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1 Introduction

Wavelets and their generalizations are used in many areas of mathematics ranging from
harmonic analysis over numerical analysis to signal and image processing, see for ex-
ample Daubechies [9], Mallat [26], and Strang and Nguyen [39]. A functionψ ∈ L2(R)
is an orthonormal wavelet if the family

ψjk(x) = 2j/2ψ(2jx− k), for j, k ∈ Z,
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of translated an dilated versions of ψ is an orthonormal basis of the Hilbert space
L2(R). Alfred Haar gave in his dissertation from 1909, published in [16], the first
example of an orthonormal wavelet

ψ(x) =





1, for 0 ≤ x < 1
2 ,

−1, for 1
2 ≤ x < 1,

0, otherwise,

which is now known as the Haar wavelet. Daubechies introduced in her seminal paper
[8] a general method to construct compactly supported wavelets. Her construction is
based on scaling functions, satisfying a dilation equation

φ(x) =
N∑

k=0

hkφ(2x− k) (1.1)

given by a linear combination of real filter coefficients hk and dilated and translated
versions of the scaling function, see the next section for an outline.

Imposing conditions on the scaling function gives via the dilation equation (1.1) con-
straints on the filter coefficients. Orthonormality implies quadratic equations and van-
ishing moments of the associated wavelet and normalization linear constraints. Daub-
echies wavelets [8] have the maximal number of vanishing moments for a fixed num-
ber of filter coefficients, and so there are only finitely many solutions. Parametriz-
ing all possible filter coefficients that correspond to compactly supported orthonormal
wavelets has been studied by several authors [18, 25, 30, 35, 38, 43, 44, 46]. All
parametrizations express the filter coefficients in terms of trigonometric functions, and
there is no natural interpretation of the angular parameters for the resulting scaling
function. Furthermore, one has to solve transcendental constraints for the parameters
to find wavelets with more than one vanishing moment.

We gave parametrizations that use the first discrete moments of the filter coefficients as
parameters and such that the corresponding wavelets have several vanishing moments
first in [33] and then simplified in [32]. See Section 3 for the parametrizations of
four to eight filter coefficients with one parameter and at least one, two, and three
vanishing moments, respectively. To compute these parametrizations we used symbolic
computation and for the more involved equations in particular Gröbner bases, which
were introduced by Buchberger in [1], see also [2]. Other applications of Gröbner
bases to the design of wavelets and filter coefficients are for example discussed in
[4, 5, 15, 22, 23, 28, 29, 36].

As a first application of parametrized wavelets, we showed in [33] how they can by
used for compression by computing an optimal parameter for a given signal, see also
[17]. In this paper, we describe several other applications. In Section 4, we discuss
the regularity of the scaling functions and wavelets corresponding to our parametriza-
tions. We construct wavelets that have a higher Hölder exponent than the Daubechies
wavelets. Filter design is another possible application of our parametrizations. We deal
with the construction of least asymmetric orthonormal wavelets in Section 5. Finally,
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we address the existence of rational filter orthogonal filter coefficients in the last sec-
tion. For example, we show that there are no orthogonal filters with six nonzero filter
coefficients and at least two sum rules.
A Maple worksheet with all computations, several MATLAB functions to produce the
figures and a GUI to compute with and illustrate parametrized wavelets are available
on request from the author.

2 Wavelets and moments
We outline the construction of orthonormal wavelets based on scaling functions and
recall the polynomial equations for the filter coefficients, see for example Daubechies
[9] or Strang and Nguyen [39].
Orthonormality of the integer translates {φ(x− l)}l∈Z in L2(R), that is,

∫
φ(x)φ(x− l)dx = δ0,l

implies, using the dilation equation (1.1), the quadratic equations
∑

k∈Z
hkhk−2l = 2δ0,l, for l ∈ Z, (2.1)

where we set hk = 0 for k < 0 and k > N . We can assume that h0hN 6= 0. Then with
Equation (2.1) we see that N must be odd and the number of filter coefficients even.
If the filter coefficients satisfy the necessary conditions for orthogonality (2.1) and the
normalization

N∑

k=0

hk = 2, (2.2)

then there exists a unique solution of the dilation equation (1.1) in L2(R) with support
[0, N ] and for which

∫
φ = 1, see Lawton [20]. For almost all such scaling functions

the integer translates {φ(x− l)}l∈Z are orthogonal, and then

ψ(x) =
N∑

k=0

(−1)khN−kφ(2x− k) (2.3)

is an orthonormal wavelet.
Necessary and sufficient conditions for orthonormality were given by Cohen [6] and
Lawton [21], see also Daubechies [9, ch. 6.3.]. The only example with four filter
coefficients that satisfies the Equations (2.1) and (2.2) and where the integer translates
of the corresponding scaling are not orthogonal is h0 = h3 = 1 and h1 = h2 = 0 with
the scaling function

φ(x) =

{
1/3, for 0 ≤ x < 3,
0, otherwise.

(2.4)
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The corresponding scaling function for the Haar wavelet is the box function

φ(x) =

{
1, for 0 ≤ x < 1,
0, otherwise.

with the filter coefficients h0 = h1 = 1. In general, there is no closed analytic form
for the scaling function, and for computations with scaling functions and wavelets only
the filter coefficients are used.
Vanishing moments of the associated wavelet are related to several properties of the
scaling function and wavelet. For example, to regularity, the polynomial reproduction
and the approximation order of the scaling function, and the decay of the wavelet coef-
ficients for smooth functions, see Strang and Nguyen [39] and the survey [40] by Unser
and Blu for details. The condition that the first p moments of the wavelet ψ vanish

∫
xlψ(x) dx = 0, for l = 0, . . . , p− 1

is using Equation (2.3) equivalent to the sum rules

N∑

k=0

(−1)kklhk = 0, for l = 0, . . . , p− 1. (2.5)

One then says that ψ has p vanishing moments or the filter coefficients satisfy p sum
rules.
Since we use discrete moments

mn =
N∑

k=0

hkk
n

of the filter coefficients as a parameters, we recall a well-known recursive relation
between discrete and continuous moments

Mn =
∫
xnφ(x) dx

of the scaling function. Let φ be a scaling function satisfying M0 =
∫
φ = 1. Then

m0 = 2 and

Mn =
1

2n+1 − 2

n∑

i=1

(
n

i

)
miMn−i,

mn =
(
2n+1 − 2

)
Mn −

n−1∑

i=1

(
n

i

)
miMn−i, for n > 0,

see for example Strang and Nguyen [39, p. 396]. Using the recursion we obtain for the
first moments

M1 = 1/2m1

M2 = 1/6m2
1 + 1/6m2

M3 = 1/28m3
1 + 1/7m1m2 + 1/14m3
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and
m1 = 2M1

m2 = −4M2
1 + 6M2

m3 = 12M3
1 − 24M1M2 + 14M3.

Explicit formulas expressing the discrete moments in terms of the continuous and vice
versa are given in [33].

3 Parametrizations
We give the parametrization from [32] of four, six, and eight filter coefficients corre-
sponding respectively to orthonormal wavelets with at least one, two and three vanish-
ing moments. All families depend on the first discrete moment

m = m1 =
N∑

k=0

hkk

of the filter coefficients. We also discuss some special parameter values, for example,
for the Daubechies wavelets.

3.1 Four filter coefficients
We have the following parametrization of filter coefficients with at least one vanishing
moments:

h0 = 1/2− 1/4 a− 1/4w

h1 = 1/2− 1/4 a+ 1/4w

h2 = 1/2 + 1/4 a+ 1/4w

h3 = 1/2 + 1/4 a− 1/4w

(3.1)

with w =
√

4− a2 and a = m− 3 ∈ [−2, 2].
Note that for a = −a we obtain the flipped filter coefficients. For a = 0 we get the
filter coefficients (0, 1, 1, 0), whichcorrespond to a translated Haar scaling function and
wavelet. The parameter values a = −2, 2 give also Haar scaling functions with the
filter coefficients (1, 1, 0, 0) and (0, 0, 1, 1). The Daubechies wavelet has two vanishing
moments, so we have one more sum rule

2h0 − h1 + h3 = 0.

Substituting the parametrized filter coefficients into this equations and solving for a, we
get the two solutions a = −√3,

√
3 with the first discrete momentsm = 3−√3, 3+

√
3.

The first solution gives the famous Daubechies filters [8]

1/4 (1 +
√

3, 3 +
√

3, 3−
√

3, 1−
√

3) (3.2)
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and the second the flipped version. See Figure 3.1 for plots of scaling functions for
various parameter values.

0 1 2 3

−0.5

0

0.5

1

1.5

2

0 1 2 3

−0.5

0

0.5

1

1.5

2

0 1 2 3

−0.5

0

0.5

1

1.5

2

0 1 2 3

−0.5

0

0.5

1

1.5

2

0 1 2 3

−0.5

0

0.5

1

1.5

2

0 1 2 3

−0.5

0

0.5

1

1.5

2

Figure 3.1: Scaling functions for a = −2,−√3,−1/3
√

3− 2/3 (first row)
and a = 1/3

√
3− 4/3,−2 +

√
3, 0 (second row).

We have a second parametrization of filter coefficients with at least one vanishing mo-
ment:

h0 = 1/2− 1/4 a+ 1/4w

h1 = 1/2− 1/4 a− 1/4w

h2 = 1/2 + 1/4 a− 1/4w

h3 = 1/2 + 1/4 a+ 1/4w

(3.3)

with w =
√

4− a2 and a = m− 3 ∈ [−2, 2].
Comparing this solution with the parametrized filter coefficients (3.1), we see that w
is replaced by −w and so the two first and the two last filter coefficients are swapped.
Note that again for a = −a we obtain the flipped filters.
For a = 0 we now get the filter coefficients (1, 0, 0, 1), which give the scaling function
(2.4) where the integer translates of the scaling function are not orthogonal. The pa-
rameter values a = −2, 2 also give Haar scaling functions with the filter coefficients
(1, 1, 0, 0) and (0, 0, 1, 1). This parametrization does not contain filter coefficients with
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a second vanishing moment. The corresponding scaling functions are, compared to the
parametrization (3.1), irregular, see Section 4 for details.

3.2 Six filter coefficients

We have the following parametrization of filter coefficients with with at least two van-
ishing moments:

h0 = −3/32− 1/8 a+ 1/32 a2 − 1/32w

h1 = 5/32− 1/8 a+ 1/32 a2 + 1/32w

h2 = 15/16− 1/16 a2 + 1/16w

h3 = 15/16− 1/16 a2 − 1/16w

h4 = 5/32 + 1/8 a+ 1/32 a2 − 1/32w

h5 = −3/32 + 1/8 a+ 1/32 a2 + 1/32w

(3.4)

with w =
√−a4 + 14 a2 + 15 and a = m− 5 ∈ [−√15,

√
15].

The Daubechies wavelet has one more vanishing moment, that is, it satisfies the sum
rule

−9h0 + 4h1 − h2 − h4 + 4h5 = 0.

Substituting the parametrized filter coefficients into this equations and solving for a,
we get one real solution a = −

√
5 + 2

√
10, which gives the filter coefficients

1/16 (1 +
√

10 + w, 5 +
√

10 + 3w, 10− 2
√

10 + 2w,

10− 2
√

10− 2w, 5 +
√

10− 3w, 1 +
√

10− w) (3.5)

with w =
√

5 + 2
√

10. The Daubechies filters with four nonzero filter coefficients
(3.2) satisfy two sum rules and are therefore contained in this parametrization. Their
first discrete moment is m = 3 − √

3. So here the corresponding parameter a =
−2−√3. We get a translated version for a = −√3. For a = −√15 we obtain

1/8 (3 +
√

15, 5 +
√

15, 0, 0, 5−
√

15, 3−
√

15).

The parameter a = −1 gives the first coiflet

1/16 (1−
√

7, 5 +
√

7, 14 + 2
√

7, 14− 2
√

7, 1−
√

7,−3 +
√

7),

see Daubechies [10] and [9, ch. 8.2.]. For a = 0 we get

1/32 (−3−
√

15, 5 +
√

15, 30 + 2
√

15, 30− 2
√

15, 5−
√

15,−3 +
√

15).

See Figure 3.2 for plots of scaling functions for various parameter values. The corre-
sponding scaling functions and wavelets for a > 0 become increasingly irregular, see
Section 4 for details.
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3.3 Eight filter coefficients

We have the following parametrization of filter coefficients with at least three vanishing
moments:

h0 = − 1
512

a5 − 7 a4 − 2 a3 + 30 a2 − 55 a− 15 + (1− a)w
a2 + 1

h1 = − 1
512

a5 − 9 a4 + 30 a3 + 2 a2 − 23 a+ 63 + (1 + a)w
a2 + 1

h2 =
1

512
3 a5 − 5 a4 − 102 a3 + 186 a2 − 261 a+ 35 + 3(1− a)w

a2 + 1

h3 =
1

512
3 a5 − 11 a4 − 70 a3 + 358 a2 − 229 a+ 525 + 3(1 + a)w

a2 + 1

h4 = − 1
512

3 a5 + 11 a4 − 70 a3 − 358 a2 − 229 a− 525 + 3(1− a)w
a2 + 1

h5 = − 1
512

3 a5 + 5 a4 − 102 a3 − 186 a2 − 261 a− 35 + 3(1 + a)w
a2 + 1

h6 =
1

512
a5 + 9 a4 + 30 a3 − 2 a2 − 23 a− 63 + (1− a)w

a2 + 1

h7 =
1

512
a5 + 7 a4 − 2 a3 − 30 a2 − 55 a+ 15 + (1 + a)w

a2 + 1

(3.6)

with
w =

√
−a8 + 36 a6 − 182 a4 + 1540 a2 − 945,

a = m− 7 and a in the intervals

[−
√
β,−√α] or [

√
α,

√
β], (3.7)

where α denotes the smaller and β the bigger real root of

x4 − 36x3 + 182x2 − 1540x+ 945,

with numerical approximations

√
α = 0.8113601077 . . . and

√
β = 5.636256558 . . .

The Daubechies wavelet satisfies one more sum rule

64h0 − 27h1 + 8h2 − h3 + h5 − 8h6 + 27h7 = 0.

Substituting the parametrized filter coefficients (3.6) into this equations and solving for
a, we get two real solution a = −√β,−√α, where α denotes the smaller and β the
larger real root of

x4 − 28x3 + 126x2 − 1260x+ 1225
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or numerically

a = −4.989213573 . . . ,−1.029063869 . . .

The first parameter gives the Daubechies wavelet with extremal phase [9, p. 195]
and the second the “least asymmetric” [9, p. 198]. The Daubechies wavelet with six
nonzero filter coefficients has the first discrete moment m = 5 −

√
5 + 2

√
10, so the

corresponding parameter value for the parametrization (3.6) is

a = −2−
√

5 + 2
√

10 = −5.365197664 . . .

See Figure 3.3 for plots of scaling functions for various parameter values.
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4 Regularity of scaling functions and wavelets

In this section, we discuss the regularity or smoothness of the scaling functions and
wavelets corresponding to the parametrized filter coefficients from the previous section.
The regularity of a function can be measured in different ways, we consider here the
Hölder and Sobolev exponent.

We first recall the definitions. For α = n + β, where n ∈ N and 0 ≤ β < 1, the
set Cα = Cα(R) is defined as the set of all functions f that are n times continuously
differentiable and such that the nth derivative f (n) is uniformly Hölder continuous with
exponent β, that is,

|f (n)(x+ h)− f (n)(x)| ≤ C|h|β , for all x, h ∈ R,

where C is a constant. For s ≥ 0 the Sobolev space Hs = Hs(R) consists of all
functions f ∈ L2(R) such that (1 + |ξ|2)s/2f̂(ξ) ∈ L2(R), where f̂ denotes the fourier
transform of f .

To measure the regularity or smoothness of a scaling function φ, one is interested in
the (optimal) Sobolev

smax = sup{s : φ ∈ Hs}
and Hölder exponent

αmax = sup{α : φ ∈ Cα},
respectively. For a scaling function the Hölder exponent satisfies [41]

αmax ∈ [smax − 1/2, smax]. (4.1)

The regularity of scaling functions is also related to vanishing moments of the cor-
responding wavelet. Villemoes [41] proved that if φ ∈ Hn with n ∈ N, the filter
coefficients satisfy n+1 sum rules or equivalently the corresponding wavelet has n+1
vanishing moments. So in particular if φ ∈ Cn, then the filter coefficients satisfy n+ 1
sum rules, see also [9, pp. 153–156].

Eirola [12] and Villemoes [41] showed independently how the optimal Sobolev ex-
ponent can be computed from the spectral radius of a matrix depending on the filter
coefficients, see also Strang and Nguyen [39] for further details. To find the optimal
Hölder exponent is much more involved, see for example [7, 9, 11, 34], but Rioul [34]
gave an algorithm to compute good lower bounds for the Hölder exponent. The al-
gorithm produces monotonically increasing lower bounds with an increasing number
of iterations, but the storage and computational costs approximately double for each
additional iteration.

In Figures 4.1, 4.2 and 4.3 you can see plots of the Sobolev exponent of the corre-
sponding scaling functions and wavelets depending on one parameter. For four filter
coefficients the Sobolev exponents range from 0.5 to 1 (parametrization (3.1)) and from
0 to 0.5 (parametrization (3.3)). The maximum 1 is attained for the Daubechies wavelet
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Equation (3.1) (left) and (3.3) (right).
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Figure 4.2: Sobolev exponent for scaling functions with six filter coefficients from
Equation (3.4).
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Figure 4.3: Sobolev exponent for scaling functions with eight filter coefficients from
Equation (3.6).

since all other filter coefficients satisfy only one sum rule and hence their Sobolev expo-
nent is necessarily less than one. We obtain numerically the maximal Sobolev exponent
for respectively six and eight filter coefficients

smax = 1.4150, 1.7757,

at the parameter values for the Daubechies wavelets and the minimum is

smax = 0.0399, 0.1393

with parameter values

a = 3.07768194648051, 5.13160341992728.

For more than six filter coefficients it is possible to construct wavelets with a higher
Sobolev exponents than the Daubechies wavelets by omitting more than one sum rule,
see [24, 27, 42].
In Figures 4.4, 4.5 and 4.6 you can see plots of lower bounds for the Hölder exponent
of the corresponding scaling functions and wavelets depending on one parameter, with
the bounds from Equation (4.1). We used 24 iteration in the algorithm from [34].
Note that for most and for eight filter coefficients for all parameters the computed
lower bound is higher than the lower bound smax − 1/2. The negative lower bound
in 4.5 indicates that the corresponding scaling function is not continuous. We obtain
numerically the maximal lower bound for the Hölder exponent for respectively four,
six and eight filter coefficients

α24 = 0.5776, 1.1386, 1.6344

with parameters

a = −1.66260325442517,−3.28211108661493,−4.93905744197576

and filter coefficients
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Figure 4.6: Lower bound for Hölder exponent for scaling functions with eight filter
coefficients from Equation (3.6).

0.31887001724554, 0.59678079636075,
0.18112998275446,-0.09678079636075

0.21634225649014, 0.56180454136425, 0.35257937284659,
-0.08834519690163,-0.06892162933673, 0.02654065553738

0.15488273436983, 0.49644876596501, 0.45767418856225,
-0.00833281609981,-0.13761439998701, 0.01970151455156,
0.02505747705493,-0.00781746441676.

Daubechies and Lagarias [11] obtained the optimal Hölder exponents for the Daubechies
wavelets with a different method (four, six, and eight filter coefficients)

αmax = 0.5500, 1.0878, 1.6179,

where the last one is for the Daubechies wavelet with extremal phase. So we obtained
in all cases wavelets that have a higher Hölder exponent than the Daubechies wavelets.

Daubechies addressed in [10] and [9, p. 242] the question of finding wavelets with
more regularity. For four filter coefficients she obtained the rational filter coefficients
(3/5, 6/5, 2/5,−1/5), which corresponds to a = −8/5 in (3.1), see also Section 6.
With the methods from [11] she found that the Hölder exponent of the correspond-
ing scaling function is at least 0.5864. Lang and Heller [19] discussed the general
optimization problem of maximizing the Hölder exponent for a fixed number of filter
coefficients. They found smoother wavelets than the Daubechies wavelets for more
than eight filter coefficients, but the numerical method failed to find the more regular
wavelets that we obtained using the explicit parametrization of the filter coefficients.
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5 Least asymmetric filters
It is well known [9, p. 252] that if a compactly supported orthonormal wavelet is sym-
metric or antisymmetric around some axis, then it is the Haar wavelet. Symmetry of
the scaling function is in turn equivalent to symmetry of the filter coefficients, see [9,
p. 252–253] and [10]. Here we say that the filter coefficients are symmetric around
n0 ∈ Z/2 if

hn = h2n0−n,

where we set hk = 0 for k < 0 and k > N . Symmetric filters are often called linear
phase filters since the filter coefficients are symmetric around n0 ∈ Z/2 if and only if
the phase of the frequency response

h(ξ) =
∑

n

hne
inξ

is a linear function of ξ, that is, if

h(ξ) = ein0ξ|h(ξ)|.

So we know that complete symmetry and orthogonality is not possible, and one can
only try to find the least asymmetric filter coefficients out of a fixed family. For exam-
ple, Daubechies discussed in [9] and [10] how to choose the least asymmetric out of the
finitely many wavelets with a maximal number of vanishing moments. Another pos-
sibility is to omit some vanishing moments and use the additional degrees of freedom
to find filters with partial symmetry. Several authors [14, 22, 37] discussed the use of
Gröbner bases to find orthogonal filter coefficients with partial symmetry where several
pairs of filters are equal. Zhao and Swamy [45] designed least asymmetric orthogonal
wavelets with several vanishing moments via numerical optimization.
An immediate application of our parametrized filter coefficients is to find symbolically
the least asymmetric filter coefficients using some criteria to measure symmetry. In the
following, we discuss some examples, where we minimize the sum of squares error as
in [45].
We want to find six filter coefficients satisfying two sum rules such that they are almost
symmetric around 2, so that

h0 ≈ h4, h1 ≈ h3, h6 ≈ 0.

Using Maple, we find the minimum of the sum of squares error is attained at a = α,
where α denotes the largest negative real root of

25 x10−30 x9−702 x8+652 x7+5866 x6−3256 x5−13140 x4−1036 x3+5797 x2−2730 x−5190

or numerically
a = −1.102986298 . . .

The filter coefficients are:
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-0.090589559870111, 0.504872307867382, 1.20692569433612,
0.516001958861136,-0.116336134466010,-0.02087426672852.

See Figure 5.1 for the corresponding scaling function, which has a Sobolev exponent
smax = 1.0180 and a lower bound for the Hölder exponent α24 = 0.5370.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−0.4

−0.2
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0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Figure 5.1: Least asymmetric (around 2) scaling function with six filter coefficients
and two sum rules.

Now we consider eight filter coefficients. First we want to find filter coefficients that
are almost symmetric around 3, so that

h0 ≈ h6, h1 ≈ h5, h2 ≈ h4, h7 ≈ 0.

The minimum of the sum of squares error is attained at a = α, where α denotes the
largest negative real root of

11025 x24−21000 x23−901900 x22+1407480 x21+25484946 x20−23935800 x19−280989500 x18

−149785464 x17+837190927 x16+6460372400 x15+4612440168 x14−53422512976 x13

−69302308420 x12+344858640016 x11−84085760856 x10−294800719088 x9+2435452393919 x8

−1913025285928 x7−18887356576348 x6+10024351195096 x5+51733811048402 x4

−17259269191640 x3−57876449779820 x2+8466676099560 x+21625605062145

or numerically
a = −.8395579286 . . .

The filter coefficients are:

-0.073484394510424,-0.071424517120364, 0.556147092523951,
1.154912201440016, 0.568048480655853,-0.135661369346454,

-0.050711178669381, 0.052173685026802.
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Figure 5.2: Least asymmetric (around 3 left and 2.5 right) scaling function with eight
filter coefficients and three sum rules.

See Figure 5.2 (left) for the corresponding scaling function, which has a Sobolev ex-
ponent smax = 1.6569 and a lower bound for the Hölder exponent α24 = 1.3080.
Finally, we want to design filters that are almost symmetric around 2.5, so that

h0 ≈ h5, h1 ≈ h4, h2 ≈ h3, h6 ≈ 0, h7 ≈ 0.

This is related to the example considered in [14, 22], where the authors constructed
using Gröbner bases eight orthogonal filters with two sum rules such that h0 = h5,
h1 = h4 and h2 = h3. The minimum of the sum of squares error is attained at a = α,
where α denotes the second largest negative real root of

2025 x24−9000 x23−168020 x22+823000 x21+4733434 x20−27869720 x19−46538164 x18

+437384872 x17−40684609 x16−3591330192 x15+3105046936 x14+20835868016 x13

−35438686580 x12−64147246896 x11+233849168056 x10−48135550128 x9−894126414729 x8

+1033511750456 x7+2682874758716 x6−4634966862792 x5−4762513155302 x4

+10857513198280 x3+182957235580 x2−6268723929720 x+2258107786305

or numerically
a = −1.927469761 . . .

The filter coefficients are:

-0.114678365799638, 0.127976021526492, 0.977783792709255,
0.990754350911186, 0.120334952341046, -0.133569326041206,
0.016559620749336, 0.014838953603528.

See Figure 5.2 (right) for the corresponding scaling function, which has a Sobolev
exponent smax = 1.5026 and a lower bound for the Hölder exponent α24 = 1.0633.



Chapter 6 Rational filter coefficients 19

6 Rational filter coefficients
In this section, we address the existence of rational orthogonal filter coefficients. We
know from Section 2 that filter coefficients are determined by quadratic equations for
orthonormality (2.1) and linear equations for normalization (2.2) and vanishing mo-
ments (2.5). Note that all these equations have integer coefficients, and we want to
find a rational solution. This leads to “Hilbert’s 10th Problem over Q”, which asks
if there exists an algorithm for deciding the existence of rational points for a system
of polynomial equations with integer coefficients. The answer is not known, and de-
spite centuries of effort, even for curves it is an open problem although many results
and computational methods are known, see for example Poonen [31] for an introduc-
tion and further references. Using our parametrizations, we can reduce the question of
rational filter coefficients to finding rational points on curves and give some answers.
The case of four filter coefficients is not difficult. Daubechies [8] already gave a rational
parametrization of all orthogonal filter coefficients

h0 =
t (t− 1)
t2 + 1

, h1 =
1− t

t2 + 1
, h2 =

t+ 1
t2 + 1

, h3 =
t (t+ 1)
t2 + 1

,

with t ∈ R. Note that for t = −t we obtain the flipped filter coefficients. The interval
−1 ≤ t ≤ 1 corresponds to the filter coefficients from (3.1) and t ≤ −1, 1 ≤ t to (3.3),
except for (1, 0, 0, 1), which are approached for t→∞ and t→ −∞. The Daubechies
wavelet corresponds to t = −1/

√
3. Computing the continued fraction expansion of

−1/
√

3, we obtain the periodic expansion

− 1√
3

= [−1; 2, 2, 1 ]

with the first convergents

−1, −1/2, −3/5, −4/7, −11
19
, −15

26
, −41

71
, −56

97
, −153

265
, −209

362
.

Taking for example t = −209/362, we get a good rational approximation

1/174725 (119339, 206702, 55386,−31977)

for the Daubechies filters. Surprisingly, we obtain the filter coefficients corresponding
to the most regular scaling function found by Daubechies for the second convergent
t = −1/2, see Section 4.
In the parametrization (3.4) for six filter coefficients there appears only the square root

w =
√
−a4 + 14 a2 + 15.

So the question of the existence of rational filters reduces to finding a rational point
(a, b) ∈ Q2 on the (hyperelliptic) algebraic curve defined by the equation

y2 = −x4 + 14x2 + 15 = −(x2 + 1)(x2 − 15). (6.1)
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Proposition 6.1 There are no rational points on the curve defined by Equation (6.1).

Proof. Substituting x = X/Z and y = Y/Z2 in (6.1) and multiplying by Z4, we obtain

Y 2 = −(X2 + Z2)(X2 − 15Z2)

and we equivalently would have to find integers a, b, c with a and c coprime satisfying
this equation. Suppose that we had integers a, b, c satisfying

b2 = −(a2 + c2)(a2 − 15 c2). (6.2)

Then
b2 ≡ (a2 + c2)2 (mod 2)

and hence
b ≡ (a+ c) (mod 2).

This implies that either

a ≡ 1, c ≡ 0 (mod 2) or a ≡ 0, c ≡ 1 (mod 2)

or, since a and c are coprime,

a ≡ c ≡ 1 (mod 2).

In the first case, we then get

(a2 + c2)2 ≡ 1 (mod 4).

But then by Equation (6.2)

b2 ≡ −1 ≡ 3 (mod 4),

which is not possible since the only quadratic residues modulo 4, that is, the integers d
for which

x2 ≡ d (mod 4)

has a solution, are
d ≡ 0, 1 (mod 4).

In the second case, we get

(a2 + c2)2 ≡ 4 (mod 16).

But then by Equation (6.2)

b2 ≡ −4 ≡ 12 (mod 16),

which is not possible since the only quadratic residues modulo 16 are

d ≡ 0, 1, 4, 9 (mod 16),

and the proposition is proved.
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Corollary 6.2 There are no rational orthogonal filters with six nonzero filter coeffi-
cients and at least two sum rules.

In the parametrization (3.6) for eight filter coefficients, we have the square root

w =
√
−a8 + 36 a6 − 182 a4 + 1540 a2 − 945.

So we would have to find a rational point on the algebraic curve defined by the equation

y2 = x8 − 36x6 + 182x4 − 1540x2 + 945.

This is a nonsingular curve with genus 3. Hence by Falting’s Theorem [13] it has only
finitely many rational points, and so there are at most finitely many rational orthogonal
filters with eight nonzero filter coefficients and at least three sum rules.
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