the factor problems. For numerical or hybrid methods one has to consider
stability issues [6]: A given well-posed problem should be factored in such a way
(if possible) that both lower order problems are still well-posed. For factoring
the differential operator, we can exploit algorithms and results about factoring
linear ordinary [10, 18, 20, 22] and partial differential operators [8, 9, 21].

For the case of operators with finite dimensional kernel, we derive in Sec-
tions 9 and 10 additional results, and all the main constructions can be made
algorithmic (provided a right inverse of the defining operator is available). This
includes in particular the case of boundary problems for ordinary differential
equations, which are treated in detail in the forthcoming article [17]. For illus-
trating the theory developed thus far, we conclude in Section 11 by computing
factorizations and Green’s operators of the above boundary problems for differ-
ential equations.

2 Orthogonally Closed Subspaces

In this section, we summarize the results needed for orthogonally closed sub-
spaces of a vector space and its dual. The notation should remind of the analo-
gous well-known results for Hilbert spaces. See for example Conway [4] and for
the Banach space setting Lang [13, pp. 391–394].

First we recall the notion of orthogonality for a bilinear map of modules.
Let M and N be left modules over a commutative ring R and

b : M ×N → R

be a bilinear map. Two vectors x ∈ M and y ∈ N are called orthogonal with
respect to b if b(x, y) = 0. We then write x ⊥ y if the bilinear map b is fixed.
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Two subsets X ⊆ M and Y ⊆ N are orthogonal if x ⊥ y for all x ∈ X and
y ∈ Y . Let X⊥ denote the set of all y ∈ N that are orthogonal to X. This
is obviously a submodule of N , which we call the orthogonal of X. We define
orthogonality on the other side in the same way.

It follows directly from the definition that for any subsets X1, X2 ⊆ M we
have

X1 ⊆ X2 ⇒ X⊥
1 ⊇ X⊥

2 and X1 ⊆ X⊥⊥
1 . (4)

These statements hold analogously for subsets of N . Let P(M) denote the
projective geometry of a module M , that is, the poset of all submodules (ordered
by inclusion). Then the two properties (4) for orthogonality imply that we
have an order-reversing Galois connection between the projective geometries
P(M) À P(N) defined by

M1 7→ M⊥
1 and N1 7→ N⊥

1 . (5)

Hence we know in particular that S⊥ = S⊥⊥⊥ for any submodule S of M or N .
Moreover, the map S 7→ S⊥⊥ is a closure operator: an extensive (S ⊆ S⊥⊥),
order-preserving and idempotent self-map. We call a submodule S orthogonally
closed if S = S⊥⊥. The Galois connection restricted to orthogonally closed
submodules is an order-reversing bijection. For further details and references
on Galois connections we refer to Erné et al. [7].

We now consider the canonical bilinear form

V × V ∗ → k

of a vector space V over a field k and its dual V ∗ defined by (v, f) 7→ f(v) and
the induced orthogonality on the subspaces. We use the notation 〈v, f〉 for f(v).

Let V1 ⊆ V be a subspace. Using the fact that any basis of a subspace can
be extended to a basis for V , we see that for any vector v ∈ V that is not in V1

there is a linear form f ∈ V ∗ with f(v1) = 0 for all v1 ∈ V1 and f(v) = 1. It
follows immediately that every subspace of V is orthogonally closed with respect
to the canonical bilinear form V × V ∗ → k. Furthermore, we have a natural
isomorphism

V ⊥
1
∼= (V/V1)∗.

Indeed, each f ∈ V ⊥
1 defines a linear form on V/V1 since it vanishes on V1, and

it is easy to see that this gives an isomorphism between V ⊥
1 and (V/V1)∗. This

implies in particular that

dim V ⊥
1 = codim V1 if codim V1 < ∞.

In the following, we consider subspaces of the dual vector space V ∗. We first
recall some results for biorthogonal systems. Two families (vi)i∈I of vectors
in V and linear forms (fi)i∈I in V ∗ are called biorthogonal or said to form a
biorthogonal system if

〈vi, fj〉 = δij =

{
1, if i = j,

0, if i 6= j.

For a biorthogonal system (vi)i∈I and (fi)i∈I we can easily compute the coef-
ficients of a linear combination v =

∑
aivi with finitely many ai ∈ k nonzero.

Applying fj , we obtain

〈v, fj〉 =
∑

ai〈vi, fj〉 = aj .
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Evaluating a linear combination f =
∑

ajfj at vi gives analogously

〈vi, f〉 =
∑

aj〈vi, fj〉 = ai.

This implies in particular that the vi and fi are linearly independent. Moreover,
we can easily compute projections onto finite dimensional vector spaces from a
biorthogonal system. One can show the following lemma and proposition for
finite biorthogonal systems.

Lemma 1 Let (v1, . . . , vn) ∈ V and (f1, . . . , fn) ∈ V ∗ be biorthogonal. Let
V1 = [v1, . . . , vn] and F1 = [f1, . . . , fn] be their linear spans. Then P : V → V
defined by

v 7→
n∑

i=1

〈v, fi〉vi

is a projection with ImP = V1 and KerP = F⊥1 so that V = F⊥1
.
+ V1 and

codimF⊥1 = n. Moreover, for any f ∈ F⊥⊥1 we have

f =
n∑

i=1

〈vi, f〉fi,

so that F1 is orthogonally closed.

Proposition 2 Let f1, . . . , fn ∈ V ∗. Then the fi are linearly independent iff
there exist v1, . . . , vn ∈ V such that (vi) and (fi) are biorthogonal.

We conclude with the previous lemma that every finite dimensional subspace
of V ∗ is orthogonally closed. But if V is infinite dimensional, there are always
linear subspaces, and indeed hyperplanes in V ∗, that are not orthogonally closed;
see for example Köthe [12, p. 71]. Nevertheless, since all subspaces of V are
orthogonally closed, we have via the Galois connection (5) an order-reversing
bijection between P(V ) and the poset of all orthogonally closed supspaces of
V ∗, which we denote by P̄(V ∗).

Recall that the projective geometry P(V ) of any vector space V is a complete
complemented modular lattice with the join and meet respectively defined as
the sum and intersection of subspaces. Modularity means that

V1 + (V2 ∩ V3) = (V1 + V2) ∩ V3 (6)

for all V1, V2, V3 ∈ P(V ) with V1 ⊆ V3.
Using Equation (4) one can show that P̄(V ∗) is a complete lattice with the

meet defined as the intersection and the join defined as the orthogonal closure
of the sum of subspaces. Hence the Galois connection (5) is an order-reversing
lattice isomorphism between the complete lattices P(V ) and P̄(V ∗). Therefore
P̄(V ∗) is also a complemented modular lattice.

Let V1, V2 ∈ P(V ) and F1,F2 ∈ P̄(V ∗). Since the meet in P̄(V ∗) is the
set-theoretic intersection, we know that

(V1 + V2)⊥ = V ⊥
1 ∩ V ⊥

2 and (F1 ∩ F2)⊥ = F⊥1 + F⊥2 . (7)

The sum of infinitely many orthogonally closed subspaces is in general not
orthogonally closed when V is infinite dimensional. But using the fact that
P̄(V ∗) is a modular lattice, one can show the following proposition [12, p. 72].
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Proposition 3 The sum of two orthogonally closed subspaces is orthogonally
closed.

Hence we have also

(V1 ∩ V2)⊥ = V ⊥
1 + V ⊥

2 and (F1 + F2)⊥ = F⊥1 ∩ F⊥2 . (8)

Equations (7) and (8) imply that orthogonality preserves algebraic complements,
that is, for direct sums

V = V1

.
+ V2 and V ∗ = F1

.
+ F2,

we have
V ∗ = V ⊥

1

.
+ V ⊥

2 and V = F⊥1
.
+ F⊥2 .

Every subspace has a complement, hence every orthogonally closed subspace
of the dual has an orthogonally closed complement. So if we disregard complete-
ness, the Galois connection (5) is an order-reversing lattice isomorphism between
the complemented modular lattices

P(V ) ∼= P̄(V ∗)

with join and meet defined as sum and intersection.
Moreover, for arbitrary (not necessarily orthogonally closed) subspaces F1

and F2 of V ∗ we have

F⊥⊥1 + F⊥⊥2 = (F1 + F2)⊥⊥. (9)

Using the fact that taking the double orthogonal is a closure operator, we see
namely that F⊥⊥1 + F⊥⊥2 ⊆ (F1 + F2)⊥⊥; the reverse inclusion follows since
the left hand side of (9) is orthogonally closed by Proposition 3. If ⊥⊥ were
the closure operator of a topology, Equation (9) would mean that the sum is
continuous and closed.

We have already seen that if codim V1 < ∞ and dimF1 < ∞, then

codim V1 = dim V ⊥
1 and dimF1 = codimF⊥1 . (10)

So we can also consider the restriction of the Galois connection to finite codi-
mensional subspaces of V and finite dimensional subspaces of V ∗. This yields
an order-reversing lattice isomorphism between modular lattices.

3 The Transpose

Let V and W be vector spaces over a field k and A : V → W a linear map. We
recall some basic properties of the transpose or dual map A∗ : W ∗ → V ∗ defined
by h 7→ h ◦A. Hence

〈Av, h〉W = 〈v, A∗h〉V for all v ∈ V, h ∈ W ∗ (11)

with the canonical bilinear forms on W and V , respectively. The map A 7→ A∗

from L(V,W ) to L(W ∗, V ∗) is linear. It is injective since for every nonzero
w ∈ W there exists a linear form h ∈ W ∗ with h(w) 6= 0. For finite dimensional
vector spaces, it is also surjective. We have (AB)∗ = B∗A∗ for linear maps
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A ∈ L(U, V ) and B ∈ L(V, W ). Since 1V
∗ = 1V ∗ , this implies that if A is left

(respectively right) invertible, A∗ is right (respectively left) invertible, so if A
is invertible, also A∗ is invertible with (A∗)−1 = (A−1)∗. Moreover, the map
A 7→ A∗ is an injective k-algebra anti-homomorphism from L(V ) to L(V ∗).

In the following, we discuss the relations between the image of subspaces
under a linear map, its transpose, and orthogonality. From Equation (11) it
follows immediately that the orthogonal of the image of a subspace V1 ⊆ V is

A(V1)⊥ = (A∗)−1(V ⊥
1 ). (12)

Since V ⊥ = 0, we have in particular (ImA)⊥ = Ker A∗. Hence Ker A∗ is
orthogonally closed. Taking the orthogonal, we obtain from Equation (12)

A(V1) = (A∗)−1(V ⊥
1 )⊥

since every subspace of a vector space is orthogonally closed with respect to
the canonical bilinear form. In particular, we have Im A = (Ker A∗)⊥. For
orthogonally closed subspaces F1 ⊆ V ∗, we obtain

A(F⊥1 ) = (A∗)−1(F1)⊥. (13)

Now we consider the images under the transpose. Again we see immediately
with Equation (11) that

A∗(H1)⊥ = A−1(H⊥1 ) (14)

for subspaces H1 ⊆ W ∗. Since (W ∗)⊥ = 0, we have in particular (Im A∗)⊥ =
KerA. Taking the orthogonal, we obtain from Equation (14)

A∗(H1) ⊆ A∗(H1)⊥⊥ = A−1(H⊥1 )⊥. (15)

Note that in general we have a proper inclusion, as one can see by taking the
identity map and a subspace that is not orthogonally closed since the right-hand
side is orthogonally closed. But we do have equality for orthogonally closed
subspaces. In the Banach space setting, identity (17) comes in the context of
the Closed Range Theorem [24, p. 205] and holds only for operators with closed
range.

Proposition 4 We have

A∗(W⊥
1 ) = A−1(W1)⊥ (16)

for subspaces W1 ⊆ W . In particular,

Im A∗ = (Ker A)⊥, (17)

and the image of A∗ is orthogonally closed.

Proof. With Equation (15) and the fact that every subspace a vector space is
orthogonally closed with respect to the canonical bilinear form, we know the
inclusion ⊆. Conversely, let f ∈ A−1(W1)⊥. Then

f(v1) = 0 for all v1 ∈ V such that Av1 ∈ W1.
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So in particular f(Ker A) = 0. We have to find a h ∈ W⊥
1 such that f = A∗h.

We define h̃ : Im A → K by
h̃(Av) = f(v).

Then h̃ is well-defined. If Av1 = Av2, then v1−v2 ∈ KerA. Hence f(v1) = f(v2)
since f(KerA) = 0. Moreover, note that

h̃(Im A ∩W1) = 0.

We have to extend h̃ to a linear map h : W → K such that h vanishes on W1.
To this end, let Ĩ1 and W̃1 be complements of Im A ∩ W1 in Im A and W1,
respectively, so that

Im A = (Im A ∩W1)
.
+ Ĩ1 and W1 = (Im A ∩W1)

.
+ W̃1.

Then one sees that we have a direct sum

ImA + W1 = (Im A ∩W1)
.
+ Ĩ1

.
+ W̃1.

Let P : Im A + W1 → Im A defined by

P (w̄ + w̃1) = w̄ where w̄ ∈ Im A and w̃1 ∈ W̃1.

Then P is a linear map with Ker P = W̃1. We set h = h̃ ◦ P . Then h is defined
on Im A + W1. We extend h arbitrarily to a linear form on W and denote it
again by h. By definition h = h̃ on Im A, and so f = A∗h. We have to verify
that h ∈ W⊥

1 . Let w1 ∈ W1 and

w1 = w̄1 + w̃1 with w̄1 ∈ ImA ∩W1 and w̃1 ∈ W̃1.

Then
h(w1) = h̃(Pw1) = h̃(w̄1) = 0,

since h̃(Im A ∩W1) = 0, and the proposition is proved. 2

We know from Section 2 that the Galois connection (5) gives an isomorphism
between P(W ) and the orthogonally closed subspaces P̄(W ∗). So the previous
proposition implies

A∗(H1) = A−1(H⊥1 )⊥ (18)

for orthogonally closed subspaces H1 ⊆ W ∗. Since the right hand side is or-
thogonally closed, we obtain the following corollary.

Corollary 5 The transpose gives an an order-preserving map

P̄(W ∗) → P̄(V ∗)
H1 7→ A∗(H1)

between orthogonally closed subspaces.

Moreover, using Equation (18) and Equation (14), we see that

A∗(H⊥⊥1 ) = A−1(H⊥1 )⊥ = A∗(H1)⊥⊥ (19)

for an arbitrary subspace H1 ⊆ W ∗, which means that A∗ is “closed” and
“continuous” in the hypothetical topological interpretation mentioned after (9).

Finally, we sum up all the identities for the image of subspaces of a linear
map and its transpose and orthogonality in the following proposition.
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Proposition 6 Let V and W be vector spaces over a field k and A : V → W a
linear map. Then we have

A(V1)⊥ = (A∗)−1(V ⊥
1 ), A(F⊥1 ) = (A∗)−1(F1)⊥,

A∗(H1)⊥ = A−1(H⊥1 ), A∗(W⊥
1 ) = A−1(W1)⊥,

for subspaces V1 ⊆ V , H1 ⊆ W ∗, W1 ⊆ W and orthogonally closed subspaces
F1 ⊆ V ∗. In particular, we have

(Im A)⊥ = Ker A∗, Im A = (Ker A∗)⊥,

(Im A∗)⊥ = Ker A, Im A∗ = (Ker A)⊥,

for the image and kernel of A and A∗.

Proof. See Equations (12), (13), (14), and (16). 2

4 Left and Right Inverses

In this section, we recall and discuss some results for left and right inverses of
linear maps. Let V and W be vector spaces over a field k. Let T : V → W and
G : W → V be linear maps such that

TG = 1.

Then T is surjective and G injective, respectively, and GT is a projection with

KerGT = Ker T and Im GT = Im G, (20)

so that
V = Ker T

.
+ ImG. (21)

Conversely, we can begin with a given surjective or injective linear map and
a complement of the kernel and image, respectively, and ask if there exists a
corresponding right or left inverse. This is a special case of algebraic generalized
inverses as in Nashed and Votruba [14]. We discuss the results for both cases.

Let first T : V → W be a surjective linear map with K = Ker T and I a
complement of K in V , so that

V = K
.
+ I.

Let P be the projection with Im P = K and Ker P = I. Then by [14, Theorem
1.20] there exists a unique linear map G : W → V with

TG = 1, GT = 1− P, and GTG = G.

Lemma 7 The equation GT = 1− P characterizes G uniquely.

Proof. The third equation above is obviously redundant, and we show that the
first follows from the second. We get for w = Tv

TGw = TGTv = T (v − Pv) = Tv = w,
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since Im P = Ker T . So TG = 1 since T is surjective. 2

We can also say that given a complement I of K = Ker T , there exists a
unique right inverse G with Im G = I. So we have a bijection

{I ∈ P(V ) | V = K
.
+ I} ∼= {G ∈ L(W,V ) | TG = 1} (22)

between the set of complements of K in V and the set of right inverses of T .
Moreover, all right inverses can be described in terms of a fixed one.

Lemma 8 Given any right inverse G̃ of T , the right inverse corresponding to
the complement I is given by

G = (1− P )G̃,

where P is the projection with Im P = K and Ker P = I.

Let now G : W → V be an injective linear map with I = Im G and K a
complement of I in V , so that

V = K
.
+ I.

Let P be the projection with Im P = K and Ker P = I. Since Im(1 − P ) =
KerP = I, there exists by [14, Theorem 1.20] a unique linear map T : V → W
with

GT = 1− P, TG = 1, and TGT = T.

Lemma 9 The equation GT = 1− P characterizes T uniquely.

Proof. Note first that since G is injective Ker T = Ker GT = Ker(1− P ) = K.
Therefore

TGT = T − TP = T,

which is the third equation above, and hence TG = (TG)2 is a projection. We
show that Ker TG = 0, and so TG is the identity. Let TGw = 0. Then

GTGw = (1− P )Gw = 0,

so that Gw = PGw. Since Ker P = Im G, this implies Gw = 0, and thus w = 0
because G is injective. 2

We can also say that given a complement K of I = Im G, there exists a
unique left inverse T with Ker T = K. So we have a bijection

{K ∈ P(V ) | V = K
.
+ I} ∼= {T ∈ L(V, W ) | TG = 1} (23)

between the set of complements of I in V and the set of left inverses of G.
Analogously as above one can describe all left inverses in terms of a fixed one.

Lemma 10 Given any left inverse T̃ of G, the left inverse corresponding to the
complement K is given by

T = T̃ (1− P ),

where P is the projection with Im P = K and Ker P = I.

11



Summing up, the bijections (22) and (23) yield with Lemma 7 and 9 the
following proposition.

Proposition 11 We have a bijection

{(T, I) | T : V → W surjective, I ∈ P(V ) with V = Ker T
.
+ I}

∼= {(K,G) | G : W → V injective, K ∈ P(V ) with V = K
.
+ Im G}. (24)

Given respectively (T, I) or (K, G), we obtain G or T with TG = 1 as the unique
solution of

GT = 1− P,

where P is the projection with

ImP = Ker T, KerP = I and Im P = K, KerP = Im G,

respectively.

The following two propositions describe the inverse image of a composition
of an arbitrary and respectively a surjective or injective linear map in terms of
one of its right or left inverses.

Proposition 12 Let U, V, W be vector spaces over a field k. Let A ∈ L(V, W )
be arbitrary, T ∈ L(U, V ) surjective, G a right inverse of T , and W1 ⊆ W a
subspace. Then we have

(AT )−1(W1) = G(A−1(W1))
.
+ Ker T

for the inverse image of the composite. In particular, we have

Ker AT = G(Ker A)
.
+ Ker T (25)

for the kernel of the composite and

T−1(V1) = G(V1)
.
+ Ker T (26)

for the inverse image.

Proof. One inclusion is obvious, since

AT (G(A−1(W1)) + Ker T ) = A(A−1(W1)) + 0 ⊆ W1.

Conversely, let u ∈ (AT )−1(W1). Then Tu = v with v ∈ A−1(W1). Hence

T (u−Gv) = Tu− v = 0

and therefore u ∈ G(A−1(W1))+Ker(T ). The sum is direct by Equation (21). 2

Proposition 13 Let U, V, W be vector spaces over a field k. Let A ∈ L(V, W )
be arbitrary, G ∈ L(U, V ) injective, T a left inverse of G, and W1 ⊆ W a
subspace. Then we have

(AG)−1(W1) = T (A−1(W1) ∩ Im G)

12



for the inverse image of the composite. In particular, we have

Ker AG = T (Ker A ∩ ImG) (27)

for the kernel of the composite and

G−1(V1) = T (V1 ∩ Im G) (28)

for the inverse image.

Proof. Let v ∈ A−1(W1)∩ ImG. Since GT is a projection with ImGT = Im G,
see Equation (20), we get

AGTv = Av ∈ W1,

and one inclusion is proved.
Conversely, let u ∈ (AG)−1(W1). Then Gu = v with v ∈ A−1(W1) ∩ Im G.

Hence TGu = u = Tv, and therefore u ∈ T (A−1(W1) ∩ Im G). 2

Observe that for dim U = dim V < ∞, surjectivity as well as injectivity are
of course equivalent to bijectivity, and the propositions are trivial. In particular,
if T or G is an endomorphism, the propositions are nontrivial only for an infinite
dimensional vector space.

5 Boundary Problems and Green’s Operators

A boundary problem is given by a pair (T,F), where T : V → W is a surjective
linear map and F ⊆ V ∗ an orthogonally closed subspace of boundary conditions.
We say that u ∈ V is a solution of (T,F) for a given w ∈ W , if

Tu = w and f(u) = 0 for all f ∈ F

or equivalently u ∈ F⊥. A boundary problem (T,F) is regular if F⊥ is a
complement of K = Ker T so that

V = K
.
+ F⊥.

From the previous section we know that then there exists a unique right inverse
G : W → V of T with Im G = F⊥. We call G the Green’s operator for the
boundary problem (T,F). Since

TGw = w and Gw ∈ F⊥,

we see that the Green’s operator maps every right-hand side w ∈ W to its unique
solution u = Gw ∈ V . Hence we say that G solves the boundary problem (T,F),
and we use the notation

G = (T,F)−1.

Conversely, if there exists a right inverse G of T for a boundary problem
(T,F) such that Im G = F⊥, it is regular by Equation (21). Since orthogonality
preserves direct sums, we see that (T,F) is regular iff

V ∗ = F .
+ K⊥. (29)

13



By Proposition 6, we have

KerG∗ = (Im G)⊥ = F⊥⊥ = F and Im T ∗ = (KerT )⊥ = K⊥ (30)

for a regular boundary problem (T,F). Given any right inverse G̃ of T , we
know with Lemma 8 that the Green’s operator for a regular boundary problem
(T,F) is given by

G = (1− P )G̃, (31)

where P is the projection with ImP = K and Ker P = F⊥.
If T is invertible, then (T, 0) is the only regular boundary problem for T ,

and its Green’s operator is (T, 0)−1 = T−1. In particular, we have

(1, 0)−1 = 1 (32)

for the identity operator.
A dual boundary problem is given by a a pair (K,G), where G : W → V is

an injective linear map and K ⊆ V a subspace of dual boundary conditions. We
say that g ∈ V ∗ is a solution of (K,G) for a given h ∈ W ∗ if

G∗g = h and g(v) = 0 for all v ∈ K

or equivalently g ∈ K⊥. A dual boundary problem (K, G) is regular if K is a
complement of I = Im G so that

V = K
.
+ I.

From the previous section we know that then there exists a unique left inverse
T : V → W of G with Ker T = K. We call T the dual Green’s operator for
the dual boundary problem (K, G). Since G∗T ∗ = 1 and Im T ∗ = K⊥ by
Proposition 6, we see that

G∗T ∗h = h and T ∗h ∈ K⊥,

and so T ∗ maps every right-hand side h ∈ W ∗ to its unique solution g = T ∗h.
Hence we say that T solves the dual boundary problem (K,G), and we use the
notation

T = (K, G)−1.

Conversely, if there exists a left inverse T of G for a dual boundary problem
(K,G) such that Ker T = K, it is regular by Equation (21). Given any left
inverse T̃ of G, we know with Lemma 10 that the dual Green’s operator for a
regular dual boundary problem (K, G) is given by

T = T̃ (1− P ),

where P is the projection with ImP = K and Ker P = I.
If G is invertible, then (0, G) is the only regular dual boundary problem with

G and its dual Green’s operator is (0, G)−1 = G−1. In particular, we have

(0, 1)−1 = 1 (33)

for the identity operator.
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For fixed vector spaces V and W we denote the set of all regular (dual)
boundary problems respectively by

R = {(T,F) | T : V → W, (T,F) regular}
and

R∗ = {(K, G) | G : W → V, (K,G) regular}.
We can interpret the bijection (24) between left and right inverses in terms
of boundary and dual boundary problems. The main part is always solving a
(dual) regular boundary problem, that is, computing its (dual) Green’s operator.
Note that for boundary problem we specify a complement of the kernel by an
orthogonally closed subspace of the dual space.

Proposition 14 The map

R → R∗

(T,F) 7→ (KerT, (T,F)−1)

is a bijection between the sets of regular (dual) boundary problems, and

R∗ → R

(K, G) 7→ ((K,G)−1, (Im G)⊥).

is its inverse.

Proof. Clear with Proposition 11. 2

6 Composing Boundary Problems

Let (T1,F1) and (T2,F2) be boundary problems with

T1 : V → W and T2 : U → V.

We define the composition of (T1,F1) and (T2,F2) by

(T1,F1) ◦ (T2,F2) = (T1T2, T
∗
2 (F1) + F2). (34)

Proposition 15 The composition of two boundary problems is again a bound-
ary problem.

Proof. The composition of two surjective maps is surjective. We have to show
that T ∗2 (F1)+F2 is an orthogonally closed subspace of U∗. But from Corollary
5 we know that T ∗2 (F1) ∈ P̄(U∗) and from Proposition 3 that the sum of two
orthogonally closed subspaces is orthogonally closed. 2

The composition of boundary problems is associative. Moreover, we have

(1V , 0) ◦ (T,F) = (T,F) and (T,F) ◦ (1W , 0) = (T,F)

with T : V → W and 0 the zero-dimensional vector space. So all boundary
problems of vector spaces over a fixed field form a category with objects the
vector spaces and morphisms the boundary problems.
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The next proposition tells us that the composition of boundary problems
preserves regularity, and the corresponding Green’s operator is the composition
of Green’s operators in reverse order. Hence the regular boundary problems
form a subcategory of the category of all boundary problems. We denote the
category of regular boundary problems by R.

Proposition 16 Let (T1,F1) and (T2,F2) be regular boundary problems with
Green’s operators G1 and G2. Then the composition

(T1,F1) ◦ (T2,F2) = (T,F)

is regular with Green’s operator G2G1 so that

((T1,F1) ◦ (T2,F2))−1 = (T2,F2)−1 ◦ (T1,F1)−1.

Moreover, the sum
F = T ∗2 (F1)

.
+ F2 (35)

is direct.

Proof. We have

T1T2G2G1 = T11G1 = T1G1 = 1

so that G2G1 is a right inverse of T1T2. Since Ker G∗1 = F1 and Ker G∗2 = F2

by Equation (30), we have with Proposition 6 and Equation (25)

(Im G2G1)⊥ = Ker (G2G1)
∗ = Ker G∗1G

∗
2 = T ∗2 (F1)

.
+ F2.

The proposition now follows by the characterization of regular boundary prob-
lems through Green’s operators. 2

Note that with Equations (19) and (9) we see that

T ∗2 (F⊥⊥1 ) + F⊥⊥2 = (T ∗2 (F1) + F2)⊥⊥

for arbitrary (not necessarily orthogonally closed) subspaces F1 and F2. If the
boundary conditions are given by the orthogonal closure of arbitrary subspaces
F1 and F2, the composition of two boundary problems is equal to

(T1,F⊥⊥1 ) ◦ (T2,F⊥⊥2 ) = (T1T2, (T ∗2 (F1) + F2)⊥⊥). (36)

We will use this observation for boundary problems with partial differential
equations in Section 11.

Let now (K2, G2) and (K1, G1) be dual boundary problems with

G2 : V → U and G1 : W → V.

We define the composition of (K2, G2) and (K1, G1) by

(K2, G2) ◦ (K1, G1) = (K2 + G2(K1), G2G1). (37)

Obviously, the composition is again a dual boundary problem. It is associative,
and we have

(0, 1W ) ◦ (K,G) = (K, G) and (K, G) ◦ (0, 1V ) = (K,G)
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with G : W → V . So all dual boundary problems of vector spaces over a fixed
field form a category.

As we will see, also for dual boundary problems the composition of two
regular problems is again regular. Hence the regular dual boundary problems
form a subcategory of the category of all dual boundary problems. We denote
the category of regular dual boundary problems by R∗.

Proposition 17 Let (K2, G2) and (K1, G1) be regular dual boundary problems
with dual Green’s operators T2 and T1. Then the composition

(K2, G2) ◦ (K1, G1) = (K, G)

is regular with dual Green’s operator T1T2 so that

((K2, G2) ◦ (K1, G1))−1 = (K1, G1)−1 ◦ (K2, G2)−1.

Moreover, the sum K = K2

.
+ G2(K1) is direct.

Proof. We have
T1T2G2G1 = T11G1 = T1G1 = 1

so that T1T2 is a left inverse of G2G1. By Equation (25), we have

Ker(T1T2) = G2(K1)
.
+ K2

with K1 = Ker T1 and K2 = Ker T2. The proposition follows now by the char-
acterization of regular dual boundary problems through dual Green’s operators.
2

Summing up, we see that solving regular (dual) boundary problems gives an
anti-isomorphism between the categories of regular (dual) boundary problems,
justifying our terminology for dual boundary problems.

Theorem 18 The contravariant functor

F : R → R∗
(T,F) 7→ (KerT, (T,F)−1)

is an anti-isomorphism between the categories of regular (dual) boundary prob-
lems, and

F ∗ : R∗ →R
(K, G) 7→ ((K,G)−1, (Im G)⊥).

is its inverse.

Proof. By Equation (32) and (33), we have F (1) = 1 as well as F ∗(1) = 1.
Hence F and F ∗ are contravariant functors by Proposition 16 and 17. Finally,
FF ∗ = 1 and F ∗F = 1 by Proposition 14. 2
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7 Factoring Boundary Problems

Let (T,F) be a boundary problem with T : U → W and assume that we have a
factorization

(T1,F1) ◦ (T2,F2) = (T,F) (38)

into boundary problems with T1 : V → W and T2 : U → V . By definition (34),
this means that we have a factorization

T = T1T2

for the defining operators and a sum

F = T ∗2 (F1) + F2

for the boundary conditions. In this section, we characterize all possible factor-
izations of a boundary problem into two boundary problems. In particular, we
show that if (T,F) is regular, there exists a unique regular left factor (T1,F1),
and we describe all right factors (T2,F2).

Given a factorization T = T1T2 with surjective linear maps T1 and T2, we
construct all corresponding factorizations into (regular) boundary problems.
The boundary conditions for the factor problems can be described in terms of
the boundary conditions F and the factorization T = T1T2. More precisely, we
need K2 = Ker T2 and an arbitrary right inverse of T2, which we denote in this
section by H2. We begin without any assumption on the regularity.

Lemma 19 Let (T1,F1) ◦ (T2,F2) = (T,F). Then

T ∗2 (F1) ⊆ F ∩K⊥
2 (39)

and
T ∗2 H∗

2 (F̃1) = F̃1 (40)

for any F̃1 ⊆ K⊥
2 .

Proof. Note that Im T ∗2 = K⊥
2 by Proposition 6 and T ∗2 (F1) ⊆ T ∗2 (F1)+F2 = F .

For the second equation observe that T ∗2 H∗
2 is a projection with ImT ∗2 H∗

2 =
ImT ∗2 = K⊥

2 by Equation (20). 2

Proposition 20 Let T = T1T2 be a factorization with surjective linear maps
T1 and T2. Let

F̃1 ⊆ F ∩K⊥
2 and F2 ⊆ F

be orthogonally closed subspaces such that F = F̃1 + F2, and F1 = H∗
2 (F̃1).

Then
(T1,F1) ◦ (T2,F2) = (T,F)

is a factorization of (T,F).

Proof. By Corollary 5, we know that F1 = H∗
2 (F̃1) is orthogonally closed, and

so (T1,F1) is a boundary problem. Using (40), we observe

(T1,F1) ◦ (T2,F2) = (T1T2, T
∗
2 H∗

2 (F̃1) + F2) = (T, F̃1 + F2) = (T,F),
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and the proposition is proved. 2

Let now (T,F) be regular with Green’s operator G, and assume that we
have a factorization T = T1T2 with T1 and T2 surjective. Then T2G is a right
inverse of T1 since

T1T2G = TG = 1.

So (T1, (Im T2G)⊥) is a regular boundary problem. We can describe its boundary
conditions without using G only in terms of F and T2 with a right inverse H2.

Lemma 21 Let (T,F) be regular with Green’s operator G and let T = T1T2 be
a factorization with surjective linear maps T1 and T2. Then

(Im T2G)⊥ = H∗
2 (F ∩K⊥

2 ),

and (T1,H
∗
2 (F ∩K⊥

2 )) is regular with Green’s operator T2G.

Proof. Using Proposition 6 and Equation (27), we obtain

(Im T2G)⊥ = Ker (T2G)∗ = Ker G∗T ∗2 = H∗
2 (Ker G∗ ∩ ImT ∗2 ).

From Equation (30) we know that Ker G∗ = F and Im T ∗2 = K⊥
2 . 2

The following theorem tells us that given a regular boundary problem (T,F)
and a factorization T = T1T2, there is a unique regular left factor described by
the previous lemma.

Theorem 22 Let (T,F) be regular and T = T1T2 a factorization with surjective
linear maps T1 and T2. Then

(T1,F1) ◦ (T2,F2) = (T,F)

is a factorization with (T1,F1) regular iff

F1 = H∗
2 (F ∩K⊥

2 )

and F2 ⊆ F is an orthogonally closed subspace such that

F = (F ∩K⊥
2 ) + F2.

Moreover, if (T1,F1) is regular, its Green’s operator is T2G.

Proof. Let (T1,F1)◦(T2,F2) = (T,F) with (T,F) and (T1,F1) regular. Writing
F̄1 = H∗

2 (F ∩K⊥
2 ), we see with Equation (39) that F1 ⊆ F̄1. Since (T1,F1) is

regular by assumption and (T1, F̄1) by the previous lemma, we have

F1

.
+ K⊥

1 = F̄1

.
+ K⊥

1 = V ∗

by Equation (29), so that F1 and F̄1 have a common complement. Using mod-
ularity, we see that

F1 = F1 + (K⊥
1 ∩ F̄1) = (F1 + K⊥

1 ) ∩ F̄1 = F̄1 = H∗
2 (F ∩K⊥

2 ).

By Equation (40), we have T ∗2 (F1) = T ∗2 H∗
2 (F ∩K⊥

2 ) = F ∩K⊥
2 , and so

F = (F ∩K⊥
2 ) + F2.
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Converseley, we know by the previous lemma that (T1, H
∗
2 (F ∩K⊥

2 )) is regular,
and (T1,H

∗
2 (F ∩K⊥

2 )) ◦ (T2,F2) = (T,F) by Proposition 20. 2

Finally, assume that all boundary problems in the factorization (38) are
regular with corresponding Green’s operators G, G1 and G2. Then we have the
factorizations

T = T1T2 and G = G2G1,

by Proposition 16, and a direct sum of the boundary conditions

F = T ∗2 (F1)
.
+ F2

by Equation (35). Since
T2G = T2G2G1 = G1,

we know from Lemma 21 that F1 = H∗
2 (F ∩K⊥

2 ). By Equation (40), we obtain
T ∗2 (F1) = F ∩K⊥

2 so that

F = (F ∩K⊥
2 )

.
+ F2.

With the following proposition relating complements, subspaces and orthogo-
nality, we can characterize all regular problems (T2,F2) with F2 ⊆ F .

Proposition 23 Let K2 ⊆ K ⊆ V be subspaces and F ⊆ V ∗ an orthogonally
closed subspace such that

V = K
.
+ F⊥.

Then we have a bijection

{F2 ∈ P̄(V ∗) | F2 ⊆ F ∧ V = K2

.
+ F⊥2 } ∼= {V2 ∈ P(V ) | K = V2

.
+ K2}

given by
F2 7→ F⊥2 ∩K and V2 7→ F ∩ V ⊥

2 . (41)

Moreover,
V = K2

.
+ F⊥2 iff F = (F ∩K⊥

2 )
.
+ F2,

for orthogonally closed subspaces F2 ⊆ F .

Proof. Let F2 ⊆ F be orthogonally closed such that V = K2

.
+ F⊥2 . We obtain

K = V ∩K = (K2 + F⊥2 ) ∩K = K2 + (F⊥2 ∩K),

and the sum is direct since K2 ∩ F⊥2 = 0, so F⊥2 ∩K is a complement of K2 in
K. Since F ∩K⊥ = 0, we have

F ∩ (F⊥2 ∩K)⊥ = F ∩ (F2 + K⊥) = F2 + (F ∩K⊥) = F2.

Conversely, let V2 be a subspace such that K = V2

.
+ K2. Since V = K

.
+ F⊥

and (F ∩ V ⊥
2 )⊥ = F⊥ + V2, we have

V = K + F⊥ = K2

.
+ (F⊥ + V2) = K2

.
+ (F ∩ V ⊥

2 )⊥.

Moreover, note that

(F ∩ V ⊥
2 )⊥ ∩K = (V2 + F⊥) ∩K = V2 + (F⊥ ∩K) = V2
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since F⊥ ∩K = 0.
Now let F2 ⊆ F be orthogonally closed such that V = K2

.
+ F⊥2 . Let

V2 = F⊥2 ∩K. Then we know from above that K = V2

.
+ K2, so

V = K
.
+ F⊥ = V2

.
+ K2

.
+ F⊥.

Since orthogonality preserves direct sums, we obtain

V ∗ = (F ∩K⊥
2 )

.
+ V ⊥

2 .

So we have

F = F ∩ V ∗ = F ∩ ((F ∩K⊥
2 ) + V ⊥

2 ) = (F ∩K⊥
2 ) + (F ∩ V ⊥

2 ),

and the sum is direct since (F ∩K⊥
2 )∩V ⊥

2 = 0. Since we also know from above
that F ∩ V ⊥

2 = F2, the first part of the equivalence is proved.
Conversely, let F2 be an orthogonally closed subspace such that

F = (F ∩K⊥
2 )

.
+ F2

Then (F ∩K⊥
2 ) ∩ F2 = 0 and hence by passing to the orthogonal

V = K2 + F⊥ + F⊥2 = K2 + F⊥2 ,

the latter since F⊥2 ⊇ F⊥. Moreover, note that

F⊥ = (F ∩K⊥
2 )⊥ ∩ F⊥2 = (F⊥ + K2) ∩ F⊥2 = F⊥ + (K2 ∩ F⊥2 ).

Since K ∩ F⊥ = 0, we obtain

0 = K ∩ (F⊥ + (K2 ∩ F⊥2 )) = (K ∩ F⊥) + (K2 ∩ F⊥2 ) = K2 ∩ F⊥2 .

Hence V = K2

.
+ F⊥2 , and the proposition is proved. 2

Corollary 24 Let (T,F) be regular and T2 surjective with KerT2 ⊆ Ker T .
Then (41) defines a bijection between

{F2 ⊆ F | (T2,F2) regular}

and complements of KerT2 in KerT . Moreover, (T2,F2) is regular iff F2 is an
orthogonally closed complement of (F ∩K⊥

2 ) in F .

The following corollary allows us to compute the boundary conditions for
the unique regular left factor if we have the Green’s operator for a regular right
factor.

Corollary 25 Let (T,F) be regular and T2 surjective with KerT2 ⊆ Ker T .
Then

G∗2(F) = G∗2(F ∩K⊥
2 )

if G2 is the Green’s operator for (T2,F2) regular with F2 ⊆ F .
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Proof. If G2 = (T2,F2)−1 with F2 ⊆ F , then

F = (F ∩K⊥
2 )

.
+ F2,

by the previous corollary. Since Ker G∗2 = F2 by Equation (30), this implies
G∗2(F) = G∗2(F ∩K⊥

2 ). 2

Summing up, we can now characterize and construct all possible factoriza-
tions of a regular boundary problem into two regular boundary problems given
a factorization of the defining operator.

Theorem 26 Let (T,F) be regular and T = T1T2 a factorization with surjective
linear maps T1 and T2. Then

(T1,F1) ◦ (T2,F2) = (T,F)

is a factorization with (T2,F2) regular iff

F1 = H∗
2 (F ∩K⊥

2 )

and F2 ⊆ F is an orthogonally closed subspace such that

F = (F ∩K⊥
2 )

.
+ F2.

In particular, the left factor (T1,F1) is necessarily regular.

Proof. Let (T1,F1) ◦ (T2,F2) = (T,F) with (T,F) and (T2,F2) regular. Let
G2 be the Green’s operator for (T2,F2). Since Ker G∗2 = F2 by Equation (30)
and F = T ∗2 (F1)+F2, we obtain G∗2(F) = F1. With the previous corollary this
yields

F1 = G∗2(F ∩K⊥
2 ),

and so (T1,F1) is regular by Lemma 21. The theorem follows with Corollary 24
and Theorem 22. 2

8 A Monoid of Boundary Problems

In this section, we consider boundary problems with endomorpisms; this case
is also the basis for the symbolic computation treatment in [17]. Having en-
domorphisms, the composition of boundary problems (34) and dual boundary
problems (37) coincides with the multiplication in a reverse semidirect product
of suitable defined monoids and actions. Moreover, the contravariant functors
from Theorem 18 between regular (dual) boundary problems specialize to anti-
isomorphisms between the submonoids of regular (dual) boundary problems.

Given a monoid action, one can define the semidirect product of monoids
just as for groups. In contrast to groups, one has to distinguish between left and
right actions and accordingly define the multiplication for semidirect products.

We recall the definitions. Let M and N be monoids. Following a convention
introduced by Eilenberg [5], which also fits perfectly with our application, we
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write the product in M additively (without assuming commutativity). Given a
left action of N on M , denoted by n ·m, and specified by a homomorphism

ϕ : N → EndM,

the semidirect product M oϕ N is the set M ×N with the multiplication “from
the left”

(m1, n1)(m2, n2) = (m1 + n1 ·m2, n1n2) = (m1 + ϕn1(m2), n1n2).

One verifies that this multiplication is associative with identity (0, 1), so the
semidirect product M oϕ N is indeed a monoid.

Analogously, given a right action of N on M , denoted by m ·n, and specified
by an anti-homomorphism

ϕ : N → EndM,

the reverse semidirect product Nnϕ M is the set N×M with the multiplication
“from the right”

(n1,m1)(n2,m2) = (n1n2,m1 · n2 + m2, ) = (n1n2, ϕn2(m1) + m2).

Again N nϕ M is a monoid with identity (1, 0).
Let now V be a vector space and L(V ) the monoid of endomorphisms with

respect to composition. Considering P(V ) as an additive monoid, L(V ) acts on
P(V ) from the left by A · V1 = A(V1), so we have a homomorphism

ϕ : L(V ) → EndP(V ) with ϕA(V1) = A(V1).

The multiplication in the semidirect product P(V )oϕ L(V ) is

(V1, A1)(V2, A2) = (V1 + A1(V2), A1A2),

which is exactly the definition (37) of the composition of dual boundary prob-
lems. Writing H for the submonoid of all injective endomorphisms, we see that
the semidirect product P(V ) oϕ H is the monoid of dual boundary problems.
The regular dual boundary problems form a submonoid

R∗ = {(K, G) ∈ P(V )×H | (K, G) regular}

since the composition of two regular dual boundary problems is regular by
Proposition 17.

We now discuss the situation for boundary problems. By Propostion 3,
the sum of two orthogonally closed subspaces is orthogonally closed, so P̄(V ∗)
is an additive monoid. We know from Corollary 5 that the transpose maps
orthogonally closed subspaces to orthogonally closed subspaces. Hence L(V )
acts on P̄(V ∗) from the right via the transpose F ·A = A∗(F), and we have the
anti-homomorphism

ϕ : L(V ) → EndP̄(V ∗) with ϕA(F) = A∗(F).

The multiplication in the reverse semidirect product L(V )nϕ P̄(V ∗) is

(A1,F1)(A2,F2) = (A1A2, A
∗
2(F1) + F2),
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which is the definition (34) of the composition of boundary problems. Writing
S for the submonoid of all surjective endomorphisms, we see that the reverse
semidirect product Snϕ P̄(V ∗) is the monoid of boundary problems. The regular
boundary problems form a submonoid

R = {(T,F) ∈ S × P̄(V ∗) | (T,F) regular}
since the composition of two regular boundary problems is regular by Proposi-
tion 16.

Solving regular (dual) boundary problems gives an anti-isomorphism be-
tween the monoids of regular (dual) boundary problems. More precisely, we
have the following result as a special case of Theorem 18.

Proposition 27 The map

R → R∗

(T,F) 7→ (KerT, (T,F)−1)

is an anti-isomorphism between the monoids of regular (dual) boundary prob-
lems, and

R∗ → R

(K, G) 7→ ((K,G)−1, (Im G)⊥).

is its inverse.

Given some submonoid S1 of all surjective endomorpisms S, we can consider
the monoid of boundary problems S1 n P̄(V ∗) with linear maps in S1. We can
also restrict the boundary conditions to a submonoid F of P̄(V ∗) if F is closed
under S1 in the sense that

T ∗(F) ∈ F, for all T ∈ S1 and F ∈ F,

so that S1 acts on F . In all such cases, the regular boundary problems form a
submonoid. As an example, take the submonoid of surjective endomorphisms
with finite dimensional kernel with finite dimensional subspaces of boundary
conditions.

Analogously, we can consider submonoids of all injective endomorphisms
and restrict the dual boundary conditions to suitable submonoids of P(V ). The
corresponding dual problems for the previous example are injective endomor-
phisms with finite codimensional image with finite dimensional subspaces as
dual boundary conditions.

Note that with the results from Section 7, given a factorization in S1, we
can construct all factorizations of a (regular) boundary problem into (regu-
lar) boundary problems with arbitrary boundary conditions. If we restrict the
boundary conditions to a submonoid F , we have to check whether the con-
structed boundary conditions are again in F .

9 Dimension and Codimension

Recall that for subspaces V1 and V2 of a vector space V we have

dim(V1 + V2) + dim(V1 ∩ V2) = dim V1 + dim V2
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and analogously for the codimension

codim(V1 + V2) + codim(V1 ∩ V2) = codim V1 + codimV2.

Note that if V is finite dimensional, the second equation is a consequence from
the first and the equation

dim V1 + codim V1 = dim V.

For V finite dimensional, we obtain similarly the equation

codim(V1 + V2) + dim V1 = dim(V1 ∩ V2) + codim V2

relating the codimension of the sum with the dimension of the intersection of
two subspaces. We show that this equation holds for arbitrary vector spaces.

Proposition 28 We have

codim(V1 + V2) + dim V1 = dim(V1 ∩ V2) + codim V2

for subspaces V1 and V2 of a vector space V .

Proof. Let Ṽ1 and Ṽ2 be complements of V1 ∩ V2 in V1 and V2, respectively, so
that

V1 = Ṽ1

.
+ (V1 ∩ V2) and V2 = Ṽ2

.
+ (V1 ∩ V2).

Then one sees that we have a direct sum

V1 + V2 = Ṽ1

.
+ Ṽ2

.
+ (V1 ∩ V2).

Let W̃ be a complement of V1 + V2 in V so that

V = (V1 + V2)
.
+ W̃ = Ṽ1

.
+ Ṽ2

.
+ (V1 ∩ V2)

.
+ W̃ .

Hence

codim(V1 + V2) = dim W̃ and codim V2 = dim(W̃ + Ṽ1).

Computing the dimension of the subspace

W̃
.
+ Ṽ1

.
+ (V1 ∩ V2)

in two different ways, we obtain

codim(V1 + V2) + dim V1 = dim W̃ + dim(Ṽ1 + (V1 ∩ V2))

= dim(V1 ∩ V2) + dim(W̃ + Ṽ1) = dim(V1 ∩ V2) + codim V2,

and the proposition is proved. 2

If V1 is finite dimensional and V2 finite codimensional, all dimensions and
codimensions in the above proposition are finite, and we obtain the following
corollaries.
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Corollary 29 Let V1 and V2 be subspaces of a vector space V with dim V1 < ∞
and codim V2 < ∞. Then

codim(V1 + V2)− dim(V1 ∩ V2) = codim V2 − dim V1.

In particular,

dim(V1 ∩ V2) = codim(V1 + V2) ⇔ dim V1 = codim V2.

Corollary 30 Let V1 and V2 be subspaces of a vector space V with dim V1 < ∞
and codim V2 < ∞. Then

V1

.
+ V2 = V

iff
V1 ∩ V2 = 0 and dim V1 = codim V2

iff
V1 + V2 = V and dim V1 = codim V2.

So for testing whether two subspaces V1 and V2 with dim V1 = codim V2 < ∞
establish a direct decomposition V = V1

.
+ V2, we have to check only one of the

two defining conditions V1 ∩ V2 = 0 and V1 + V2 = V .
The hypothesis that the dimensions are finite is necessary. Let k be a field,

V = kN, and consider for example the two subspaces

V1 = {(0, x1, 0, x2, 0, x3, . . .) | (xn) ∈ kN}
V2 = {(0, 0, x1, 0, x2, 0, x3, . . .) | (xn) ∈ kN}.

Then dimV1 = codim V2 = dim V = ∞, V1 ∩ V2 = 0 but codim(V1 + V2) = 1.
We use the following corollary in the next section as a regularity test for

boundary problems with finite dimensional kernels and boundary conditions.

Corollary 31 Let V1 = [v1, . . . , vm] be a subspace of a vector space V and
F1 = [f1, . . . , fn] a subspace of V ∗ with fi and vj linearly independent. Then

V = V1

.
+ F⊥1

is a direct sum iff m = n and the matrix (fi(vj)) is regular.

Proof. By Equation (10), codimF⊥1 = dimF1, so we know from the previous
corollary that

V = V1

.
+ F⊥1

is a direct sum iff V1 ∩ F⊥1 = 0 and m = n. Let B = (fi(vj)) with columns bj .
Now note that B is singular iff there exists a linear combination

∑
λjbj = 0

with at least one λj 6= 0 iff there exists a nonzero u =
∑

λjvj in V1 ∩ F⊥1 . 2
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10 Finitely Many Boundary Conditions

In this section, we specialize some results and discuss algorithmic aspects for
boundary problems where the corresponding linear maps have finite dimensional
kernels and the spaces of boundary conditions are finite dimensional. Note that
this includes boundary value problems for (systems of) ordinary differential
equations and systems of partial differential equations with finite dimensional
solution space.

More precisely, we consider boundary problems (T,F) where T : V → W ,

dim K < ∞ and F = [f1, . . . , fn]

with K = Ker T . We can rewrite the condition that u ∈ V is a solution of the
boundary problem (T,F) for a given w ∈ W in the following traditional form

Tu = w,
f1(u), . . . , fn(u) = 0.

By Corollary 31, a necessary condition for the regularity of (T,F) is

dimKer T = dimF ,

meaning that we have the “correct” number of boundary conditions. Moreover,
we get the following algorithmic regularity test for boundary problems (to be
be found in Kamke [11, p. 184] for the special case of two-point boundary
conditions).

Proposition 32 A boundary problem (T,F) with dimKer T = dimF is regular
iff the matrix 


f1(u1) · · · f1(un)

...
. . .

...
fn(u1) · · · fn(un)




is regular, where the fi and uj are any basis of respectively F and KerT .

Let T be a fixed surjective linear map. By Equation (31), given any right
inverse G̃ of T , the Green’s operator for a regular boundary problem (T,F) is
given by

G = (1− P )G̃,

where P is the projection with Im P = K and Ker P = F⊥. If T has a finite
dimensional kernel with basis u1, . . . , un, we can easily describe the projection
P in terms of a basis f1, . . . , fn of F . Since the matrix B = (fi(uj)) is regular
by the previous proposition, we can define

(f̃1, . . . , f̃n)t = B−1(f1, . . . , fn)t.

Then the (f̃i) and (uj) are biorthogonal, and P : V → V defined by

v 7→
n∑

i=1

〈v, f̃i〉ui
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is the projection with Im P = K and Ker P = F⊥ by Lemma 1.
Given a factorization T = T1T2 and a right inverse H2 of T2, we know from

Theorem 26 how to construct all possible factorizations of a regular boundary
problem (T,F) into two regular problems. The boundary conditions for the left
factor (T1,F1) are uniquely given by

F1 = H∗
2 (F ∩K⊥

2 ),

and all regular boundary problems (T2,F2) correspond to direct sums

F = (F ∩K⊥
2 )

.
+ F2.

In the following, we discuss how all such factorizations can be computed by
linear algebra if T has a finite dimensional kernel.

Let (T,F) be regular, K = Ker T , K2 = Ker T2, and f1, . . . , fm+n a basis of
F . Choose a basis

u1, . . . , um, um+1, . . . , um+n

of K such that u1, . . . , um is basis of K2, and let

B =




f1(u1) . . . f1(um) f1(um+1) . . . f1(um+n)
...

. . .
...

...
. . .

...
fm+n(u1) . . . fm+n(um) fm+n(um+1) . . . fm+n(um+n)


 . (42)

Since B is regular, we can perform row operations corresponding to a regular
matrix P such that

P B =
(

B2 C
0 D

)
(43)

is a block matrix, where B2 is a regular m×m matrix. Let

(f̃1, . . . , f̃m, f̃m+1, . . . , f̃m+n)t = P (f1, . . . , fm+n)t, (44)

that is,

f̃i =
m+n∑

j=1

Pijfj ,

and F2 = [f̃1, . . . , f̃m]. Then obviously [f̃m+1, . . . , f̃m+n] ⊆ F ∩K⊥
2 and since

dim(F ∩K⊥
2 ) = codim(F⊥ + K2) = n, they are equal. So

F = (F ∩K⊥
2 )

.
+ F2

is a direct sum. Conversely, it is clear that any such direct sum given by bases
F2 = [f̃1, . . . , f̃m] and F ∩ K⊥

2 = [f̃m+1, . . . , f̃m+n] with P as in (44) gives a
block matrix as in Equation (43). By Theorem 26, we know that

(T,F) = (T1,F1) ◦ (T2,F2)

is a factorization into regular boundary problems with

F1 = [H∗
2 (f̃m+1), . . . , H∗

2 (f̃m+n)] and F2 = [f̃1, . . . , f̃m]. (45)

Note that if H2 is the Green’s operator for a regular right factor (T2,F2)
with F2 ⊆ F , we have H∗

2 (F) = H∗
2 (F ∩ K⊥

2 ) by Corollary 25. So we can
compute the uniquely determined boundary conditions F1 simply by applying
H∗

2 to the boundary conditions F ; see the examples in the next section.
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11 Examples for Differential Equations

Let us now illustrate our algebraic approach to abstract boundary problems in
the concrete setting of differential equations, taking up the examples posed in
the Introduction.

We want to factor the two-point boundary problem (D2, [L,R]) of Equation
(1) into two regular problems with T1 = T2 = D. The indefinite integral A =

∫ x

0
is the Green’s operator for the regular right factor (D, [L]). By Corollary 25,
the boundary conditions for the unique left factor are given by

A∗[L,R] = [0, RA] = [RA],

where RA =
r 1

0
is the definite integral. So we obtain the factorization

(D, [RA]) ◦ (D, [L]) = (D2, [L,R])

or
u′ = f∫ 1

0
u(ξ) dξ = 0

◦ u′ = f
u(0) = 0 = u′′ = f

u(0) = u(1) = 0

in the notation from the Introduction. Note that the boundary condition for
the left factor is an integral condition. Such conditions are not considered in the
classical setting of two-point boundary problems but are known in the literature
as Stieltjes boundary conditions [1]. We check this factorization by multiplying
the two boundary problems according to Definition (34). Note that

(D, [RA]) ◦ (D, [L]) = (D2, [D∗(RA), L])

and D∗(RA) = RAD =
∫ 1

0
D = L−R so that

[D∗(RA), L] = [L−R,R] = [L,R].

To illustrate the method from the previous section, we factor the boundary
problem (D2, [LD,R]). We use again the indefinite integral A = (D, [L])−1 as
a right inverse of D, but for this boundary problem it is not a Green’s operator
for a regular right factor since L 6∈ [LD, R]. Hence we cannot simply apply
A∗ to the boundary conditions as we did before since this would give us two
conditions

A∗[LD,R] = [LDA,RA] = [L,RA]

for a first-order problem. So we have to proceed as described in the previous sec-
tion. A suitable basis for KerD2 is (1, x). Evaluating the boundary conditions
[LD,R] on (1, x) yields (

0 1
1 1

)
,

for the matrix B from Equation (42). Swapping the first and the second row
gives a block triangular matrix as in Equation (43). So by Equation (45), the
boundary condition is given by A∗(LD) = L for the left factor and by R for the
right factor, and we obtain the factorization

(D, [L]) ◦ (D, [R]) = (D2, [LD, R]).
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See [17] for a general discussion of solving and factoring boundary problems for
ordinary differential equations in an algorithmic context.

As an example of a boundary problem for a partial differential equation, we
return to the wave equation in (3) from the Introduction. We write it as

W = (∂2
t − ∂2

x, [u(x, 0), ut(x, 0)]),

where u(x, 0) and ut(x, 0) are short for the functionals u 7→ u(x, 0) and u 7→
ut(x, 0), respectively, and [. . .] denotes the orthogonal closure of the subspace
generated by these functionals with x ranging over R. The Green’s operator of
W is given by

Gf(x, t) =
1
2

∫ t

0

∫ x+(t−τ)

x−(t−τ)

f(ξ, τ) dξ dτ, (46)

as can be found in the literature [19, p. 485]. We show that one can determine
G by constructing a factorization of W along the factorization

∂2
t − ∂2

x = (∂t − ∂x)(∂t + ∂x).

A regular right factor is given by

W2 = (∂t + ∂x, [u(x, 0)]).

In general, choosing boundary conditions in such a way that they make up a
regular boundary problem for a given first-order right factor of a linear partial
differential operator amounts to a geometric problem involving the characteris-
tics. The Green’s operator for W2 can easily be computed as

G2f(x, t) =
∫ x

x−t

f(ξ, ξ − x + t) dξ

and can be used for finding the boundary conditions for the uniquely determined
left factor

W1 = (∂t − ∂x, G∗2[u(x, 0), ut(x, 0)]) = (∂t − ∂x, [u(x, 0)])

by Corollary 25. One can verify the factorization W = W1W2, taking into
account (36). The Green’s operator for W1 is analogously given by

G1f(x, t) =
∫ x+t

x

f(ξ, x− ξ + t) dξ,

and all we have to do now is to compute the composite

G2G1f(x, t) =
∫ x

x−t

∫ 2τ−x+t

τ

f(ξ, 2τ − ξ − x + t) dξ dτ,

which is the Green’s operator of W by Theorem 26. Since G and G2G1 solve
the same regular boundary problem, we know that G = G2G1, as one may also
verify directly by a change of variables.

The above methodology can also be transferred to the computationally more
involved case of the wave equation on the bounded interval [0, 1], succinctly
expressed in our notation by

V = (∂2
t − ∂2

x, [u(x, 0), ut(x, 0), u(0, t), u(1, t)].
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As indicated above, one can find a factorization V = V1 ◦ V2 with

V1 = (ut − ux, [u(x, 0),
r 1

max (1−t,0)
u(ξ, ξ + t− 1) dξ]),

V2 = (ut + ux, [u(x, 0), u(0, t)]).

Unlike in the unbounded case, the Green’s operator for V involves a finite sum
whose upper bound depends on the argument (x, t). These complication are
reflected in the Green’s operator of the left factor V1, whose computation leads
to a simple functional equation. A systematic investigation of partial differential
equations with integral boundary conditions is a subject of future work.
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