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⋆ This work was supported by the Austrian Science Fund (FWF) under the SFB grant F1322.
∗ Corresponding author.

Email addresses: Markus.Rosenkranz@oeaw.ac.at (Markus Rosenkranz),
Georg.Regensburger@oeaw.ac.at (Georg Regensburger).

URLs: www.ricam.oeaw.ac.at (Markus Rosenkranz), www.ricam.oeaw.ac.at (Georg Regensburger).



1. Introduction

In this paper, we develop a new approach for handling boundary problems in the
language of differential algebras, restricting ourselves to the case of linear boundary
problems for ordinary differential equations. (We reserve the traditional word “boundary
value problem” for the particular type of boundary problems that have only point eval-
uations, i.e. local boundary conditions in the terminology of Section 5.) The algebraic
language we build up allows

• to state boundary problems in a natural algebraic language,
• to express their solution operators in the same language,
• to compute the solution operators from a fundamental system,
• to multiply boundary problems corresponding to the solution operators,
• to lift factorizations of differential operators to boundary problems.

The present paper extends the ideas from (Rosenkranz, 2005) and (Rosenkranz et al.,
2003) in several aspects: Boundary problems can now be formulated and solved in any
differential algebra that meets some natural conditions (Theorem 21), the case of variable
coefficients is fully included, and a new monoid structure on boundary problems provides
an elegant description and an alternative computation method for the corresponding
solution operators.

For developing an appropriate notion of boundary problem in a given differential
algebra, it will be useful to have a look at the classical setting of (Stakgold, 1979, p. 203)
dealing with a two-point boundary problem on a finite interval I = [a, b]. Disregarding
weak solutions and ill-posed problems for simplicity, the general idea is that a differential
equation

u(n)(x) + cn−1(x)u
(n−1)(x) + . . .+ c1(x)u

′(x) + c0(x)u(x) = f(x) (1)

with coefficient functions cn−1, . . . , c1, c0 ∈ C∞(I) and forcing function f ∈ C∞(I) is sup-
plemented with additional conditions that determine the solution u ∈ C∞(I) uniquely.
In certain cases, these may be initial conditions, but in general one has to deal with
constraints that combine the values and derivatives of u at both endpoints a and b. In
the context of a linear differential equation like (1), it is natural to restrict oneself to
linear conditions of the form

pn−1 u
(n−1)(a) + . . .+ p0 u(a) + qn−1 u

(n−1)(b) + . . .+ q0 u(b) = e, (2)

where the pi, qi and e are given complex numbers. For obvious reasons, boundary con-
ditions of the form (2) are known as two-point boundary conditions; note that they
include initial conditions as the special case where all the qi vanish. In order to obtain
a well-posed boundary problem, one imposes n suitable linear boundary conditions (2)
on a given linear differential equation (1). Since all differential equations, operators and
conditions will be linear in this paper, we will from now on drop the attribute “linear.”

Classical boundary problems (1) (2) have a rich structure. First of all, it is clear that
one can decompose the solution of (1), (2) into a solution of the semi-inhomogeneous
problem (obtained from (2) by setting e = 0) and a solution of the semi-homogeneous
problem (obtained from (1) by setting f = 0). Since we assume fundamental systems
are available, the latter problem reduces to linear algebra, and we can concentrate on
the semi-inhomogeneous problem. Thus we assume from now on homogenous boundary
conditions.
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A second crucial observation is that the solution u depends linearly on the forcing
function f . In fact, the assumption of a well-posed boundary problem means that there
is a unique u for every given f , so there is a solution operator G : C∞(I) → C∞(I) with
u = Gf . This so-called Green’s operator G is linear: If u1 is the solution for a forcing
function f1 and u2 the solution for a forcing function f2, it is clear that u1+u2 fulfills the
(homogeneous!) boundary conditions (2), while substituting u1 + u2 into the left-hand
side of the differential equation (1) obviously leads to f1(x) + f2(x) on its right-hand
side. Then u1 + u2 is “a” solution for the forcing function f1 + f2, so by uniqueness also

u1 + u2 = G(f1 + f2).

Since u1 = Gf1 and u2 = Gf2, this means that G is linear.
Taking advantage of this linear structure, it is possible to compute the Green’s operator

G rather than a particular solution u belonging to some fixed forcing function f . We may
view this as solving the parametrized differential equation (1) together with boundary
conditions (2). There is also a practical reason why it is useful to have the Green’s
operator: The forcing function f is often more likely to change (e.g. as the “source
term” in heat conduction), whereas the shape of the differential equation (its left-hand
side) and boundary conditions remain fixed. In the classical setting, it turns out that
G : C∞(I) → C∞(I) can be represented in the form of an integral operator

Gf(x) =

∫ b

a

g(x, ξ)f(ξ) dξ

with a uniquely determined Green’s function g ∈ Cn−2(I2). So once g is found, one can
compute each desired solution u by a single integration.

Now let us describe our strategy of rebuilding this scenario in a (moderately general)
differential algebra. In the place of C∞(I), we take a differential algebra F as our starting
point. Obviously, a differential equation (1) is then given by

Tu = f (3)

with a differential operator T ∈ F [∂], and one has to find the solution u ∈ F in terms
of a given forcing function f ∈ F . (In order to gain flexibility, we will actually consider
differential operators T ∈ F0 for a suitable subalgebra F0 ≤ F ; see Definition 13.) A
boundary condition is given by

β1u, . . . , βnu = 0 (4)

for suitable functionals β1, . . . , βn ∈ F∗, where F∗ denotes the dual space of F . We will
allow rather general boundary conditions of the so-called Stieltjes type (see Definition 9),
including not only two-point conditions like (2) but also global conditions involving in-
tegrals.

At this point, we would like to make a general remark on point evaluation in differ-
ential algebra. This is a topic not often considered (within the given algebraic setting),
despite its undisputed importance in the applications. The problem is that the elements
of a differential algebra (or differential ring or differential field) are abstractions of a func-
tion that are not meant for being “evaluated.” Abraham Robinson (1961) has addressed
this discrepancy by introducing what he called localized differential rings. Working in
the much wider scope of polynomial differential equations, he has developed a solvabil-
ity criterion for initial value problems. According to our knowledge, his ideas have not
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found much resonance. For a more practical perspective on initial value problems for
differential-algebraic equations, see the recent survey (Pritchard and Sit, 2007), contain-
ing a method for determining admissible initial conditions. Our own point of view is
to consider boundary conditions in their natural context: as functionals of the afore-
mentioned type.

Hence the need for a differential algebra—they provide a vector space structure to-
gether with the structure of a differential ring. In fact, we need more than that (Sec-
tion 2): Since we want to express the Green’s operator of a boundary problem (3)(4), we
need an explicit operator

r
for denoting integration, just like ∂ is is used for denoting

differentiation. Obviously, we must stipulate that

∂
r

= 1,

while further analysis will make it clear that we must also require
r

to fulfill the so-called
Baxter axiom, an algebraic version of integration by parts. As we shall see, this neces-
sarily excludes differential fields from the admissible differential algebras F . We are thus
led to the following crucial observation (Proposition 4): Despite their extremely useful
role for example in the Galois theory of linear differential equations (van der Put and
Singer, 2003), differential fields are inadequate for treating initial/boundary conditions
along with the differential equations. In some sense, this result is not unexpected: Point
evaluations correspond to maximal ideals, while in a field the only proper ideal is the
trivial one.

We call the resulting structure (F , ∂,
r
) an integro-differential algebra. They induce

a natural algebra of integro-differential operators F [∂,
r
], just like (F , ∂) alone induces

the algebra of differential operators F [∂]. We introduce a suitable rewrite system for
these operators (Section 3), enabling their convenient symbolic manipulation. Our rewrite
system is both noetherian and confluent (Proposition 8), and the corresponding normal
forms have a natural description (Proposition 12). The advantage of the F [∂,

r
] language

is that it provides a uniform frame for stating initial/boundary problems as well as for
deriving and expressing their Green’s operators.

The departure from differential fields has the consequence that inhomogeneous differ-
ential equations cannot be reduced to homogenous ones, as explained in (van der Put
and Singer, 2003, Exercise 1.14.1). Hence we have to resort to an algebraic version of
the well-known “variation of the constant” method for solving even initial value problems

(Section 4) and this necessitates a mild condition on the solutions of inhomogeneous first-
order differential equations. This condition basically requires that exponential solutions
exist and behave as normal: they have a reciprocal.

For treating boundary problems (3) (4) in a convenient fashion, we specify them as
pairs

(T,B) with T ∈ F0[∂] and B = [β1, . . . , βn] ≤ F∗.

Using this setup, we will show (Section 5) that they have a Green’s operator that can be
expressed in F [∂,

r
], and we sketch how one can compute it. For a concrete implementa-

tion in the classical C∞ setting, see the previous article (Rosenkranz, 2005). Generalizing
the idea of a boundary problem as “surjective linear map plus linear functionals as side
conditions”, we have developed an abstract treatment in general vector spaces in our
forthcoming paper (Regensburger and Rosenkranz, 2007).

The algebraic treatment of boundary problems applied in this paper does not only
allow for a symbolic solution, it is also a natural setting for exposing an important
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structure connecting boundary problems amongst themselves (Section 6): It turns out
that the composition structure of Green’s operators is reflected in a monoid structure

on the boundary problems, arising as a semi-direct product of F0[∂] and the additive
structure of subspaces in F∗.

Finally (Section 7), we will show how to factor given boundary problems (T,B) into
smaller ones. While factorization of linear ordinary differential operators is an important
topic in symbolic computation (Grigoriev, 1990; van der Put and Singer, 2003; Schwarz,
1989; Tsarev, 1996), it neglects the presence of boundary conditions (possibly addressed
in a post-processing step). We will show how every factorization of the differential oper-
ator T gives rise to various factorizations of (T,B), whose full classification is stated. In
order to lift a factorization of T to the level of boundary problems, one only needs to solve
an initial value problem. Hence one may employ factorization as a tool for computing
the Green’s operator G. In the extreme case of splitting T into linear factors, one obtains
G as a composition of first-order Green’s operators, which can be computed easily. (In
practical examples, one will often be content with a partial factorization.)

Some remarks on notation. We write N for the set of all natural numbers including
zero. The variable n ranges overN. All algebras are assumed to be commutative and with
identity. The zero-dimensional subspace of any vector space will be denoted by O = {0}.
We write [f1, . . . , fn] for the subspace generated by the vectors f1, . . . , fn of some vector
space F . For subsets F0 ⊆ F and B0 ⊆ F∗, the so-called orthogonal is defined as

F⊥0 = {ϕ ∈ F∗ | ∀f∈F0
ϕ(f) = 0} ≤ F∗,

B⊥0 = {f ∈ F | ∀ϕ∈B0
ϕ(f) = 0} ≤ F ;

see Section 5 for more details.

2. Integration in Differential Algebras

Let (F , ∂) be a differential algebra over a field K, so ∂ : F → F is a K-linear map
fulfilling the Leibniz rule ∂(fg) = f ∂(g) + g ∂(f). For convenience, we may assume
K ≤ F , and we write f ′ as a shorthand for ∂(f). Furthermore, we will assume that K
has characteristic zero except stated otherwise (even though some definitions and results
would make sense in positive characteristic). Then we may also assume Q ≤ K, so that
F is what is sometimes called a Ritt algebra.

The skew ring of (formal) differential operators over the differential algebra F is
denoted by F [∂] as in van der Put and Singer (2003). The addition in F [∂] is obvious,
while the multiplication is determined by the rule ∂f = f∂ + f ′ for all f ∈ F . Each
T ∈ F [∂] acts on F as an (actual) differential operator T : F → F . The identity operator
of F [∂] is denoted by ∂0 = 1 just like the unit element 1 ∈ F ; it will be clear from the
context which of the two is meant.

Our goal is to solve inhomogeneous differential equations by Green’s operators. The
simplest such equation is obviously u′ = f , and its solution operators

r
are exactly the

sections of the differential operator ∂. (Note that a derivation need not possess a section:
In the algebra of univariate differential polynomials, the differential indeterminate clearly
cannot be a derivative.) Since F exhibits a vector space structure and since we are only
interested in linear solution operators where we think of u as fixed by suitable side
conditions (confer our remarks in Section 1), it is straightforward to classify all sections

of ∂.
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Proposition 1. Every section
r

: F → F of the derivation ∂ : F → F corresponds to a

unique projector P : F → F with P = 1−
r
∂, and to a unique direct sum F = C∔I with

C = Ker(∂) = Im(P ) and I = Im(
r
) = Ker(P ).

If
r

is any fixed section of ∂, every projector P with Im(P ) = Ker(∂) induces a section

(1 − P )
r
, and every section of ∂ arises uniquely in this way.

Proof. See (Regensburger and Rosenkranz, 2007) or (Nashed and Votruba, 1976, p. 17). 2

We refer to the elements of I = Im(
r
) as the initialized functions (with respect to

r
),

while those of C = Ker(∂) are usually known as the constants (with respect to ∂). (In the
prototypical case of F = C∞(R), the initialized functions are those that can be written
as F (x) =

r x

α
f(ξ) dξ for an integrand f ∈ C∞(R) and an initialization point α ∈ R;

hence they are exactly the functions F that fulfill the initial condition F (α) = 0.)
For solving inhomogeneous differential equations Tu = f of higher order, one must

expect to iterate the section
r
. In general, this could lead to “nested integrals” of arbitrary

complexity. But we know from the classical C∞ setting (see Section 1) that the Green’s
operator G can always be expressed by a single integration, with the so-called Green’s

function g as its integral kernel. The essential role of Green’s functions is to resolve
nested integrals, whereas the passage from an operator G : C∞(I) → C∞(I) to a function
g ∈ Cn−2(I2) is quite immaterial (from our viewpoint).

In order to capture this behavior in abstract differential algebras we need an identity
on sections that lets us resolve nested integrals (eventually leading to the

r
f
r

rule
in Table 1). Such an identity is given by the so-called Baxter axiom (of weight zero),
asserting

(
r
f)(

r
g) =

r
(f

r
g) +

r
(g

r
f) (5)

for all f, g ∈ F ; see (Guo, 2002; Baxter, 1960; Rota, 1969) for more details. One sees
immediately that (5) is an algebraic version of integration by parts, rewritten in such
a way that it does not need refer to any derivation. A Baxter algebra (F ,

r
) is then a

K-algebra F with a K-linear operation
r

fulfilling the Baxter axiom (5).
Let us note one important consequence of (5) at this point. Writing x as an abbre-

viation for
r
1, we obtain x2/2 =

r r
1 and inductively xn/n! =

r
· · ·

r
1 with n iterates

of
r
. Hence the powers u = xk with k < n are solutions of u(n) = f , and one checks

immediately that they are all linearly independent. This means that Ker(∂n) contains
[1, x, . . . , xn−1] as an n-dimensional subspace. Since n can be chosen arbitrarily high,
we see that F in fact contains (an isomorphic copy of) the polynomial ring K[x]. Note
that K[x] ≤ F is both a differential algebra an a Baxter algebra (this will be called an
integro-differential algebra in Definition 6). In particular, we see that F is necessarily
infinite-dimensional.

What we shall actually need is the differential form of the Baxter axiom (eventually
leading to the

r
f∂ rule in Table 1), a slightly stronger variant that cannot be stated in

pure Baxter algebras since it involves the derivation. It claims that one has
r
fg = f

r
g −

r
(f ′

r
g) (6)

for all f, g ∈ F . Note that (6) is what most people do when they actually apply integration
by parts. The pure version (5) follows immediately by substituting

r
f for f in (6). In

fact, we can easily characterize what makes the differential Baxter axiom stronger than
the pure one.
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Lemma 2. A section
r

of ∂ fulfills the differential Baxter axiom (6) iff it fulfills the pure

Baxter axiom (5) and the homogeneity condition
r
cf = c

r
f for all c ∈ C and f ∈ F .

Proof. Assume
r

fulfills (6). Then
r

also fulfills (5) as observed above, while substituting
a constant c ∈ C for f in (6) gives homogeneity.

Conversely, assume that
r

fulfills (5) and the homogeneity condition. The latter hy-
pothesis means that (6) is satisfied for all f ∈ C. Now consider f ∈ I so that

r
f ′ = f .

Substituting f ′ for f in (5), we see that (6) is also satisfied for these f ∈ I. But then the
general case of f ∈ F follows via the direct sum F = C ∔ I. 2

Example 3. Most “natural” integro-differential algebras actually fulfill (6), so appar-
ently we have to contrive a somewhat artificial example for seeing that (6) is really
stronger that (5). As usual, let K be any field of characteristic zero. Then (R[x], ∂) with
R = K[y]/y4 and ∂f = fx is clearly a differential algebra over the ground field K.
Defining

r
f =

∫ x

0

f(ξ, y) dξ + f(0, 0) y2, (7)

we obtain a K-linear map
r

: R[x] → R[x]. Since the second term vanishes under ∂, we
see immediately that

r
is a section of ∂. For verifying the Baxter axiom 5, let us write −

r

for the ordinary integral in (7) and compute

(
r
f)(

r
g) = (−

r
f)(−

r
g) + y2

−

r (
g(0, 0) f + f(0, 0) g

)

+ f(0, 0) g(0, 0) y4,
r
(f

r
g) =

r
f(−

r
g + g(0, 0) y2) = −

r
(f−

r
g) + y2

−

r (
g(0, 0) f

)

.

Since y4 ≡ 0 and the ordinary integral −
r

fulfills the Baxter axiom (5), this implies
immediately that

r
does also. Hence we conclude that (R[x], ∂,

r
) is an integro-differential

algebra. However, it does not fulfill the stronger axiom (6), because the homogeneity
condition is violated: Observe that Ker(∂) = R, so in particular we should have

r
y · 1 =

y ·
r
1. But one checks immediately that the left-hand side actually yields xy, while the

right-hand side yields xy + y3.

We call a section
r

of the derivation ∂ an integral if it satisfies the differential Baxter
axiom (6). Using the characterization of sections in Proposition 1, we can now classify
the integrals either by their projectors or by their induced direct sum of F .

Proposition 4. A section
r

: F → F of the derivation ∂ : F → F is an integral iff its

projector P : F → F is multiplicative and iff I = Im(
r
) is an ideal.

Proof. Assume first
r

is an integral for ∂, let P = 1−
r
∂ be its projector and F = C ∔I

the corresponding direct sum with C = Ker(∂) = Im(P ) and I = Im(
r
), according to

Proposition 1. We must prove P (fg) = P (f)P (g) for all f, g ∈ F . Substituting g′ for g
in (6), we obtain

0 =
r
fg′ − f

r
g′ +

r
(f ′

r
g′) =

r
fg′ − f(g − Pg) +

r
(f ′(g − Pg))

=
r
fg′ +

r
f ′g − fg + f Pg − (

r
f ′)Pg,

where we have used the homogeneity of
r

in the last step. But then

P (fg) = fg −
r

(f ′g + fg′) = (f −
r
f ′)Pg = Pf Pg,

as claimed.
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Assume conversely that P is multiplicative, and take f,G ∈ F arbitrary. Expanding
the definition of P and using the Leibniz law gives

P (fG) = (1 −
r
∂)fG = fG−

r
f ′G−

r
fG′

and

Pf PG = (f −
r
f ′)(G−

r
G′) = fG−G

r
f ′ − f

r
G′ + (

r
f ′)(

r
G′);

equating the two expressions, we obtain

(
r
f ′)(

r
G′) +

r
f ′G+

r
fG′ = G

r
f ′ + f

r
G′,

which yields indeed (6) upon specializing to G =
r
g.

Let us now prove that I is an ideal under the assumption that P is multiplicative.
Since P is a projector along I, we have PG = 0 iff G ∈ I. Hence G ∈ I implies

P (fG) = Pf PG = 0, and fG ∈ I as claimed.
Finally, we assume I is an ideal and prove P multiplicative. Taking f, g ∈ F arbitrary,

we set f0 = Pf ∈ C and g0 = Pg ∈ C. Then f1 = f −f0 ∈ I and likewise g1 = g−g0 ∈ I,
so we obtain

P (fg) = P (f0g0) + P (f0g1) + P (f1g0) + P (f1g1) = f0g0 = Pf Pg

since all of f0g1, f1g0, f1g1 ∈ I vanish under P while f0g0 ∈ C is fixed by P . 2

As an example, take F = C∞[0, 1] with its usual derivation D. The operators A and

−B, defined as in (Rosenkranz, 2005, p. 176) by

Af(x) =

∫ x

0

f(ξ) dξ and Bf(x) =

∫ 1

x

f(ξ) dξ,

are integrals corresponding respectively to the projectors L : f 7→ f(0) and R : f 7→ f(1).
By contrast, the operator C, defined by

C = A−RAA

and used for regularizing an ill-posed problem in (Rosenkranz, 2005, p. 192), is just a

section for D but not an integral. Indeed, its projector RA =
r 1

0
is not multiplicative,

unlike L and R.
Since in this paper we want to attack boundary problems for ordinary differential

equations, we will from now on restrict the underlying differential algebra (F , ∂) accord-
ingly. The solution space of an ordinary differential equation (in the C∞ setting) has

dimension equal to the order of the equation. Hence let us call F an ordinary differential
algebra if

dimKer(∂) = 1.

Note that here our terminology deviates from Kolchin (1973, p. 58), where it sim-
ply refers to having a single derivation. (So in Kolchin’s sense, the differential algebra

(C∞(R2), ∂x +∂y) discussed at the end of this section would be addressed as “ordinary”,
while we prefer to exclude this case because dimKer(∂) = ∞.)

Having an ordinary differential algebra F has several important consequences. First of
all, it is clear that we have now K = C, so F is an algebra over its own field of constants.
But then a section

r
is automatically homogeneous over C, so the pure Baxter axiom (5)
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and its differential version (6) coincide. As mentioned above, the Baxter axiom implies
that Ker(∂n) contains [1, x, . . . , xn−1] as a subspace. Now we can use the identity

Ker(T 2) = G Ker(T ) ∔ Ker(T ),

valid for any epimorphism T on a vector space and any section G of T ; see (Regensburger
and Rosenkranz, 2007) for a more general statement and proof. This yields dimKer(∂n) =
n by induction and hence also

Ker(∂n) = [1, x, . . . , xn−1], (8)

the familiar polynomial space.
Finally, the projector P : F → F can be regarded as a normalized linear functional.

(In any vector space, a projector onto a one-dimensional subspace [w] can be written as
P (v) = ϕ(v)w where ϕ is a unique linear functional with ϕ(w) = 1. Since F is moreover
an algebra, a projector onto K = [1] is canonically described by the functional ϕ with
ϕ(1) = 1.)

A unit functional on F is an η ∈ F∗ with the normalization η(1) = 1, a character is a
multiplicative functional (and hence also a unit functional). Let us write U(F∗) for the
set of all unit functionals and M(F∗) for the space of all characters. As we have seen,
every section

r
corresponds to a unique η = 1−

r
∂ ∈ U(F∗). If

r
is moreover an integral,

Proposition 4 tells us that η ∈ M(F∗), and I is an ideal with F = K ∔ I.
Direct summands for the ground field of an algebra are also known as augmentation

ideals, while the corresponding projector η is then called its augmentation; see (Cohn,
2003, p. 132). Augmentation ideals are always maximal ideals: Since η induces the direct
sum F = K ∔ I, we have an isomorphism of vector spaces

η̃ : F/I ∼= K with η̃(f + I) = η(f)

But η̃ is also a morphism of rings because the character η : F → K is one, so F/I is a
field isomorphic to K, and I a maximal ideal. Let us summarize these results.

Corollary 5. In an ordinary differential algebra (F , ∂), a section
r

of ∂ is an integral

iff its unit functional is a character and iff I = Im(
r
) is an augmentation ideal.

Note that the augmentation ideal I corresponding to an integral is in general not a
differential ideal of F . We can see this in the standard example F = C∞[0, 1] by takingr

= A, say. Then I consists of all f ∈ F with f(0) = 0, so I is not differentially closed

since x 7→ x ∈ I but x 7→ 1 6∈ I.
We have now gathered the main ingredients that we need for treating boundary prob-

lems: a differential algebra with an integral. We call such structures integro-differential

algebras, treated in greater generality in the recent preprint (Guo and Keigher, 2007),
which came to our attention only after completing this article. (The situation considered
in (Guo and Keigher, 2007) is more general in three respects: The algebras are over uni-
tal commutative rings rather than fields, they may be noncommutative, and they may
have nonzero weight. Their interest stems mainly from combinatorial investigations of
tree-like structures, where the weight is usually nonzero.)

Definition 6. We call (F , ∂,
r
) an integro-differential algebra if (F , ∂) is a differential

algebra and
r

is an integral for ∂. Its associated evaluation is the character 1 −
r
∂. If

dimKer(∂) = 1, we speak of an ordinary integro-differential algebra.
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One may readily verify that an analytic algebra (F , ∂,
r ∗
,
r
∗
) in the sense of (Rosenkranz,

2005, p. 182) is equivalent to a pair of integro-differential algebras (F , ∂,
r ∗

) and (F , ∂,−
r
∗
).

Writing . . .← and . . .→ for the respective evaluations of
r ∗

and
r
∗
, one finds the relation

(
r ∗
f)→ =

r ∗
f +

r
∗
f = (

r
∗
f)←

for f ∈ F . This relation may be interpreted as requiring
r
∗

to be the dual of
r ∗

, with
respect to the inner product

〈f |g〉 = (
r ∗

+
r
∗
) fg.

In the standard example F = C∞[0, 1], this gives the usual L2 inner product 〈f |g〉 =
∫ 1

0
f(x)g(x) dx.
Before restricting ourselves to ordinary integro-differential algebras in the rest of the

paper, let us conclude this section with a non-trivial example of an integro-differential
algebra with an infinite-dimensional constant space. Consider F = C∞(R2) with the
derivation ∂u = ux + uy. Finding sections for ∂ means to solve the partial differential
equation ux + uy = f . Its general solution is given by

u(x, y) =

∫ x

α

f(t, t− x+ y) dt+ g(y − x),

where g ∈ C∞(R) and α ∈ R are arbitrary. In order to ensure a linear section, one has
to choose g = 0, arriving at

r
f =

∫ x

α

f(t, t− x+ y) dt.

Using a simple change of variables, one may immediately verify that
r

satisfies the Baxter
axiom (5), so (F ,

r
) is really a Baxter algebra. We see also that C = Ker(∂) is given by

the functions (x, y) 7→ g(x − y) with arbitrary g ∈ C∞(R), while I = Im(
r
) consists of

those functions f ∈ C∞(R2) that satisfy f(α, y) = 0 for all y ∈ R. The evaluation η
maps a function f ∈ C∞(R2) to the function (x, y) 7→ f(α, α − x + y). Obviously η is
multiplicative, so (F , ∂,

r
) is indeed an integro-differential algebra by Corollary 5.

3. Integro-Differential Operators

From now on, let (F , ∂,
r
) be an ordinary integro-differential algebra over a field K

with associated evaluation e. We define the integro-differential operators F [∂,
r
] as theK-

algebra generated by the symbols ∂ and
r
, the “functions” f ∈ F and the multiplicative

“functionals” ϕ ∈ M(F∗), modulo the reduction rules given in Table 1. Every integro-
differential operator can be written as a linear combination of “monomials” (a coefficient
times a monomial will be called a “term”).

In the rules of Table 1 as well as in the rest of this paper, we use the notation E ·f for
the action of E on a function f , where E is an element of the free algebra in the above
generators. It is an easy matter to check that the reductions of Table 1 are fulfilled in
(F , ∂,

r
), so we may regard · as an action of F [∂,

r
] on F . In particular, f̃ ·f now denotes

the product of functions f̃ , f ∈ F .
We remark that Table 1 is to be understood as including implicit rules for

r r
,
r
∂ andr

ϕ by substituting f = 1 in the rules for
r
f
r
,
r
f∂ and

r
fϕ, respectively. Moreover, one

obtains the derived rule e

r
= 0 from the definition of the evaluation e. Note that F [∂]

is a subalgebra of F [∂,
r
] with the same induced action on F .
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f̃ f → f̃ · f ∂f → ∂ · f + f∂
r
f
r

→ (
r
· f)

r
−

r
(
r
· f)

ϕ̃ϕ → ϕ ∂ϕ → 0
r
f∂ → f −

r
(∂ · f) − (e · f) e

ϕf → (ϕ · f) ϕ ∂
r

→ 1
r
fϕ → (

r
· f) ϕ

Table 1. Reduction Rules for Integro-Differential Operators

Example 7. The analytic polynomials of (Rosenkranz, 2005, p. 176) are also an im-
portant special case of integro-differential operators (the restriction to K = C imposed
there is not essential). They are constructed on top of an analytic algebra (F , ∂,

r ∗
,
r
∗
)

with corresponding evaluations . . .← and . . .→ as explained in Section 3. As usual,
we can express one integral by the other, yielding either −

r
∗

= (1−→)
r ∗

or −
r ∗

=
(1−←)

r
∗
. Choosing randomly the first alternative, we work with the integro-differential

ring (F , ∂,
r ∗

). Up to notational details, the analytic polynomials over (F , ∂,
r ∗
,
r
∗
) are

then the subalgebra of F [∂,
r ∗

] generated by the operators

D = ∂, L = ←,

A =
r ∗
, R = →,

B =
r
∗
,= (1−←)

r ∗
⌈f⌉ = f,

using the same names as in the cited article. We use also the abbreviation F = A+B for
the operator of definite integration (note that F is a non-multiplicative unit functional).

Note that for analytic polynomials, the multipliers ⌈f⌉ are restricted to basis elements

f ∈ F ; similar restrictions could be made here. The point is that a system of normal
forms on F [∂,

r
] presupposes a canonical simplifier on the free algebra generated by ∂

and
r
, the functions f ∈ F and the functionals ϕ ∈ M(F∗). Expansion with respect to

fixed bases on F and M(F∗) provides such a canonical simplifier, but there may also
be others. Hence we take the viewpoint that the free algebra is equipped with some

canonical simplifier (the “ground simplifier”), and the confluence result of the following
proposition has to be understood relative to this ground simplifier.

Proposition 8. The rewrite system of Table 1 is noetherian and confluent.

Proof. By the Diamond Lemma 1.2 from (Bergman, 1978), it suffices to ensure the
following two facts: First we must construct a partial wellorder > on the word monoid in
the generators of F [∂,

r
] such that > is compatible with the monoid structure and the

reduction system in Table 1. Second we have to prove that all ambiguities of the reduction
system are resolvable. For defining the partial wellorder, we put ∂ > f for all functions
f and extend this to words by the graded lexicographic construction. The resulting
partial order is clearly well-founded (since it is on the generators) and compatible with
the monoid structure (by its grading). It is also compatible with the reduction system
because all rules reduce the word length except for the Leibniz rule, which is compatible
because ∂ > f .

For proving that the ambiguities of Table 1 are resolvable, note first that we have
no inclusion ambiguities while there are exactly 14 overlap ambiguities. For overlapping
rules ww1 → p1 and w2w → p2 to be resolvable, their S-polynomial p2w1 − w2p1 must
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reduce to zero. This is indeed the case, as one can check by an easy calculation (using
also the axioms of integro-differential algebra for F). As a representative example, let us
reassure ourselves that the S-polynomial from the rules for ww1 =

r
f∂ and w2w =

r
g
r

indeed reduces to

(
r
· g)

r
f∂ −

r
(
r
· g) f∂ −

r
gf +

r
g
r
f ′ +

r
g (e · g) e

= (
r
· g)f − (

r
· g)

r
f ′ − (

r
· g) (e · f) e− (

r
· g)f +

r
∂ · ((

r
· g) · f)

+ (e · ((
r
· g) · f) e−

r
(g · f) + (

r
· g)

r
f ′ −

r
(
r
· g)f ′ + (e · f)(

r
· g) e

=
r
∂ · ((

r
· g) · f) + (e · ((

r
· g) · f) e−

r
(g · f) −

r
(
r
· g)f ′

=
r
(g · f) +

r
(
r
· g)f ′ + 0 −

r
(g · f) −

r
(
r
· g)f ′

= 0,

as it should. 2

In other words, the ideal generated by the polynomials occurring on the left-hand sides
of Table 1 form a noncommutative Gröbner basis. For theory of Gröbner bases, we refer
to (Buchberger, 1965, 1970, 1998) and for its noncommutative extension to (F. Mora,
1986), (T. Mora, 1994), (Ufnarovski, 1998).

Comparing the analytic polynomials in (Rosenkranz, 2005, p. 183) with the reduction
system of Table 1, we would like to emphasize the gain in simplicity and economy:
Despite their higher generality, the integro-differential operators of F [∂,

r
] require just 9

instead of 36 identities! Consequently, this confluence proof (resolving 14 overlaps) can
still be done by hand, while the automatically generated confluence proof for the analytic
polynomials (resolving 233 overlaps) contains 2000 lines; see (Rosenkranz, 2005, p.184f)
for a small fragment of it.

Having a noetherian and confluent rewrite system, every integro-differential operator
has a normal form. In order to describe these normal forms explicitly, it is useful to single
out a particular portion of the operators that will also turn out to be play a distinguished
role in specifying boundary conditions (see Section 5).

Definition 9. The elements of the right ideal

Cond(F∗) = M(F∗)F [∂,
r
]

are called Stieltjes boundary conditions over F ; if there is no danger of ambiguity, we
will henceforth just speak of “boundary conditions.”

We will now describe the normal forms in F [∂,
r
], starting with a simple observation on

reducibility (in general not describing normal forms), which is then used for characterizing
the normal forms of boundary conditions.

Lemma 10. Every integro-differential operator in F [∂,
r
] can be reduced to a linear

combination of monomials fϕ
r
gψ∂i, where i ≥ 0 and each of f, ϕ,

r
, g, ψ may also be

absent.

Proof. Call a monomial consisting only of functions and functionals “algebraic.” Using
the left column of Table 1, it is immediately clear that all such monomials can be reduced
to f or ϕ or fϕ. Now let w be an arbitary monomial in the generators of F [∂,

r
]. By

using the middle column of Table 1, we may assume that all occurrences of ∂ are moved
to the right, so that all monomials have the form w = w1 · · ·wn∂

i with i ≥ 0 and each
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of w1, . . . , wn either a function, a functional or
r
. We may further assume that there is

at most one occurrence of
r

among the w1, . . . , wn. Otherwise the monomials w1 · · ·wn

contain
r
w̃

r
, where each w̃ is an algebraic monomial. But then we can reduce

r
w̃

r
= (

r
fϕ)

r
= (

r
· f)ϕ

r

by using the corresponding rule of Table 1. Applying these reductions repeatedly, we
arrive at algebraic monomials left and right of

r
(or just a single algebraic monomial ifr

is absent). 2

Proposition 11. Every boundary condition β ∈ Cond(F∗) has a normal form

β =
∑

ϕ∈M(F∗)

(

∑

i∈N aϕ,i ϕ∂
i + ϕ

r
fϕ

)

with aϕ,i ∈ K and fϕ ∈ F almost all zero.

Proof. By Lemma 10, every β ∈ Cond(F∗) is a linear combination of monomials having
the form

β0 = χfϕ
r
gψ∂i or β0 = χfϕ∂i (9)

where each of f, g, ϕ, ψ may also be missing. Using the left column of Table 1, the prefix
χfϕ can be reduced to a scalar multiple of a functional, so we may as well assume that
f and ϕ are not present; this finishes the right-hand case of (9). For the remaining case
β0 = χ

r
gψ∂i, assume first that ψ is present. Then we have

χ (
r
gψ) = χ (

r
· g)ψ = (χ ·

r
· g)χψ = (χ ·

r
· g)ψ,

so β0 is again a scalar multiple of ψ∂i, and we are done. Finally, assume we have β0 =
χ
r
g∂i. If i = 0, this is already a Stieltjes normal form. Otherwise we obtain

β0 = χ (
r
g∂) ∂i−1 = (χ · g)χ∂i−1 − χ

r
g′∂i−1 − (e · g) e∂i−1,

where the first and the last summand are in the required normal form, while the middle
summand is to be reduced recursively, eventually leading to a middle term in Stieltjes
normal form −χ

r
g′∂0 = −χ

r
g′. 2

The Stieltjes boundary conditions have the additional benefit of allowing a simple
description of the normal forms for all integro-differential operators. For obtaining a
smooth formulation, let us call the elements of F [∂] ⊂ F [∂,

r
] differential operators ;

they have a straight-forward normal form. Analogously, we write F [
r
] ⊂ F [∂,

r
] for the

subalgebra of integral operators, generated by the functions and
r

modulo the Baxter
rule (uppermost in the right column of Table 1). Using Lemma 10, it is clear that the
normal forms of integral operators are linear combinations of f

r
g with f, g ∈ F .

Finally, we write F [e] = F Cond(F∗) ⊆ F [∂,
r
] for the left F -submodule generated by

Cond(F∗), called the Stieltjes boundary operators (briefly “boundary operators”). Note
that F [e] includes Cond(F∗) as well as all finite-dimensional projection operators P along
linearly independent Stieltjes conditions ϕ1, . . . , ϕn. In fact, P is determined by choosing
a complement [f1, . . . , fn] to [ϕ1, . . . , ϕn]⊥, and the (fi) can be chosen biorthogonal to
the (ϕi) such that

P =
n
∑

i=1

fi ϕi; (10)
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see for example (Regensburger and Rosenkranz, 2007, Prop. 2) and (Köthe, 1969, p. 71).
From the representation (10) it is immediately clear that P ∈ F [e]. All elements of F [e]
have the normal form (10), except that the (fi) need not be biorthogonal to the (ϕi).

It turns out now that every monomial of an integro-differential operator is either a
differential operator or an integral operator or a boundary operator.

Proposition 12. Up to term ordering, every normal form of F [∂,
r
] with respect to the

reduction system of Table 1 can be written uniquely as a sum T + G + B having the

following normal-form summands: a differential operator T ∈ F [∂], an integral operator

G ∈ F [
r
], and a boundary operator B ∈ F [e].

Proof. Inspection of Table 1 confirms that all integro-differential operators having the
described sum representation T+G+P are indeed in normal form. Let us now prove that
every E ∈ F [∂,

r
] has such a representation. It is sufficient to consider the monomials E0

of E. If E0 starts with a functional, we obtain a boundary condition by Proposition 11;
so assume this is not the case. From Lemma 10 we know that

E0 = fϕ
r
gψ∂i or E0 = fϕ∂i,

where each of ϕ, g, ψ may also be missing. But E0 ∈ F [e] unless ϕ is missing, so we may
actually assume

E0 = f
r
gψ∂i or E0 = f∂i.

The right-hand case yields E0 ∈ F [∂]. If ψ is present in the other case, we may reducer
gψ to (

r
· g)ψ, and we obtain again E0 ∈ F [e]. Hence we are left with E0 = f

r
g∂i.

Now assume i > 0, since otherwise we have E0 ∈ F [
r
] immediately; then we can reduce

E0 = f (
r
g∂) ∂i−1 = f

(

g −
r

(∂ · g) − (e · g) e
)

∂i−1

= (fg) ∂i−1 − f
r

(∂ · g) ∂i−1 − (e · g) f e ∂i−1,

where the first term is obviously in F [∂] and the last one in F [e]. The middle term may
be reduced recursively until the exponent of ∂ has dropped to zero, leading to a term in
F [

r
]. 2

4. Initial Value Problems

Up to now we have not discussed the existence of solutions for differential equations,
except for two particularly simple cases: the homogeneous differential equation u(n) = 0,
whose general solution is given by [1, x, . . . , xn−1] as stated in (8), and the inhomogeneous
equation u(n) = f , which has

r
f as one particular solution. In order to have some finer

control on which differential equations we want to have solutions, we will allow to specify
the coefficients of the pertinent linear differential operators separately. (In Differential
Galois Theory, one usually works with differential fields, where one can study extensions
in a much more convenient manner. As we have seen above, though, this route is not
accessible for us here.)

Definition 13. A differential subalgebra F0 ≤ F is called saturated for a differential
algebra F if dim Ker(T ) = n for every monic T ∈ F0[∂] with deg T = n and if all nonzero
solutions for u′ = au with a ∈ F0 are invertible in F . In this context, we call F the
ground algebra and F0 the coefficient algebra. (If F0 coincides with F , we simply speak
of a saturated integro-differential algebra.)
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Some remarks on this definition are in order. First of all, we point out that we need F0

to be differentially closed such that we can multiply and factor within F0[∂], which will
be needed for multiplying and factoring boundary problems in Section 6 and Section 7,
respectively. The first condition on solvability ensures that homogeneous equations Tu =
0 have a fundamental system with the appropriate number of solutions, while the second
condition means that the exponentials behave as expected. Note also that F must be an
ordinary differential algebra as soon as it possesses a saturated coefficient algebra.

Let us give some examples of integro-differential algebras with saturated coefficient
algebras.

Example 14. The prototypical example is furnished by C∞(I) where I = [a, b] is some
interval. As a coefficient algebra, one may take either C∞(I) itself or any differential
subalgebras like R or C or C[x]. Similarly, one may take analytic functions Cω(I)
and its differential subalgebras. Less demanding, the exponential polynomials, defined
in (Rosenkranz, 2005, p. 176), can be taken as a ground algebra with C as a coefficient
algebra.

Example 15. For any field K of characteristic 0, the formal power series K[[z]] are a
saturated integro-differential algebra, with derivation and integration defined as usual.
This may also be inferred from the next example by the isomorphism described there.

Example 16. Let K be an arbitrary field (note that we are explicitly including the
case of positive characteristic in this example). Then the algebra H(K) Hurwitz se-
ries (Keigher, 1997) over K is defined as the K-vector space of infinite K-sequences with
the multiplication defined as

(an) · (bn) =

( n
∑

i=0

(

n

i

)

aibn−i

)

n

for all (an), (bn) ∈ H(K). If one introduces derivation and integration by

∂ (a0, a1, a2, . . . ) = (a1, a2, . . . ),r
(a0, a1, . . . ) = (0, a0, a1, . . . ),

the Hurwitz series form an integro-differential algebra (H(K), ∂,
r
), as explained in (Keigher

and Pritchard, 2000; Guo, 2002).
Note that as an additive group, H(K) coincides with the formal power series K[[z]],

but its multiplicative structure differs: We have an isomorphism
∞
∑

n=0

an z
n 7→ (n! an)

from K[[z]] to H(K) if and only if K has characteristic zero. The point is that one can
integrate every element of H(K), whereas the formal power series zp−1 does not have an
antiderivative in K[[z]] if K has characteristic p.

Defining the exponential function exp = (1, 1, 1, . . . ), we have immediately ∂ exp =
exp. One can introduce a composition f ◦ g for f, g ∈ H(K) whenever g has vanishing
constant term, and the usual chain rule is satisfied for this composition (Keigher and
Pritchard, 2000). Then the first-order homogeneous equation u′ = au with a ∈ H(K) is
solved by

u = c exp ◦ (
r
a),
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which is easily seen to be invertible in H(K). By Corollary 4.3 in (Keigher and Pritchard,
2000), we know also that all monic homogeneous differential equations of order n have
an n-dimensional kernel. Hence H(K) is a saturated integro-differential algebra.

From now on throughout the rest of this paper, we assume (F , ∂,
r
) is an integro-

differential algebra with a saturated coefficient algebra F0. As before, we write e for
the associated evaluation. Having integrals, it is natural to expect that we can also
solve inhomogeneous equations. As we shall see now, it is always possible to find such a
particular solution, but we can be more specific than that.

We formulate the initial value problem for a monic differential operator T ∈ F0[∂] and
evaluation η ∈ M(F∗) as follows: Given a forcing function f ∈ F , find u ∈ F such that

Tu = f

ηu, ηu′, . . . , ηu(n−1) = 0.
(11)

is satisfied. Problems of this kind can be solved uniquely.

Proposition 17. Under the above assumptions, the initial value problem (11) has a

unique solution u ∈ F for every f ∈ F .

Proof. We can use the usual technique of reformulating (11) as a system of linear first-
order differential equations with companion matrix A ∈ Fn×n

0 , then we apply the well-
known variation-of-constants formula (Coddington and Levinson, 1955, p. 74). To this
end, we pick a fundamental system u1, . . . , un ∈ F for T and compute the Wronskian
matrix

W =

















u1 . . . un

u′1 . . . u′n
...

. . .
...

u
(n−1)
1 . . . u

(n−1)
n .

















,

Note that d = detW satisfies the first-order differential equation d′ = ad, where a =
trcA ∈ F0; see for example Exercise 1.14.5 in (van der Put and Singer, 2003), noting that
one does not need a differential field here. Since F0 is saturated for F , the determinant
d must be invertible and hence W a regular matrix. By Proposition 1, the operator
−

r
= (1− η)

r
is the section of ∂ with evaluation 1−−

r
∂ = η. We extend the action of the

operators −
r
, ∂, η componentwise to Fn. Setting now

û = (W−
r
W−1) f̂

with f̂ = (0, . . . , 0, f)⊤ ∈ Fn, one may readily check that û ∈ Fn is a solution of the

first-order system û′ = Aû + f̂ with initial condition ηû = 0, where A is the companion
matrix of T . Writing u for the first component of û, we have a solution of (11).

For proving uniqueness, assume u is a solution of (11) for f = 0; we must show
u = 0. We may expand u = c1u1 + . . . + cnun in terms of the fundamental system
u1, . . . , un with suitable coefficients c1, . . . , cn ∈ K. Then the initial conditions of (11)
may be summarized by η(Wc) = 0 with the coefficient vector c = (c1, . . . , cn)⊤ ∈ Kn.
But η(Wc) = η(W )c because η is linear, and det η(W ) = η(detW ) since it is moreover

multiplicative; hence η(W ) ∈ Kn×n is regular with c = η(W )−10 = 0 and u = 0, as
required. 2
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Every integro-differential ring (F , ∂,
r
) comes with a distinguished evaluation η = e, so

we may speak of the initial value problem associated with any monic T ∈ F0[∂]. If u ∈ F
is the unique solution to the corresponding inital value problem with forcing function f ,
we obtain an operator T� : F → F with u = T�f , which we shall call the fundamental

right inverse of T . Notation and terminology are in accordance with (Rosenkranz, 2005),
where the evaluation e : C∞[a, b] → C∞[a, b] is given by u 7→ u(a). Inspecting the proof
of Proposition 17, one can see that u may in fact be obtained from f by the operation of
a suitable integro-differential operator of F [∂,

r
]. This holds in particular for the initial

value problem with evaluation η = e.

Fact 18. For every monic T ∈ F0[∂], the fundamental right inverse can be realized as

an integro-differential operator T� ∈ F [∂,
r
].

5. Boundary Problems

The main purpose of F [∂,
r
] is to provide a unified language for expressing boundary

problems as well as their solutions. As explained in Section 1, a boundary problem of
order n is typically formulated as follows: Given a forcing function f ∈ F , we have to
find u ∈ F such that

Tu = f

β1u = . . . = βnu = 0
(12)

for a monic differential operator T ∈ F0[∂] with deg T = n and boundary conditions
β1, . . . , βn ∈ F∗. The differential operator is evidently in F [∂,

r
], and the same is true

about the boundary conditions if we stick to the restriction of Definition 9. The solution
is usually expressed as u = Gf , where G : F → F is the so-called Green’s operator of
the boundary problem (12). As we shall see in Theorem 21, the Green’s operator G can
also be expressed as the action of an element of F [∂,

r
].

We think of the boundary conditions β1, . . . , βn ∈ F∗ of (12) as specifying a space of

admissible functions

A = {β1, . . . , βn}
⊥ ≤ F .

Obviously we may replace the boundary conditions β1, . . . , βn ∈ F∗ by other boundary
conditions β̃1, . . . , β̃n ∈ F∗ such that β̃i = ci1β1 + . . . + cinβn for a regular matrix
(cij) ∈ Kn×n, leading to the same space of admissible functions A = {β̃1, . . . , β̃n}

⊥. This
means that the admissible functions may be described invariantly as A = B⊥ in terms of
B = [β1, . . . , βn] = [β̃1, . . . , β̃n]. Such a finite-dimensional subspace B ≤ F∗ will be called
a space of boundary conditions.

The operators . . .⊥ on F and F∗ create an order-reversing Galois connection between
the complemented modular lattices P(F) and P̄(F∗), where P(. . . ) denotes the full
subspace lattice and P̄(. . . ) the sublattice of all orthogonally closed subspaces (the latter
means that . . .⊥⊥ acts as the identity). Specifically, we have

B⊥ = {u ∈ F | ∀β∈B β(u) = 0}

for space of functions satisfying the boundary conditions in B and

A⊥ = {β ∈ F∗ | ∀u∈A β(u) = 0}

for the space of boundary conditions satisfied by the functions in A. We are thus in a
similar situation as in algebraic geometry, where affine varieties play the role of P(F)
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while radical ideals correspond to P̄(F∗). Having an order-reversing lattice isomorphism
between P(F) and P̄(F∗), we can take advantage of relations like

(F1 ∩ F2)
⊥ = F⊥1 + F⊥2 and F1 ∔ F2 = F ⇔ F⊥1 ∔ F⊥2 = F∗,

which will turn out to be important for manipulating boundary problems (see Section 6).
We refer to our forthcoming article (Regensburger and Rosenkranz, 2007) for an abstract
approach along these lines.

For our present purposes, however, we are interested in an algorithmic treatment of
boundary conditions and their associated spaces of admissible functions. Hence we have to
restrict the set of available primitives in such a way that all the relevant operations—like
the ones occurring in the relations above—are algorithmically feasible but still generous
enough to be applicable to the boundary problems under consideration. (If we want to
build what is called a regular boundary problem, further restrictions have to be imposed
on the boundary conditions; see Section 6 on this.)

In the usual setting, a boundary problem of order n is accompanied by so-called two-
point boundary conditions (Stakgold, 1979, p. 203), which have the form

βu =

n−1
∑

i=0

ai u
(i)(0) + bi u

(i)(1)

with a0, . . . , an−1, b0, . . . , bn−1 ∈ K. Obviously, we may view

β =

n−1
∑

i=0

ai LD
i + biRD

i

as an element of F [∂,
r
] if we adopt the classical setting F = C∞[0, 1] with its usual

interpretation as an analytic algebra. Note that L,R ∈ M(F∗). In a general integro-
differential algebra F , we will allow any linear combination of conditions having the
form ϕ∂i with ϕ ∈ M(F∗); let us speak of a point condition in this case.

We use the more general setting of Stieltjes conditions, more commonly used for sys-
tems of linear ordinary differential equations; see for example (Brown and Krall, 1974,
1977). Assuming again a boundary problem of order n in the usual setting, such a con-
dition takes the form

βu =

n−1
∑

i=0

ai u
(i)(0) + bi u

(i)(1) +

∫ 1

0

f(ξ)u(ξ) dξ,

where the sum part gives a point condition as before while the kernel f ∈ F provides
an integral condition. Note that the normal forms in Proposition 11 are exactly in this
form. A boundary condition is called global if the kernel f 6= 0 and local otherwise.

There are at least three reasons for considering Stieltjes conditions: First of all, they
are interesting in themselves because certain boundary problems are naturally expressed
in terms of global side conditions (for example, specifying the heat radiated through
the boundary). This in also true for regularizing ill-posed problems and computing their
generalized Green’s function (Rosenkranz, 2005, p. 191). A second reason for introducing
Stieltjes conditions will become manifest in Section 7: Factoring a boundary problem
leads to factor problems with global conditions, even for a problem having only local
conditions (see also Example 23). Finally, a third advantage of Stieltjes conditions is
that they have a natural algebraic characterization as we have see in Definition 9.
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Let us return to spaces of boundary conditions, now in the following precise sense: We
write Bn for the set of all n-dimensional subspaces B = [β1, . . . , βn] ≤ F∗ generated by
n linearly independent Stieltjes boundary conditions β1, . . . , βn ∈ Cond(F∗); note that
[] = O ∈ B0. Since all finite-dimensional subspaces of F∗ are orthogonally closed, the
Galois connection restricts to an order-reversing lattice ismorphism—this is no longer
the case when dealing with linear boundary problems for partial differential equations
(again we refer to (Regensburger and Rosenkranz, 2007) for details).

Then B =
⋃

n Bn is closed under the operation + of constructing the sum of vector
spaces, thus yielding an abelian monoid (B,+) to be called the monoid of boundary

conditions. Specifically, the sum of an m-dimensional and an n-dimensional space of
boundary conditions gives

[β1, . . . , βm] + [β̃1, . . . , β̃n] = [β1, . . . , βm, β̃1, . . . , β̃n] = [γ1, . . . , γk],

with dimension k ≤ m+n. In order to compute linearly independent boundary conditions
γ1, . . . , γk, one may apply the following evident strategy.

Fact 19. There is an effective method for computing a basis for an arbitrary B ∈ B:

Given generators β1, . . . , βl of B, find linearly independent γ1, . . . , γk such that B =
[γ1, . . . , γk].

Proof. Expand each of β1, . . . , βl in the K-basis of normal-form monomials as given by
Proposition 11. Although the number of such basis elements is infinite, the expansions
of β1, . . . , βl will only use finitely many of them, say, m1, . . . ,mr. This yields an l × r
matrix (aij) over K such that βi = ai1m1 + . . . + airmr for all i ∈ {1, . . . , l}. Reducing
the matrix (aij) to row echelon and discarding the zero rows leads to the desired K-basis
γ1, . . . , γk of B. 2

Let us write Dn for the set of all monic T ∈ F0[∂] with detT = n and set D =
⋃

n Dn.
In this paper, we will only be concerned with boundary problems (12) that are regular

in the sense that they have a unique solution u for each forcing function f . Below we will
reformulate the condition of regularity directly in terms of the differential operator and
the space of boundary conditions.

Note that we do not require well-posedness. Following Hadamard, a well-posed prob-
lem (Engl et al., 1996, p. 86) must be regular as well as stable (meaning the solution
u depends continuously on the data f). Our approach is purely algebraic, so we do not
care about stability (which would first of all require a topology on F). For example, the
following boundary problem in F = C∞[0, 1] is regular but not well-posed, at least not
when in the common setting of the Banach space (F , ‖ · ‖∞): Given f , find u such that
u′−u = f and u′′(0) = 0. In this case, the solution exists and is unique; in fact, it is given
by u(x) =

∫ x

0 f(ξ) dξ − (f(0) + f ′(0)) ex, so the Green’s operator is ex − exL − exLD.
Incidentally, this example illustrates another unusual feature of our setting—we do not
restrict the derivatives in the boundary/initial conditions to orders below the order of the
differential equation (even though it will often be reasonable to make such a restriction).

Definition 20. A boundary problem of order n is a pair (T,B) with T ∈ Dn and B ∈ Bn.
We write Pn for the set of all such boundary problems, setting P =

⋃

n Pn. A boundary
problem (T,B) is called regular if Ker(T ) ∔ B⊥ = F .
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As explained in (Regensburger and Rosenkranz, 2007), the requirement of the direct
sum is equivalent to Ker(T )∩Ker(B) = O and also to Ker(T )+Ker(B) = F since we have
insisted on deg T = dimB in the current setting. It is moreover equivalent to regularity
in the sense discussed above and to the following algorithmic determinant criterion: If
u1, . . . , un is any basis of Ker(T ) and β1, . . . , βn any basis of Ker(B), the problem (T,B)
is regular iff

∣

∣

∣

∣

∣

∣

∣

∣

∣

β1(u1) · · · β1(un)
...

. . .
...

βn(u1) · · · βn(un)

∣

∣

∣

∣

∣

∣

∣

∣

∣

6= 0.

This test may be found in (Kamke, 1967, p. 184) for the special case of two-point bound-
ary conditions, but it is a general property of linear epimorphisms with finite-dimensional
kernel (see (Regensburger and Rosenkranz, 2007) for more details). Since in this paper
we consider only regular boundary problems, we will henceforth suppress the attribute
“regular.”

The Green’s operator G of a boundary problem (T,B) is defined by the two conditions
TG = 1 and Im(G) = B⊥. If deg T = n, the space of boundary conditions B can be
described by n basis elements β1, . . . , βn, and we can rewrite the two conditions in the
following traditional form: Given f ∈ F , find u ∈ F such that

Tu = f,

β1u, . . . , βnu = 0;

the Green’s operator G is then given by the mapping f 7→ u. Since every boundary
problem (T,B) has a unique such Green’s operator G, we can introduce the notation
(T,B)−1 for it. In (Rosenkranz, 2005), we have explained how to compute from a funda-
mental system of T the Green’s operator of a two-point boundary problem (T,B) over
the analytic algebra C∞[a, b]. This result generalizes to our present setting.

Theorem 21. Every boundary problem (T,B) ∈ P has a Green’s operator that can be

written as integro-differential operator G ∈ F [∂,
r
].

Proof. The decomposition method explained in (Rosenkranz, 2005) is also valid in our
case; based on the algebraic generalized inverse (Nashed and Votruba, 1976; Engl and
Nashed, 1981), it also carries over to the general setting described in (Regensburger and
Rosenkranz, 2007). Thus we have G = (1−P )T�, where P is the projector onto Ker(T )
along B and T� the fundamental right inverse of T . (In fact, we could take any right
inverse of T , but T� is a canonical choice.)

Setting B = [ϕ1, . . . , ϕn] and Ker(T ) = [f1, . . . , fn] with the (ϕi) biorthogonal to the
(fi), the projector P is characterized by Equation (10), as explained there; in particular,
it is then clear that P ∈ F [e] ⊆ F [∂,

r
]. As noted in Fact 18, we have also T� ∈ F [∂,

r
].

Hence we can conclude that G = (1 − P )T� ∈ F [∂,
r
], as claimed. 2

We observe that the above proof is essentially constructive: Given a “reasonable”
subring of F [∂,

r
], the computation of P is pure linear algebra while that of T� amounts

to solving a linear homogeneous linear differential equation. (A “reasonable subring”
should be a computable ring with a canonical ground simplifier such that every boundary
problem of interest is expressible. One example is furnished by the analytic polynomials of
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Example 7; see (Rosenkranz, 2005, 2003) for the corresponding algorithm for computing
Green’s operators.)

In fact, the factorization method described in Section 7 provides an alternative ap-
proach for computing Green’s operators. The crucial point is that multiplying boundary
problems corresponds to composing their Green’s operators in reverse order (see Propo-
sition 24). In the case of differential operators with constant coefficients, one can in prin-
ciple express any Green’s operator as a product of first-order Green’s operators (which
have a straight-forward formula in terms of the corresponding solutions).

6. Multiplying Boundary Problems

Every integro-differential operator E ∈ F [∂,
r
] acts on B via its adjoint E∗ and thus

leads to the right action

B ·E = {β ◦ E | β ∈ B} = E∗(B);

if B is generated by n (not necessarily linearly independent) boundary conditions β1, . . . , βn,
this gives

[β1, . . . , βn] · E = [β1 ◦ E, . . . , βn ◦ E].

Considering F [∂,
r
] as a multiplicative monoid, this gives a contravariant monoid rep-

resentation Φ: F [∂,
r
] → Hom∗(B) with ΦE(B) = B · E and Hom∗(. . . ) the monoid of

anti-homomorphisms. Using differential operators T ∈ F0[∂] even yields monomorphisms

ΦT : B → B

B 7→ B · T
(13)

because each T has a right inverse like T�. Moreover, a basis β1, . . . , βn of B is transported
into a basis β1 ◦ T, . . . , βn ◦ T of B · T . Writing Mono∗(. . . ) for the monoid of anti-
monomorphisms, this means we have a contravariant monoid representation Φ: F0[∂] →
Mono∗(B) that restricts to Φ: Dn → Mono∗(Bn).

A semi-direct product may be defined for monoids just as for groups (Cohn, 1982,
p. 277); the resulting structure is clearly again a monoid. In the case of monoids, one has
to distinguish semi-direct products and reverse semi-direct products (Eilenberg, 1974);
see also (Regensburger and Rosenkranz, 2007) for more details. In our case, we construct
the reverse semi-direct product D ⋉Φ B = (D × B, ·Φ) with multiplication

(T̃ , B̃) ·Φ (T,B) = (T̃ T, B̃ · T + B) = (T̃ T,ΦT (B̃) + B) (14)

As it turns out, the boundary problems form a submonoid of D ⋉Φ B since they are
closed under this product, henceforth just written as ·.

Lemma 22. The set P ⊆ D × B is closed under the multiplication (14).

Proof. The neutral element of P is given by the degenerate boundary problem (1, O), as
one checks immediately: While 1 ∈ D0 and O ∈ B0, the regularity condition is fulfilled
because Ker(1) = O and Ker(O) = F . (Written out in the classical notation, this is the
following “problem”: Given f ∈ F , find u ∈ F such that u = f without further boundary
conditions.)

For the remaining proof, we refer to (Regensburger and Rosenkranz, 2007), where
the construction of the monoid of boundary problems is carried out in a more general
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abstract setting; moreover, it follows also from Proposition 24. The intuition behind the
proof is clear: In the composite boundary problem (14), the differentiated right-hand
boundary conditions B · T̃ are linearly independent of the left-hand ones since the former
are of a higher order. 2

Example 23. Let us carry out a simple multiplication in the monoid (P, ·), working
with the analytic polynomials of Example 7 over the ground algebra F = C∞[0, 1]. We
claim that

(D, [F ]) · (D, [L]) = (D2, [L,R]). (15)

Indeed, we have [F ] · D = [FD] = [AD + BD] = [(1 − L) + (−1 + R)] = [R − L] and
[F ] · D + [L] = [L,R], so (15) follows. Written in classical notation, we have multiplied
the boundary problems

u′ = f
∫ 1

0 u(ξ) dξ = 0
·

u′ = f

u(0) = 0
=

u′′ = f

u(0) = u(1) = 0
.

We see at this point that global conditions are necessary for the converse process: If we
want to factor the boundary problem (see Section 7) on the right-hand side, we cannot
have two-point boundary conditions in the left-hand factor.

As mentioned after Theorem 21, we can compute Green’s operators from the con-
stituent Green’s operators in a factorization, and in Section 7 we will present a method
for producing such factorizations from a given factorization of the underlying differential
operator. But of course this presupposes that the product of boundary problems cor-

responds to the composition of their Green’s operators in reverse order. In fact, this is
why the composition of boundary problems was defined in the way it is. For the precise
statement, let us write G for the monoid generated by all Green’s operators for boundary
problems in P.

Proposition 24. The transformation (T,B) 7→ (T,B)−1 is an anti-isomorphism from

the monoid P to the monoid G. In other words, every Green’s operator corresponds to

exactly one boundary problem, and we have

(P1P2)
−1 = P−1

2 P−1
1

for all P1,P2 ∈ P.

Proof. By the definition of the monoid structure of P, we have

(T1,B1)(T2,B2) = (T1T2,B1 · T2 + B2).

We must show that the Green’s operator of the right-hand boundary problem is given
by G2G1, if we set G1 = (T1,B1)

−1 and G2 = (T2,B2)
−1. Clearly we have

TG = (T1T2)(G2G1) = T1(T2G2)G1 = T1G1 = 1;

let us now show Im(G2G1) = (B1 · T2 + B2)
⊥. Consider first u = G2G1f . We have

β(u) = 0 for all β ∈ B2 since Im(G2) = B⊥2 and β(T2u) = β(G1f) = 0 for all β ∈ B1 since
Im(G1) = B⊥1 , so u ∈ (B1 ·T2+B2)

⊥ as claimed. Now assume conversely u ∈ B1 ·T
⊥
2 as well
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as u ∈ B⊥2 . The latter condition means u = G2v for some v, while the former condition
implies v ∈ B⊥1 and hence v = G1f for some f . Hence we have indeed u = G2G1f .

Now for the uniqueness of the Green’s operators. Consider two boundary problems
(T,B), (T̄ , B̄) ∈ P with the same Green’s operator G. Then we obtain from TG = 1
and T̄G = 1 that (T − T̄ )G = 0, so T − T̄ vanishes on the infinite-dimensional space
Im(G) ≤ F . Assume now T 6= T̄ for a contradiction. Then T − T̄ is a nonzero differential
operator over a saturated coefficient algebra F0, so it has a finite-dimensional kernel and
hence cannot vanish on all of Im(G). Hence we have indeed T = T̄ . Finally, we have also
B⊥ = Im(G) = B̄⊥ and hence B = B̄. 2

7. Factoring Boundary Problems

In this section we will study how to split boundary problems into smaller ones. It
turns out that every factorization of a differential operator can be “lifted” to the level of
boundary (Theorem 28).

Definition 25. A boundary problem (T2,B2) ∈ P is called a right factor of a boundary
problem (T,B) ∈ P if T2 is a right factor of T and B2 a subspace of B.

Proposition 26. Let (T,B) ∈ P be a boundary problem and T = T1T2 a factorization

of its differential operator. Then (T,B) has a right factor (T2,B2) ∈ P.

Proof. Set deg T1 = m and deg T2 = n. Choose a basis

u1, . . . , um, um+1, . . . , um+n ∈ F

of Ker(T ) such that u1, . . . , um is a basis of Ker(T2), and choose any basis

β1, . . . , βm+n ∈ Cond(F∗)

of B. Since (T,B) is a regular problem, the matrix

B =











β1(u1) . . . β1(um) β1(um+1) . . . β1(um+n)
...

. . .
...

...
. . .

...

βm+n(u1) . . . βm+n(um) βm+n(um+1) . . . βm+n(um+n)











is regular. Hence we may use row operations to annul all entries below the upper left
(m×m) block. (We might also annul the entries below the diagonal or even reduce the
whole matrix B to row echelon form, but this is more than we need at this point.) These
operations are realized by left-multiplying B with a suitable matrix P ∈ GL(K,m + n)
such that the upper left is transformed into a regular matrix

B2 =











β̃1(u1) . . . β̃1(um)

...
. . .

...

β̃m(u1) . . . β̃m(um)











with new upper boundary conditions

β̃i =

m+n
∑

j=1

Pijβj (i = 1, . . . ,m).
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But the regularity of B2 means that (T2,B2) ∈ P if we define B2 = [β̃1, . . . , β̃m], while
B2 is obviously a subspace of B. 2

A refined analysis of Proposition 26 (see (Regensburger and Rosenkranz, 2007) for the
detailed statement and proof in an abstract setting) leads to a full classification of all

the right factors (T2,B2) ∈ P of a given boundary problem (T,B) ∈ P. The bottom line
is that every right factor (T2,B2) corresponds to a direct summand L2 = B⊥2 ∩ Ker(T )
of Ker(T2) in Ker(T ), while every such L2 gives rise to a right factor (T2,B2) with
B2 = B ∩L⊥2 such that one obtains a bijection between right factors of (T,B) and direct
summands of Ker(T2) in Ker(T ). Moreover, (T2,B2) is regular iff B2 ∔ B∩Ker(T2)

⊥ = B.
When referring to P2 = (T2,B2) as a right factor of P = (T,B), we are actually antici-

pating that there is also a left factor P1 = (T1,B1) such that their product yields P . This
is indeed the case, as we will see in Proposition 27. But what is immediately clear is that
if P1 exists, it is uniquely determined by P alone. Indeed, we know from Proposition 24
that G = G2G1, where G, G1, G2 denote the Green’s operators respectively of P , P1,
P2. But this implies G1 = T2G and hence B1 = Im(T2G)⊥.

Apart from the existence question, the disturbing feature of this representation is that
it presuppose knowledge of the Green’s operatorG and thus defeats the plan of exploiting
a factorization of the given boundary problem for determining its Green’s operator from
that of its factors. The next proposition remedies this flaw: it turns out that all we need is
an arbitrary right inverse H2 of the differential operator T2. Now we could take H2 = G2,
but this would still need the computation of a Green’s operator (albeit of a smaller size).
A more reasonable choice is of course H2 = T�

2 , thus reducing the task of computing
Green’s operators to solving initial value problems. (The fundamental right inverse is a
canonical choice here, but there are still many other possibilities. In specific settings, it
may be algorithmically advantageous to choose other right inverses of T2.)

Proposition 27. Given (T,B) ∈ P with T = T1T2, there is a unique (T1,B1) ∈ P such

that every right factor (T2,B2) ∈ P of (T,B) satisfies (T,B) = (T1,B1) ·(T2,B2) and such

that its space of boundary conditions is given by

B1 = (Ker(T2)
⊥ ∩ B) ·H2,

where H2 is an arbitrary right inverse of T2. Hence B1 = B · G2 if G2 is the Green’s

operator of any right factor (T2,B2).

Proof. Set m = deg T1 and n = degT2. We have already seen that if (T1,B1) exists,
it is unique with B1 = Im(T2G)⊥. Since T2G is a right inverse of T1, we have also
Ker(T1) ∔ Im(T2G) = F . But this means (T1,B1) ∈ P if only we can ensure that B1 has
a basis of Stieltjes conditions. And this follows immediately once we have proved

Im(T2G)⊥ = (Ker(T2)
⊥ ∩ B) ·H2 (16)

since when B is generated by Stieltjes conditions, its intersection with Ker(T2)
⊥ is gener-

ated by certain linear combinations of them, while right-multiplication by H2 still yields
Stieltjes conditions because Cond(F∗) was defined as a right ideal in F [∂,

r
].

Using (16), we obtain also (T,B) = (T1,B1) · (T2,B2). For that, it suffices to ensure
that

(Ker(T2)
⊥ ∩ B) ·H2T2 = Ker(T2)

⊥ ∩ B (17)
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since the regularity of (T2,B2) is equivalent to B2 ∔ B ∩ Ker(T2)
⊥ = B as mentioned

after Proposition 26. For proving (17), we apply the stronger result β 7→ β ◦H2T2 leaves
Ker(T2)

⊥∩B pointwise invariant, which follows from the fact that 1−H2T2 is a projector
onto Ker(T2).

It remains to prove (16). First assume β(T2Gu) = 0 for all u ∈ F . Then we have
β = β̃ ◦ H2 if we set β̃ = β ◦ T2, and it suffices to show β̃ ∈ Ker(T2)

⊥ and β̃ ∈ B =
Im(G)⊥. But the former is immediate from the definition of β̃ while the latter follows since
β̃(Gu) = β(T2Gu) = 0 by hypothesis. Conversely, let us now assume β̃ ∈ Ker(T2)

⊥ ∩ B
and show β̃ ◦H2 ∈ Im(T2G)⊥. Indeed, we have

(β̃ ◦H2)(T2Gu) = β̃(H2T2Gu) = β̃
(

Gu
)

− β̃
(

(1 −H2T2)Gu
)

= 0,

because the left term in the sum vanishes by the hypothesis β̃ ∈ B = Im(G)⊥ and the
right term by the hypothesis β̃ ∈ Ker(T2)

⊥ and the fact that 1 − H2T2 is a projector
onto Ker(T2).

The constructive method for computing B1 = (Ker(T2)
⊥∩B) ·H2 is the same as in the

proof of Proposition 26. Using the row-operation matrix P ∈ GL(K,m+ n) constructed
there (the original version creating zeroes only in the lower left block), we compute the
new lower boundary conditions

β̃i =

m+n
∑

j=1

Pijβj (i = m+ 1, . . . ,m+ n)

to obtain a basis β̃m+1 ◦H2, . . . , β̃m+n ◦H2 of B1. 2

Putting together Proposition 26 and Proposition 27, we have now established the
following Factorization Theorem for Boundary Problems, our main result in this section.

Theorem 28. Given a problem (T,B) ∈ P, every factorization T = T1T2 of the differ-

ential operator can be lifted to a factorization (T,B) = (T1,B1) · (T2,B2) of the boundary

problem with (T1,B1), (T2,B2) ∈ P and B2 ≤ B.

We conclude this section with an example of a fourth-order boundary problem arising
in mechanics; see (Kamke, 1967, p. 525).

Example 29. In its traditional formulation, this it the boundary problem P specified
by

u′′′′ + 4u = f,

u(0) = u(1) = u′(0) = u′(1) = 0.

Using the language of analytic polynomials (see Example 7), this means that

P = (D4 + 4, [L,R,LD,RD]),

and we see immediately that here one can employ the natural factorizationD4+4 = (D2−
2i)(D2+2i). Using the basis functions u±± = e±1±i for the kernel ofD4+4, we choose the
boundary conditions for the right factor D2 + 2i in such a way that its Green’s operator
G1 has a convenient formulation (this is not necessary in principle but keeps expressions
shorter). By the generic second-order formula from (Stakgold, 1979, p. 195), also derived
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u
−−

u
−+ u+−

u++

a
−−

(1 + i)(e2
− e2i) 2i(1 − e2) 2(e2i

− 1) (1 − i)(2 − e2
− e2i)

b
−−

(1 + i)(e2
− e2i) 2i(1 − e2) 2(e2i

− 1) (1 − i)(e−2 + e−2i
− 2)

a++ (1 − i)(e−2 + e−2i
− 2) 2(1 − e−2i) 2i(e−2

− 1) (1 + i)(e−2i
− e−2)

b++ (1 − i)(2 − e2i
− e2) 2(1 − e−2i) 2i(e−2

− 1) (1 + i)(e−2i
− e−2)

Table 2. Coefficients for G2

in (Rosenkranz, 2005, p. 196), we are led to P1 = (D2+2i, [(i−1)L−LD, (1−i)R−RD])
or

u′′ + 2i u = f,

(i− 1)u(0) − u′(0) = (1 − i)u(1)− u′(1) = 0

in traditional formulation.
Boundary problem P1 can now be solved easily by the generic second-order formula.

Alternatively, one could also apply the machinery from Theorem 21 or a factorization
into first-order problems as explained at the end of Section 5. In any case, one arrives at
the Green’s operator

G1 =
1 + i

4

(

⌈u+−⌉A ⌈u−+⌉ + ⌈u−+⌉B ⌈u+−⌉
)

,

acting on a function f ∈ C∞[0, 1] according to

G1f(x) =
1 + i

4

(∫ x

0

e(1−i)(x−ξ)f(ξ) dξ +

∫ 1

x

e(i−1)(x−ξ)f(ξ) dξ

)

.

We can now use the Green’s operator G1 of boundary problem P1 for describing the
boundary conditions of the (unique!) left factor P2 in the factorization P = P2P1. One
may easily verify that

P2 = (D2 − 2i, [F ⌈u+−⌉, F ⌈u−+⌉])

or

u′′ − 2i u = f
∫ 1

0
e(1−i)ξ f(ξ) dξ =

∫ 1

0
e(i−1)ξ f(ξ) dξ = 0

(18)

in traditional formulation. Since this is not a two-point boundary problem, let us go
through its solution in some detail. According to Theorem 21, we must first compute
the projector P onto Ker(D2 − 2i) characterized by the fact that Im(1−P ) is the space
of boundary conditions of (18). In other words, we have to find a basis (û+−, û−+) of
Ker(D2 − 2i) that is biorthogonal to (F ⌈u+−⌉, F ⌈u−+⌉); then the projector is given by
P = ⌈û+−⌉F ⌈u+−⌉ + ⌈û−+⌉F ⌈u−+⌉. Carrying out the computation (which involves
inverting a 2 × 2 matrix and four definite integrals) leads to

û+− =
(e2 − 1) u−− − (e−2i − 1)i u++

∆
,

û−+ =
(e2i − 1)i u−− − (e−2 − 1) u++

∆
,
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u
−−

u
−+ u+−

u++

a
−−

i(e2i
− e2) (1 − i)(1 − e2) (1 + i)(1 − e2i) e2 + e2i

− 2

b
−−

i(e2i
− e2) (1 − i)(1 − e2) (1 + i)(1 − e2i) 2 − e−2

− e−2i

a
−+ (1 − i)(1 − e2) e2

− e−2i i(2 − e2
− e−2i) (1 + i)(e−2i

− 1)

b
−+ (1 − i)(1 − e2) e2

− e−2i i(e−2 + e2i
− 2) (1 + i)(e−2i

− 1)

a+−
(1 + i)(1 − e2i) i(e−2 + e2i

− 2) e2i
− e−2 (1 − i)(e−2

− 1)

b+−
(1 + i)(1 − e2i) i(2 − e2

− e−2i) e2i
− e−2 (1 − i)(e−2

− 1)

a++ 2 − e−2
− e−2i (1 + i)(e−2i

− 1) (1 − i)(e−2
− 1) i(e−2

− e−2i)

b++ e2 + e2i
− 2 (1 + i)(e−2i

− 1) (1 − i)(e−2
− 1) i(e−2

− e−2i)

Table 3. Coefficients for G

where ∆ = cos 2+cosh2−2. The next step is to determine the fundamental right inverse
of D2 − 2i. A straightforward computation yields

H2 =
i− 1

4

(

⌈u−−⌉A ⌈u++⌉ − ⌈u++⌉A ⌈u−−⌉
)

.

Now we can compute the Green’s operator of boundary problem P2 as G2 = (1− P )H2.
Using the normalization engine for analytic polynomials decribed in (Rosenkranz, 2005),
we arrive at

G2 =
1

8∆

(

⌈u−−⌉A ⌈a−−⌉ + ⌈u−−⌉B ⌈b−−⌉

+ ⌈u++⌉A ⌈a++⌉ + ⌈u++⌉B ⌈b++⌉
)

,

where each of a−−, b−−, a++, b++ is a linear combination of the four functions u−−, u−+, u+−, u++

according to Table 2.
According to Proposition 24, the Green’s operator G of the full boundary problem

P is given by G1G2. Its explicit form, obtained by noncommutative multiplication and
subsequent normalization, is given here for reference; often one will actually prefer the
factored representation in terms of G1 and G2. We have

G =
1 + i

32∆

(

⌈u−−⌉A ⌈a−−⌉ + . . .+ ⌈u++⌉B ⌈b++⌉,

similar to G2 in structure, but now with four additional summands coming from u−+

and u+−. The eight functions a−−, . . . , a++ are again linear combinations of the type
before, with the coefficients given in Table 3.

8. Conclusion

Factoring a differential equation reduces the order in the resulting problems and thus
aids in solving the given equation. Since differential equations usually come together with
boundary conditions, they must be incorporated in an additional step (typically viewed as
external to differential algebra). The theory presented in this paper extends the technique
of factorization for linear ordinary differential equations in such a way that the boundary
conditions become an integral part, leading to an algorithmic machinery for factoring and

solving (not necessarily self-adjoint) boundary problems over integro-differential algebras.
The implementation of these algorithms will be described in a subsequent paper.

27



Let us now discuss some possibilities of extending our approach into various directions:
partial differential equations, linear systems of ordinary differential equations, difference
equations, polynomial boundary conditions, semilinear boundary problems, dual pairings
and duality theory, analytical aspects, and localization.

In this paper, we have restricted ourselves to ordinary differential equations (and thus
to ordinary integro-differential algebras in the sense of Definition 6). This is convenient
since–relative to given fundamental systems—it allows us to compute Green’s operators
in closed form. But the concept of multiplying (and hence factoring) boundary problems,
as defined in (14), may be transferred to a much more general setting, see (Regensburger
and Rosenkranz, 2007).

It can in particular be applied to linear partial differential equations, where one can
exploit suitable results about factoring linear partial differential operators (Grigoriev
and Schwarz, 2007, 2005, 2004; Tsarev, 1998). As a first example, we have factored the
one-dimensional inhomogeneous wave equation on a bounded interval into two first-order
“boundary problems.” This example, stated in (Regensburger and Rosenkranz, 2007) in
some detail, will be treated in a future paper, in which we plan to investigate partial dif-
ferential equations. Part of the work will be the development of symbolic algorithms for
first-order partial differential equations (typical factor problems!) in non-trivial geome-
tries. Since factorization will typically end up with (symbolically) irreducible boundary
problems, it becomes more important to address stability issues here: Well-posed bound-
ary problems should be factored into well-posed blocks, if possible (Engl et al., 1996).

Going into a different direction, one can also apply our methodology of multiplying
and factoring boundary problems to systems of linear ordinary differential equations.
We expect that the solution theory (now using “Green’s matrices” instead of Green’s
functions) as well as the algorithms will essentially carry over to this setting.

Everything considered in this paper was directed towards the continuous case of linear
differential equations, but we expect the discrete case of linear difference equations to
be tractable in principle by the same methods, except for the well-known complications
arising from a skew Leibniz rule and a Baxter axiom with weight unity instead of zero;
see Example 1.6 in (Guo, 2002). As pointed out in Section 2, the concept of integro-
differential algebras generalizes naturally to this situation (Guo and Keigher, 2007).

By contrast, the restriction to linear differential equations seems to be quite rigid: we
do not see how to translate our ideas to nonlinear differential equations. What could be
considered, though, is the case of linear differential equations with polynomial boundary

conditions, a case that is also of interest in applications. (A classical example is given by
the heat equation with radiation on the boundary, described by the Stefan-Boltzmann
law: The normal derivative of the temperature is proportional to its fourth power.) Al-
though the solution operator of such a problem is necessarily nonlinear, we hope that one
can adapt some of our ideas by handling the boundary conditions through ideals instead
of linear subspaces.

In this article, we have worked with the (algebraic) dual of the vector space structure
of the underlying differential algebra. We think that our approach could in principle be
transferred to a setting where a dual pairing is given instead of the canonical bilinear
form; this would include important topological vector spaces like Ck and Lp. Of course,
this requires a modification of the composition structure, leading to a category rather
than a monoid of boundary problems as described in (Regensburger and Rosenkranz,
2007). The advantage might be that one gains topological assertions relating various
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operators (like the differential and the Green’s operators) and spaces (like images and

kernels).

Speaking of duality, one should also mention that the usual duality theory of linear

boundary problems (Coddington and Levinson, 1955, Chapter 11) can be transferred to

“classical” Stieltjes boundary conditions (on real or complex-valued functions); see for

example (Brown, 1975). The idea is that every boundary problem should have a dual or

“adjoint” problem whose solution operator is the “transpose” of the original problem.

The adjoint problem is often useful for characterizing certain aspects of a given primal

problem (e.g. solvability by the Fredholm alternative).

We have not yet exploited the factorized representation of Green’s operators for char-

acterizing Green’s functions (possibly restricted to the well-posed case for avoiding distri-

butions). This may be done from two different perspectives: From an algebraic viewpoint,

one might proceed in a manner similar to the Galois theory of linear ordinary differen-

tial equations; from an analytic viewpoint, the singular value decomposition would be of

interest.

Finally, we should also mention that we have also treated singular boundary problems,

where one needs a modified Green’s function/operator as in the example from Section 3.5

in (Rosenkranz, 2005). This leads to a localization in the ring of Green’s operators—

differential operators appear as the “reciprocals” of suitable integral operators. In this

manner, one obtains a noncommutative generalization of the Mikusiński calculus that

allows a symbolic treatment of boundary problems just like the ordinary Mikusiński

calculus does for initial value problems (Mikusiński, 1959). These ideas will be discussed

in a future paper.
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