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Abstract

In this paper we investigate the discretization of an elliptic boundary value problem in 3D
by means of the hp-version of the Finite Element Method using a mesh of tetrahedrons. We
present several bases based on integrated Jacobi polynomials in which the element stiffness
matrix has O(p3) nonzero entries, where p denotes the polynomial degree. The proof of the
sparsity requires the assistance of computer algebra software. Several numerical experiments
show the efficiency of the proposed bases for higher polynomial degrees p.

AMS Subject Classification: 65N30, , 33C45, 65Q05, 65N22, 65N35, 65N55 Key words: High order
finite elements, Sobolev Spaces, Orthogonal polynomials

1 Introduction

In this paper, we investigate the following boundary value problem: Let Ω ⊂ R3 be a bounded
domain and let A(x, y, z) be a 3 × 3 matrix which is symmetric and uniformly positive definite in
Ω. Find u ∈ H1

Γ1
(Ω) = {u ∈ H1(Ω), u = 0 on Γ1}, Γ1 ∩ Γ2 = ∅, Γ1 ∪ Γ2 = ∂Ω such that

a△(u, v) :=

∫

Ω

(∇u)TA(x, y, z)∇v =

∫

Ω

fv +

∫

Γ2

f1v := 〈f, v〉Ω + 〈f1, v〉Γ2
(1.1)

holds for all v ∈ H1
Γ1

(Ω). Problem (1.1) will be discretized by means of the hp-version of the finite

element method using tetrahedral elements △s, s = 1, . . . , nel. Let △̂ be the reference tetrahedron

∗The work of the second named author has been supported by the Austrian national science foundation FWF
through SFB F013/01.
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and Fs : △̂ → △s be the (possibly nonlinear) isoparametric mapping to the element △s. We define
the finite element spaceM := {u ∈ H1

Γ1
(Ω), u |△s

= ũ(F−1
s (x, y, z)), ũ ∈ Pp}, where Pp is the space

of all polynomials of maximal total degree p.
By Ψ = (ψ1, . . . , ψN), we denote a basis forM in which the functions ψ1, . . . , ψnv

are the usual hat
functions. The functions ψnv+(j−1)(p−1)+1, . . . , ψnv+j(p−1) correspond to the edge ej of the mesh,
and vanish on all other edges, i.e. satisfy the condition ψnv+(j−1)(p−1)+k−1 |el

= δj,lpk, where pk

is a polynomial of degree p, k = 2, . . . , p. The support of an edge function is formed by those

elements, which have ej in common. One defines (p−1)(p−2)
2 face shapes which are polynomial on

the defining face and vanish on all other faces. The support of these face-based functions is formed
by the two elements sharing the defining face. The remaining basis functions are interior bubble
functions consisting of a support containing one element only. These functions vanish on each face
of the mesh. With this definition, the basis functions ψi can be divided into four groups,

• the vertex functions,

• the edge bubble functions,

• face bubble functions,

• the interior bubble functions,

locally on each element △s, and globally on Ω.
The Galerkin projection of (1.1) onto M leads to the linear system of algebraic finite element
equations

KΨu = f, where KΨ = [a∆(ψj , ψi)]
N
i,j=1 , f

p
= [〈f, ψi〉 + 〈f1, ψi〉Γ2

]
N
i=1 . (1.2)

The global stiffness matrix KΨ can be expressed by the local stiffness matrices on the elements,
i.e.

KΨ =

nel
∑

s=1

RT
s KsRs, (1.3)

where Ks is the stiffness matrix on the element △s and Rs denotes the connectivity matrix for the
numbering of the shape functions on △s and Ω.
Using the vector u, an approximation up = Ψu of the exact solution u of (1.1) can be built from
the usual finite element isomorphism. In the case of smooth solutions u in parts of the domain
Ω, spectral methods, [17], and finite elements of high order (p-version), see e.g. [24], [27], and the
references therein, have become more and more popular for twenty years. For the h-version of the
FEM, the polynomial degree p of the shape functions on the elements is kept constant and the
mesh-size h is decreased. This is in contrast to the p-version of the FEM in which the polynomial
degree p is increased and the mesh-size h is kept constant. Both ideas, mesh refinement and
increasing the polynomial degree, can be combined. This is called the hp-version of the FEM.
The advantage of the p-version in comparison to the h-version is that the solution converges faster
to the exact solution with respect to the number of unknowns N . However, the choice of a basis Ψ
in which the element stiffness matrix Ks has O(N) nonzero matrix entries is a difficult question. In
the one-dimensional case, e.g. for the differential equation −u′′+u = f , one can take the primitives
of orthogonal polynomials in order to get a sparse system matrix, see e.g. [16]. In the 2D and 3D
case, the choice of a basis which is optimal due to condition number and sparsity of KΨ is not so
clear. In [7], several bases have been investigated regarding their condition number. In the case of
tensor product elements △s like quadrilaterals and hexahedrons and a constant diffusion matrix
A, one can take tensor products of integrated Legendre polynomials, see e.g. [6], [16]. Then, the
element stiffness matrix Ks has O(N) nonzero matrix entries and KΨ can be computed in O(N)
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operations via (1.3). However, in the case of a general quadrilateral (hexahedral in 3D) element
△s with nonparallel opposite edges (faces), most of the orthogonality relations of the reference
element case disappear and Ks (and hence KΨ) has, in general, O(p6) matrix entries. Using a
quadrature rule, the cost in order to obtain KΨ is O(p9). In [20], tensor products of Lagrangian
polynomials on the grid of the Gauss-Lobatto points are proposed. Then, the cost for computing
Ks by a quadrature rule is O(p5). This approach can be extended to the tetrahedral case by the
Duffy transformation. If the diffusion function A is piecewise constant, the cost for the generation
of the stiffness matrix can be reduced to O(p4) by the technique of precomputed arrays; see [22],
[17]. However, the choice of a basis in which Ks has O(N) matrix entries for some elements △s

is more difficult. In [26], a new basis for triangular and tetrahedral elements has been proposed.
This basis has many nonzero entries, see [25]. A proof for the sparsity of the element stiffness
matrix with O(p3) nonzero entries is still an open problem in the literature. In [12], another basis
for the triangular case is proposed. Moreover, it is proved that the element stiffness matrix has
O(p2) nonzero entries. In comparison to the basis in [26], the weight of the Jacobi polynomials in
y-direction is increased.
In this paper, we investigate several basis functions for tetrahedral elements. We prove that the
element stiffness matrix Ks has O(p3) nonzero matrix entries in the case of piecewise constant
coefficients A(x, y, z) on the elements △s and affine linear mappings Fs. Moreover, each nonzero
matrix entry can be computed in O(1) operations. So, the matrix vector multiplication and the
generation of the stiffness matrix can be done in O(N) arithmetical operations. One example of
these bases is the basis proposed in [26]. The proof of the sparsity of the system matrix requires the
assistance of a computer algebra system. For another example where computer algebra software
(esp. symbolic summation techniques) have been applied to a problem arising in the hp-version of
FEM see [8]. There the construction of low energy edge and vertex shape functions for triangles
is described, for which cheap recurrence relations have been derived applying recently developed
computer algebra algorithms for hypergeometric summation. A comment on linking symbolic to
numerical computation in the context of hp-FEM can be found in [23].
In section 2, we formulate and prove the most important properties of Jacobi polynomials and
their primitives. In section 3, the shape functions on the reference tetrahedron △̂ are defined and
the main result of this paper, Theorem 3.3, is formulated. The computational properties of the
element stiffness matrix are summarized in section 4. In section 5, we derive a simple Domain
Decomposition (DD) preconditioner for the block of the interior bubbles. In section 6 we describe
how Theorem 3.3 can be proved in an algorithmic manner. We have executed this proof by the
aid of a program we implemented in the computer algebra system Mathematica. In the appendix,
we give the reader an impression of the computation of the nonzero matrix entries of the element
stiffness matrix using our Mathematica program.
Throughout this paper, the reference tetrahedron △̂ denotes the tetrahedron with the vertices
(−1,−1,−1), (1,−1,−1), (0, 1,−1) and (0, 0, 1). The parameter nel denotes the number of ele-

ments and p denotes the polynomial degree. By Fs, we denote the isoparametric mapping from △̂
to the tetrahedron △s.

2 Properties of Jacobi polynomials with weight (1 − x)α

For the definition of our basis functions on the reference element, Jacobi polynomials are required.
In this section, we summarize the most important properties of Jacobi polynomials. We refer the
reader to the books of Abramowitz and Stegun, [1], Andrews, Askey and Roy, [5], and Tricomi, [28],
for more details. Moreover, we state and prove some properties which only hold for polynomials
with weight (1 − x)α(1 + x)0.
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Let

pα,β
n (x) =

1

2nn!(1 − x)α(1 + x)β

dn

dxn

(

(1 − x)α(1 + x)β(x2 − 1)n
)

n ∈ N0, α, β > −1 (2.1)

be the nth Jacobi polynomial with respect to the weight function (1 − x)α(1 + x)β . The function
pα,β

n (x) is a polynomial of degree n, i.e. pα,β
n ∈ Pn((−1, 1)), wherePn is the space of all polynomials

of degree n on the interval. In the special case α = β = 0, the functions p0,0
n (x) are called Legendre

polynomials. Moreover, let

p̂α,β
n (x) =

∫ x

−1

p
α,β
n−1(y) dy n ≥ 1, p̂

α,β
0 (x) = 1 (2.2)

be the nth integrated Jacobi polynomial.
We would like to mention that the integrated Jacobi polynomial (2.2) can be expressed as Jacobi
polynomial (2.1) with modified weights, i.e.

p̂α,β
n (x) =

2

n+ α+ β − 1

[

pα−1,β−1
n (x) − pα−1,β−1

n (−1)
]

, (2.3)

for α > 0 or β > 0. This is easy to be seen, since the derivatives of Jacobi polynomials are again
Jacobi polynomials with shifted parameters, i.e.

d

dx
pα,β

n (x) =
n+ α+ β + 1

2
p

α+1,β+1
n−1 (x),

see [5].
In the following, we use only the Jacobi and integrated Jacobi polynomials with weight (1 − x)α,
i.e. β = 0. Therefore, we omit the second index β in (2.1), (2.2). In this case, relation (2.3)
simplifies to

p̂α
n(x) =

2

n+ α− 1
pα−1,−1

n (x).

The following two lemmas summarize the properties of Jacobi and integrated Jacobi polynomials
which have been proved in [12].

Lemma 2.1. Let pα
n be defined via (2.1). Moreover, let j, l ∈ N0 and α > −1. Then, we have

pα−1
n (x) =

1

α+ 2n

[

(α+ n)pα
n(x) − npα

n−1(x)
]

, (2.4)

pα
n+1(x) =

2n+ α+ 1

(2n+ 2)(n+ α+ 1)(2n+ α)

(

(2n+ α+ 2)(2n+ α)x + α2
)

pα
n(x)

−
n(n+ α)(2n+ α+ 2)

(n+ 1)(n+ α+ 1)(2n+ α)
pα

n−1(x), n ≥ 1. (2.5)

Moreover, the integral relations

∫ 1

−1

(1 − x)αpα
j (x)pα

l (x) dx = ρα
j δjl, where ρα

j =
2α+1

2j + α+ 1
, (2.6)

∫ 1

−1

(1 − x)αp
β
j (x)ql(x) dx = 0 ∀ql ∈ Pl, α− β ∈ N0, j > l + α− β (2.7)

hold.

4



Lemma 2.2. Let l, j ∈ N0. Let pα
n and p̂α

n be defined via (2.1) and (2.2). Then, the identities

p̂α
n(−1) = 0, n ≥ 1, (2.8)

p̂α
n(x) =

2n+ 2α

(2n+ α− 1)(2n+ α)
pα

n(x) +
2α

(2n+ α− 2)(2n+ α)
pα

n−1(x)

−
2n− 2

(2n+ α− 1)(2n+ α− 2)
pα

n−2(x), n ≥ 2, (2.9)

p̂α
n+1(x) =

2n+ α− 1

(2n+ 2)(n+ α)(2n+ α− 2)
((2n+ α− 2)(2n+ α)x+ α(α − 2)) p̂α

n(x)

−
(n− 1)(n+ α− 2)(2n+ α)

(n+ 1)(n+ α)(2n+ α− 2)
p̂α

n−1(x), n ≥ 1, (2.10)

p̂α
n(x) =

2

2n+ α− 1

(

pα−1
n (x) + pα−1

n−1(x)
)

, n ≥ 1, (2.11)

and the integral relations

∫ 1

−1

(1 − x)αp̂α
j (x)p̂α

l (x) dx = 0 if |j − l| > 2, (2.12)

∫ 1

−1

(1 − x)αp̂
β+1
j (x)ql(x) dx = 0 ∀ql ∈ Pl, α− β ∈ N0, j > l + 1 + α− β (2.13)

hold.

The most important results are the formulas (2.9) and (2.5). With relation (2.5), we are recursively
able to compute function values of the Jacobi polynomials. Relation (2.9) gives a simple connection
between the Jacobi and the integrated Jacobi polynomials.
Finally, we prove three properties of the Jacobi polynomials which have not been presented in [12].

Lemma 2.3. Let j ∈ N0. Let pα
n and p̂α

n be defined via (2.1) and (2.2). Then,

(α − 1)p̂α
j (y) = (1 − y)pα

j−1(y) + 2pα−2
j (y), α > 1, j ≥ 1,(2.14)

4(α+ j − 2)pα−2
j−1 (y) + (2α− 4)pα−2

j (y) = (1 − y)
(

(2 − 2j)pα
j−2(y) + αpα

j−1(y)
)

(2.15)

+(α+ 2j − 2)(α− 1)p̂α
j (y), α > 1, j ≥ 2,

ypα
j−1(y) − jp̂α

j (y) =
1

2j + α− 2

(

−αpα
j−1(y) + (2j − 2)pα

j−2(y)
)

,

α > −1, j ≥ 2. (2.16)

Proof. We start with the proof of (2.14). Using (2.5), we can represent

(1 − y)pα
j−1(y) = −

2j(j + α)

(2j + α− 1)(2j + α)
pα

j (y) −
(2j − 2)(j + α− 1)

(2j + α− 2)(2j + α− 1)
pα

j−2(y)

+
(2j + α− 2)(2j + α) + α2

(2j + α− 2)(2j + α)
pα

j−1(y). (2.17)

Using (2.4) twice, we conclude that

2pα−2
j (y) = 2

α− 1 + j

α+ 2j − 1
·
α+ j

α+ 2j
pα

j (y)

−4
α− 1 + j

α+ 2j − 2
·

j

α+ 2j
pα

j−1(y) + 2
j

α+ 2j − 1

j − 1

α+ 2j − 2
pα

j−2(y). (2.18)
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Adding (2.17) and (2.18) and using (2.9), we obtain

(1 − y)pα
j−1(y) + 2pα−2

j (y) =
(2j + 2α)(α − 1)

(2j + α− 1)(2j + α)
pα

j (y)

+
2(α− 1)α

(2j + α− 2)(2j + α)
pα

j−1(y)

−
(2j − 2)(α− 1)

(2j + α− 1)(2j + α− 2)
pα

j−2(y)

= (α− 1)p̂α
j (y).

This proves (2.14). Next, we prove (2.15). Using (2.14) for pα
j−2 and pα

j−1, we have

(1 − y)
(

(2 − 2j)pα
j−2(y) + αpα

j−1(y)
)

(2.19)

+(α+ 2j − 2)(α− 1)p̂α
j (y) = (α− 1)

(

−(2j − 2)p̂α
j−1(y) + (2α+ 2j − 2)p̂α

j (y)
)

+(4j − 4)pα−2
j−1 (y) − 2αpα−2

j (y).

Next, we simplify the right hand side of the previous equation. Using (2.11) and (2.4), we obtain

−(2j − 2)p̂α
j−1(y) + (2α+ 2j − 2)p̂α

j (y) =
4(j + α− 1)

2j + α− 1
(pα−1

j (y) + pα−1
j−1 (y))

−
4(j − 1)

2j + α− 3
(pα−1

j−1 (y) + pα−1
j−2 (y))

=
4(j + α− 1)

2j + α− 1
pα−1

j (y) −
4j

2j + α− 1
pα−1

j−1 (y)

+
4(j + α− 2)

2j + α− 3
pα−1

j−1 (y) −
4(j − 1)

2j + α− 3
pα−1

j−2

= 4(pα−2
j (y) + pα−2

j−1 (y)). (2.20)

Now, we insert (2.20) into (2.19) which proves (2.15).
Finally, we prove (2.16). First, we obtain from (2.9) that

ypα
j−1(y) = 2j

α+ j

(2j + α− 1)(2j + α)
pα

j (y) −
α2

(2j + α)(2j + α− 2)
pα

j−1(y) (2.21)

+(2j − 2)
j + α− 1

(2j + α− 1)(2j + α− 2)
pα

j−2(y).

Secondly, using (2.5) we get

jp̂α
j−1(y) = 2j

α+ j

(2j + α− 1)(2j + α)
pα

j (y) + 2j
α

(2j + α)(2j + α− 2)
pα

j−1(y) (2.22)

−(2j − 2)
j

(2j + α− 1)(2j + α− 2)
pα

j−2(y).

Subtracting (2.22) from (2.21), we conclude that

ypα
j−1(y) − jp̂α

j (y) =
1

2j + α− 2

(

−αpα
j−1(y) + (2j − 2)pα

j−2(y)
)

.

This is (2.16) and completes the proof.
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3 Element stiffness matrix

In this section, we define the shape functions on the reference element △̂. Then, we formulate our
main theorem stating that the element stiffness matrix has about O(p3) nonzero matrix entries.
The parameter p denotes the polynomial degree.

3.1 Definition of the shape functions

Let △̂ be the reference tetrahedron with the vertices A,B,C, and D, the edges e1, . . . , e6, and the
faces F1, . . . , F4, see Figure 1.

Figure 1: Notation of the faces, edges and vertices on the reference element △̂.

Now, we split the definition of the shape functions into the vertex, edge bubble, face bubble and
interior bubble functions:

• The vertex functions are defined as the usual hat functions, i.e.

φA/B(x, y, z) =
1 − 2y − z ± 4x

4
, φC(x, y, z) =

1 + 2y − z

2
, φD(x, y, z) =

1 + z

2
. (3.1)

Let ΦV = [φA, φB , φC , φD] denote the basis of the hat functions.

• The edge bubbles are defined as

φe1,i(x, y, z) = p̂0
i

(

4x

1 − 2y − z

) (

1 − 2y − z

4

)i

, i = 2, . . . , p,

φe2/e3,j(x, y, z) =
1 − 2y − z ± 4x

4
p̂0

j

(

2y

1 − z

) (

1 − z

2

)j

, j = 1, . . . , p− 1,

φe4/e5,k(x, y, z) =
1 − 2y − z ∓ 4x

4
p̂0

k(z), k = 1, . . . , p− 1,

φe6,k(x, y, z) =
1 + 2y − z

2
p̂0

k(z), k = 1, . . . , p− 1. (3.2)
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We denote by Φe =
[

{φe1,i}
p
i=2 , {φe2,j}

p−1
j=1 , {φe3,j}

p−1
j=1 , {φe4,k}

p−1
k=1 , {φe5,k}

p−1
k=1 , {φe6,k}

p−1
k=1

]

the basis of all edge bubble functions.

• The face bubble functions are

φF1,i,j(x, y, z) = p̂0
i

(

4x

1 − 2y − z

) (

1 − 2y − z

4

)i

p̂2i−a
j

(

2y

1 − z

) (

1 − y

2

)j

,

i ≥ 2, j ≥ 1, i+ j ≤ p,

φF2/F3,j,k(x, y, z) =
1 − 2y − z ∓ 4x

4
p̂0

j

(

2y

1 − z

) (

1 − y

2

)j

p̂
2j+2−a
k (z),

j, k ≥ 1, j + k ≤ p− 1, (3.3)

φF4,i,k(x, y, z) = p̂0
i

(

4x

1 − 2y − z

) (

1 − 2y − z

4

)i

p̂2i−a
k (z), i ≥ 2, k ≥ 1, i+ k ≤ p.

We denote by ΦF =
[

{φF1,i,j}
i+j=p
i=2,j=1 , {φF2,j,k}

j+k=p−1
j,k=1 , {φF3,j,k}

j+k=p−1
j,k=1 {φF4,i,k}

i+k=p
i=2,k=1

]

the basis of all face bubble functions.

• The interior bubbles read as

φijk(x, y, z) = p̂0
i

(

4x

1 − 2y − z

) (

1 − 2y − z

4

)i

p̂2i−a
j

(

2y

1 − z

) (

1 − y

2

)j

p̂
2i+2j−b
k (z),

i+ j + k ≤ p, i ≥ 2, j, k ≥ 1. (3.4)

The parameters a, b ∈ N0 satisfy the following assumptions

0 ≤ a ≤ 4, a ≤ b ≤ 6. (3.5)

Moreover, ΦI = [φijk ]
i+j+k≤p
i≥2,j≥1,k≥1 denotes the basis of the interior bubbles.

Let
Φ = [ΦV ,Φe,ΦF ,ΦI ]

be the basis of all shape functions. The interior bubbles coincide with the functions given in [26],
see also [17], if a = b = 0.

Remark 3.1. With the same arguments as presented in [12], it can be proved that the edge bubbles
(3.2) corresponding to the edge e vanish on all other edges. The face bubbles (3.3) corresponding
to the face F vanish on all other faces. The interior bubbles are zero on all faces. Hence, the
functions are linearly independent and spanΦ = Pp.

Remark 3.2. To define the global shape functions, we adapt the numbering method developed in
[2], i.e. the mapping Fs transformes the vertices V 1, . . . , V 4 on △̂ to the vertices v1, . . . , v4 of the
FE mesh on △s with ♯v1 < ♯v2 < ♯v3 < ♯v4. The construction of our face bubbles (3.3) requires a
characteristic vertex on each face. Due to our construction, the vertex with the largest number is
the characteristic vertex on each face. Moreover, the face bubbles are

φF2/F3,i,k(r, s) =
1 − 2r

1−s

2
p̂0

i−1

(

2r

1 − s

) (

1 − s

2

)i

p̂2i−a(s), r − 1 ≤ 2s ≤ 1 − r,−1 ≤ r ≤ 1

φF1/F4,i,k(r, s) = p̂0
i

(

2r

1 − s

) (

1 − s

2

)i

p̂2i−a(s), r − 1 ≤ 2s ≤ 1 − r,−1 ≤ r ≤ 1.
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There exists a simple basis transformation matrix W between the two bases
[

p̂0
i (t)

]p

i=2
and

[

(1 − t)p̂0
i−1(t)

]p

i=2
, [12]. This matrix W is a pentadiagonal and upper triangular matrix. Using

the arguments proposed in [12], the continuity of the face bubbles along element boundaries can be
enforced. With the same arguments, the continuity of the edge bubbles can be enforced as well.

Let

Â =





a11 a12 a13

a12 a22 a23

a13 a23 a33



 ∈ R3×3

be a diffusion matrix with constant coefficients. We introduce

K̂Â =

∫

△̂

(∇Φ)T Â∇Φ (3.6)

as the stiffness matrix with respect to the functions (3.1)-(3.4) on the reference tetrahedron. More-
over, let

K̂Â,I =
[

aÂijk,i′j′k′

]i+j+k=p,i′+j′+k′=p

i,i′=2,j,j′,k,k′=1
=

[
∫

△̂

(∇φijk)T Â∇φi′j′k′

]i+j+k=p,i′+j′+k′=p

i,i′=2,j,j′,k,k′=1

(3.7)

be the block of K̂Â which corresponds to the interior bubbles.
Now, we are in the position to formulate the main theorem of this paper.

Theorem 3.3. Let K̂Â be defined via (3.6). Then, the matrix has (p+1)(p+2)(p+3)
6 rows and

columns. If condition (3.5) is satisfied, each row has a bounded number of nonzero entries and the
number of total nonzero entries is O(p3). Moreover, the entry aI

ijk,i′j′k′ of the matrix K̂I,I (3.7)
is zero if |i− i′| 6∈ {0, 2}, or |i+ j − i′ − j′| > 3 + a, or |i+ j + k − i′ − j′ − k′| > 2 + b.

Proof. The proof is given in section 6.

Remark 3.4. As presented in [12, Theorem 3.2], the result can be extended to the case of a general
tetrahedron.

Remark 3.5. Each matrix entry can be computed in O(1) flops. However, the formulas are quite
long. A more efficient way is to use a sum factorization technique. The remaining one-dimensional
integrals are computed recursively via (2.4) and (2.10) using the product recurrence given in [23].
Using Theorem 3.3, the generation of the matrix can be performed in O(p3) flops.

4 Properties of the interior block of the element stiffness

matrix

In this section, we present the most important computational properties for the matrix K̂I,I (3.7)
which corresponds to the interior block of the element stiffness matrix. In several numerical
experiments, we investigate the nonzero pattern, the number of nonzero entries and the condition
number for the bases (3.4) for several values of a and b. Finally, the time for the generation of
the matrix K̂I,I and the matrix vector multiplication K̂I,Ix is measured. All computations are
performed on a 2 GHz workstation.
Figure 2 displays the nonzero pattern of the matrix K̂I,I , i.e. the block of the interior bubbles for
the Laplacian, using the basis functions

φijk(x, y, z) = p̂0
i

(

4x

1 − 2y − z

) (

1 − 2y − z

4

)i

p̂2i
j

(

2y

1 − z

) (

1 − z

2

)j

p̂
2i+2j
k (z),

9



Figure 2: Nonzero pattern of the interior bubbles for p = 10 (left) and p = 32 (right) with a = b = 0.

i+ j+ k ≤ p, i ≥ 2, j, k ≥ 1, i.e. the functions (3.4) with a = b = 0. A typical stencil like structure
of the nonzero entries can be observed.
Figure 3 displays the averaged numbers of nonzero entries for the matrix K̂I,I for several values
of a and b. If 0 ≤ a ≤ b ≤ 6, the averaged number of nonzero entries per row are bounded by
a constant ca,b which is independent of the polynomial degree p. This constant depends on the
special choice of a and b and is the lowest one for a = b = 0. The optimality of the number of
nonzero entries per row for a = b = 0 is a consequence of the proof of Theorem 3.3. In general,
one obtains ca,b = 3(7 + 2a)(5 + 2b). In the case b < a, our assumption (3.5) is violated. Since
the averaged number of nonzero entries per row increases with p, this assumption is necessary to
prove Theorem 3.3.
Figure 4 displays the maximal and the inverse of the minimal eigenvalue of the diagonally pre-
conditioned matrix K̂I,I . In all cases, the maximal eigenvalue is bounded by a constant of about
7 . . . 15. The minimal eigenvalue λmin depends strongly on the choice of a and b. From the numer-
ical results, one can conclude that λ−1

min grows as O(pmax{4,4+2a,4+2b,4+2a+2b}). So, the condition
number grows at least with p4. The optimal order for the condition number can be achieved if
a, b ≤ 0. In combination with Theorem 3.3, the basis with a = b = 0 should be prefered since it
yields to the lowest number of nonzero entries and the best condition number.
A last example shows the significance of the usage of sparse shape functions. Figure 5 displays
the time for the generation of the matrix K̂I,I and the multiplication K̂I,Ix for several polynomial
degrees and the parameter choices (a, b) = {(1, 2), (1,−2), (−1,−4)}. Due to theorem 3.3, the num-
ber of nonzero entries is O(p3), O(p4) and O(p5), respectively. In the experiments, we computed
the nonzero matrix entries with a sum-factorization algorithm. The remaining one-dimensional
integrals are computed recursively using (2.4) and (2.10) using the product recurrence given in
[23]. From the results one can see that assembling time of about three seconds is required for
p = 36 if a = 1, b = 2. In the same time, the matrix for p = 24 can be generated if a = 1, b = −2,
or, the matrix for p = 20 can be generated if a = −1 and b = −4. For all polynomial degrees the
sparse basis with a = 1 and b = 2 should be prefered against the two another ones.

10



Figure 3: Averaged number of nonzero entries for the interior bubbles per row.

Figure 4: Maximal and minimal eigenvalue of the diagonally preconditioned matrix K̂I,I .
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Figure 5: Time for assembling K̂I,I (left) and for K̂I,Ix (right) for several polynomial degrees.

5 Application: A preconditioner for the interior bubbles

In this section, we derive a simple preconditioner for the block of the interior bubbles. It is
well known from the literature that preconditioned gradient methods (pcg-methods) with DD
preconditioners of Dirichlet-Dirichlet-type are among the most efficient iterative solvers for sys-
tems of type (1.2), cf. [6], [4], [16], [18]. Corresponding to the partition of basis functions
Ψ = [ΨV ,ΨE ,ΨF ,ΨI ] = [ΨC ,ΨI ], i.e. C = V ∪ E ∪ F , let

KΨ =

[

KC KCI

KIC KI

]

=

[

I KCIK
−1
I

0 I

] [

S 0

0 KI

] [

I 0

K−1
I KIC I

]

(5.1)

be the block structure of the stiffness matrix with the Schur-complement S = KC −KCIK
−1
I KIC .

Our domain decomposition preconditioner for the matrix KΨ will be of the form

C =

[

I −ET

0 I

] [

CS 0

0 CI

] [

I 0

−E I

]

, (5.2)

where

• CI is a preconditioner for KI ,

• CS is a preconditioner for the Schur-complement S = KC −KCIK
−1
I KIC and

• E is the matrix representation of an extension operator acting from the edges of the elements
into the interior.

Preconditioners for the Schur-complement have been proposed in [14] and [18]. For CI , a wavelet
preconditioner has been developed for hexahedral elements in [10]. The papers [6], [3] and [21] deal
with the extension operator for the p-version of the FEM using triangular or tetrahedral elements.
In [11], see also [15], an algebraic analysis of a preconditioner of type (5.2) is given.
Now, we propose a relatively simple preconditioner CI for KI and (based on this) a matrix rep-
resentation E for the extension operator of the form (5.2). By (1.3), the global stiffness matrix is

the result of assembling local stiffness matrices K̃s, i.e. KΨ =
∑nel

s=1R
T
s K̃sRs. Let

C0 =

nel
∑

s=1

RsC0R
T
s , where C0 =

∫

△̂

(∇Φ̃(x, y, z))T∇Φ̃(x, y, z) d(x, y, z). (5.3)

12



In this matrix, the stiffness matrix for the Laplacian on the reference element is assembled on each
element. According to (5.1), (5.2), we consider a block decomposition of C0, i.e.

C0 =

[

CC CCI

CIC CI

]

. (5.4)

and define the preconditioner

C1 =

[

I CCIC
−1
I

0 I

] [

CS 0

0 CI

] [

I 0

C−1
I CIC I

]

(5.5)

for KΨ, where CS is a preconditioner for the Schur complement and CI and CIC are taken from
(5.4). Now, we formulate

Theorem 5.1. Let C1 be defined via (5.5). Moreover, let CS be a preconditioner for the Schur
complement such that C−1

S v requires not more than O(p6) operations and

c1 (CSv, v) ≤ (Sv, v) ≤ c2 (CSv, v) ∀v (5.6)

and some constants c1, c2. Then, κ(C1
− 1

2KΨC1
− 1

2 ) = O( c2

c1

). The operation C−1
1 u requires O(p6)

operations.

Proof. The proof is similar to the proof of Theorem 4.2 in [12]. Using [16], we can prove that

κ(C0
− 1

2KΨC0
− 1

2 ) = O(1). Hence, the first assertion κ(C1
− 1

2KΨC1
− 1

2 ) = O( c2

c1

) follows from (5.6)
immediately.
To prove the complexity argument for C−1

1 u, we investigate the nonzero pattern for the matrix

K̂I,I . Due to Theorem 3.3, see also Figure 2, the nonzero pattern has the structure of a 3D-finite

difference stencil. Let (V,E) be the corresponding graph of the matrix K̂I,I . Here, the separator
of (V,E) has a size of O(p2). Applying the method of nested dissection, [13], the total cost is
O(p6), see [19].

6 Proof of Theorem 3.3.

In this section, we prove the main theorem of this paper using several auxiliary results. In a first
step, we give a formula for the gradient of the interior bubble functions (3.4). Before we formulate
an auxiliary result which simplifies the computation of the gradient.
We start be formulating a lemma that simplifies the computation of the gradient of the interior
bubble functions (3.4). Let ga(x),b,c,α,j : R 7→ R be defined via

ga(x),b,c,α,j(y) = p̂α
j

(

ax

b− cy

) (

b− cy

a

)j

. (6.1)

Lemma 6.1. Let p̂α
j be the integrated Jacobi polynomial (2.2) and let ga(x),b,c,α,j : R 7→ R be

defined via (6.1). Then,

g′a(x),b,c,α,j(y) =
c

a(2j + α− 2)

(

b− cy

a

)j−1

(6.2)

×

(

−αpα
j−1

(

ax

b− cy

)

+ (2j − 2)pα
j−2

(

ax

b− cy

))

.
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Proof. Let w =

(

ax

b− cy

)

. Using the chain and the product rule, we get

g′a(x),b,c,α,j(y) =
c

a

(

b− cy

a

)j−1
(

wpα
j−1(w) − jp̂α

j (w)
)

. (6.3)

Next, we insert (2.16) into (6.3) and obtain

g′a(x),b,c,α,j(y) =
c

a(2j + α− 2)

(

b− cy

a

)j−1

×

(

−αpα
j−1

(

ax

b− cy

)

+ (2j − 2)pα
j−2

(

ax

b− cy

))

which proves the lemma.

The following lemma gives a formula for the gradient of the interior bubble functions (3.4).

Lemma 6.2. Let φijk(x, y, z) be defined via (3.4). With the abbreviations r =
1 − 2y − z

4
and

s =
1 − z

2
the following relations hold.

∂φijk

∂x
(x, y, z) = p0

i−1

(x

r

)

ri−1 p̂2i−a
j

(y

s

)

sj p̂
2i+2j−b
k (z), (6.4)

∂φijk

∂y
(x, y, z) =

1

2
p0

i−2

(x

r

)

ri−1 p̂2i−a
j

(y

s

)

sj p̂
2i+2j−b
k (z)

+p̂0
i

(x

r

)

ri p2i−a
j−1

(y

s

)

sj p̂
2i+2j−b
k (z), (6.5)

∂φijk

∂z
(x, y, z) = −

2i− a

4j + 4i− 4 − 2a
p̂0

i

(x

r

)

ri p2i−a
j−1

(y

s

)

sj−1 p̂
2i+2j−b
k (z)

+
2j − 2

4j + 4i− 4 − 2a
p̂0

i

(x

r

)

ri p2i−a
j−2

(y

s

)

sj−1 p̂
2i+2j−b
k (z)

+p0
i−2

(x

r

)

ri−1 p̂2i−a
j

(y

s

)

sj p̂
2i+2j−b
k (z)

+p̂0
i

(x

r

)

ri p̂2i−a
j

(y

s

)

sj−1 p
2i+2j−b
k−1 (z) (6.6)

Proof. The relations (6.4) and (6.5) have been proved in [12].
To prove (6.6), we write the dependence in z direction in the following way:

φijk(x, y, z) = g2(y),1,1,2i−a,j(z) g4(x),1−2y,1,0,i(z) p̂
2i+2j−b
k (z)

with the function g defined via (6.1). Using the product rule, we obtain

∂φijk

∂z
= g′2(y),1,1,2i−a,j(z)g4(x),1−2y,1,0,i(z)p̂

2i+2j−b
k (z)

+g2(y),1,1,2i−a,j(z)g
′
4(x),1−2y,1,0,i(z)p̂

2i+2j−b
k (z)

+g2(y),1,1,2i−a,j(z)g4(x),1−2y,1,0,i(z)p
2i+2j−b
k−1 (z).
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Now, we insert (6.2) and obtain

∂φijk

∂z
=

1

4j + 4i− 4 − a

(

1 − z

2

)j−1 (

−(2i− a)p2i−a
j−1

(

2y

1 − z

)

+ (2j − 2)p2i−a
j−2

(

2y

1 − z

))

×g4(x),1−2y,1,0,i(z)p̂
2i+2j−b
k (z)

+g2(y),1,1,2i−a,j(z)
1

4

(

1 − 2y − z

4

)j−1

p0
j−2

(

4x

1 − 2y − z

)

p̂
2i+2j−b
k (z)

+g2(y),1,1,2i−a,j(z)g4(x),1−2y,1,0,i(z)p
2i+2j−b
k−1 (z),

or with the abbreviations r =
1 − 2y − z

4
and s =

1 − z

2
,

∂φijk

∂z
= −

2i− a

4j + 4i− 4 − a
p̂0

i

(x

r

)

ri p2i−a
j−1

(y

s

)

sj−1 p̂
2i+2j−b
k (z)

+
2j − 2

4j + 4i− 4 − a
p̂0

i

(x

r

)

ri p2i−a
j−2

(y

s

)

sj−1 p̂
2i+2j−b
k (z)

+
1

4
p0

i−2

(x

r

)

ri−1 p̂2i−a
j

(y

s

)

sj p̂
2i+2j−b
k (z)

+p̂0
i

(x

r

)

ri p̂2i−a
j

(y

s

)

sj p
2i+2j−b
k−1 (z).

This proves the lemma.

Now, we are able to prove Theorem 3.3.

Proof. We present only a proof for the block of interior bubbles. The face, edge and vertex bubbles
can be interpreted as special cases of the interior bubbles for i = 0, 1, j = 0, or, k = 0. Since all zero
entries base on the orthogonality relation (2.6) the result can easily be extended to the remaining
blocks.
In order to compute the entries of the inner block of the stiffness matrix K̂I,I we have to evaluate
integrals of the form

∫

△̂

∂

∂ζ
φi,j,k

∂

∂ζ
φi′,j′,k′ d(x, y, z), ζ = x, y, z. (6.7)

Note that if the coefficient matrix A is not a diagonal matrix then we also have to consider the
mixed terms ∂

∂ζφi,j,k
∂
∂ηφi′,j′,k′ , (ζ, η) ∈ {(x, y), (x, z), (y, z)}. They are treated in complete analogy

to the following and we will comment below on the nonzero pattern of these blocks.
We transform the integration domain from the reference tetrahedron to the cube (−1, 1)3 using
the Duffy transformation

w =
4x

1 − 2y − z
, dx =

1 − 2y − z

4
dw,

and

w =
2y

1 − z
, dy =

1 − z

2
dw.

After applying this Duffy transformation (6.7) has the form

∫

△̂

∂

∂ζ
φi,j,k

∂

∂ζ
φi′,j′,k′ d(x, y, z) =:

∫ 1

−1

∫ 1

−1

∫ 1

−1

Î(r, s, z) dr ds dz,
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px,1 px,2 γy py,1 py,2 γz pz,1 pz,2

Î(1) p0
i−1 p0

i′−1 i+ i′ − 1 p̂2i−a
j p̂2i′−a

j′ β + β′ p̂
−b+2β
k p̂

−b+2β′

k′

Î(2) p̂0
i p̂0

i′ i+ i′ + 1 p2i−a
j−1 p2i′−a

j′−1 β + β′ p̂
−b+2β
k p̂

−b+2β′

k′

Î(3) p0
i−2 p̂0

i′ i+ i′ p̂2i−a
j p2i′−a

j′−1 β + β′ p̂
−b+2i+2j
k p̂

−b+2β′

k′

Î(4) p̂0
i p0

i′−2 i+ i′ p2i−a
j−1 p̂2i′−a

j′ β + β′ p̂
−b+2β
k p̂

−b+2β′

k′

Î(5) p0
i−2 p0

i′−2 i+ i′ − 1 p̂2i−a
j p̂2i′−a

j′ β + β′ p̂
−b+2β
k p̂

−b+2β′

k′

Î(6) p̂0
i p̂0

i′ i+ i′ + 1 p̂2i−a
j p̂2i′−a

j′ β + β′ + 2 p
−b+2β
k−1 p

−b+2β′

k′−1

Î(7) p̂0
i p̂0

i′ i+ i′ + 1 p2i−a
j−2 p̂2i′−a

j′ β + β′ + 1 p̂
−b+2β
k p

−b+2β′

k′−1

Î(8) p̂0
i p̂0

i′ i+ i′ + 1 p2i−a
j−1 p̂2i′−a

j′ β + β′ + 1 p̂
−b+2β
k p

−b+2β′

k′−1

Î(9) p0
i−2 p̂0

i′ i+ i′ p̂2i−a
j p̂2i′−a

j′ β + β′ + 1 p̂
−b+2β
k p

−b+2β′

k′−1

Î(10) p̂0
i p̂0

i′ i+ i′ + 1 p̂2i−a
j p2i′−a

j′−2 β + β′ + 1 p
−b+2β
k−1 p̂

−b+2β′

k′

Î(11) p̂0
i p̂0

i′ i+ i′ + 1 p̂2i−a
j p2i′−a

j′−1 β + β′ + 1 p
−b+2β
k−1 p̂

−b+2β′

k′

Î(12) p̂0
i p̂0

i′ i+ i′ + 1 p2i−a
j−2 p2i′−a

j′−2 β + β′ p̂
−b+2β
k p̂

−b+2β′

k′

Î(13) p̂0
i p̂0

i′ i+ i′ + 1 p2i−a
j−1 p2i′−a

j′−2 β + β′ p̂
−b+2β
k p̂

−b+2β′

k′

Î(14) p̂0
i p̂0

i′ i+ i′ + 1 p2i−a
j−2 p2i′−a

j′−1 β + β′ p̂
−b+2β
k p̂

−b+2β′

k′

Î(15) p̂0
i p̂0

i′ i+ i′ + 1 p2i−a
j−1 p2i′−a

j′−1 β + β′ p̂
−b+2β
k p̂

−b+2β′

k′

Î(16) p0
i−2 p̂0

i′ i+ i′ p̂2i−a
j p2i′−a

j′−2 β + β′ p̂
−b+2β
k p̂

−b+2β′

k′

Î(17) p0
i−2 p̂0

i′ i+ i′ p̂2i−a
j p2i′−a

j′−1 β + β′ p̂
−b+2β
k p̂

−b+2β′

k′

Î(18) p̂0
i p0

i′−2 i+ i′ p̂2i−a
j p̂2i′−a

j′ β + β′ + 1 p
−b+2i+2j
k−1 p̂

−b+2β′

k′

Î(19) p̂0
i p0

i′−2 i+ i′ p2i−a
j−2 p̂2i′−a

j′ β + β′ p̂
−b+2β
k p̂

−b+2β′

k′

Î(20) p̂0
i p0

i′−2 i+ i′ p2i−a
j−1 p̂2i′−a

j′ β + β′ p̂
−b+2β
k p̂

−b+2β′

k′

Î(21) p0
i−2 p0

i′−2 i+ i′ − 1 p̂2i−a
j p̂2i′−a

j′ β + β′ p̂
−b+2β
k p̂

−b+2β′

k′

Table 1: Integrands for K̂I,I , where β = i+ j, β′ = i′ + j′

where r = x(1−y)(1−z)
4 and s = y(1−z)

2 .Due to the tensor product like structure of the basis functions
we have thereby decoupled the integrals over x, y and z. Now we use the results of Lemma 6.2 to
compute the partial derivatives and perform the above substitution. Thus we obtain 21 integrands
adding up to

Î(r, s, z) = Î(1)(r, s, z) +
5

∑

l=2

Î(l)(r, s, z) +
21
∑

l=6

Î(l)(r, s, z).

The first integrand stems from the product of the x-partial derivatives, the next four from the
product of the y-partial derivatives and the last 16 from the product of the z-partial derivatives.
The integrands

Î(l)(r, s, z) = clpx,1(r)px,2(r)

(

1 − s

2

)γy

py,1(s)py,2(s)

(

1 − z

2

)γz

pz,1(z)pz,2(z), l = 1, . . . , 21,

for K̂I,I in the indicated order are listed in Table 1 omitting the constants. These integrands
already illustrate the complexity of the problem of determining the nonzero pattern of the system
matrix. We have tackled this problem with a program we implemented in the computer algebra
software Mathematica. This program explicitely computes the entries of K̂I,I using the identities
stated in section 2 for all parameters a, b in the valid range, i.e. with 0 ≤ a ≤ 4, a ≤ b ≤ 6. The
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intermediate steps can be documented and checked via output, yet the formulae do not posess a
nice closed form, which is why they are not stated here. The program can also be used for solving
the subproblem of determining the nonzero pattern for the analogue family of interior bubbles for
triangles.
Our Mathematica program evaluates the integrals from left to right, starting by integrating with
respect to x, which is clear from the dependence of the parameters. To determine the values of the
integrals the orthogonality relation (2.6) is used. Hence the polynomials under the integral have
to be rewritten as Jacobi polynomials pα

n where α corresponds to the appearing weights γy and γz.
This concept follows the lines of the proof described in [12].

We present now our algorithm for the simplification of the integral

∫ 1

−1

(1 − ζ)γqn1
(ζ)qn2

(ζ) dζ, (6.8)

where qn1
(ζ) and qn2

(ζ) can be either Jacobi or integrated Jacobi polynomials of degree n1 and
n2 respectively, and γ is the appearing weight.
Algorithm.

Input: Integrand (6.8).
Output: Mass matrix entries with band structure.

1. FOR i=1 to 2 DO

2. IF (qni
is integrated Jacobi polynomial) THEN

Transform integrated Jacobi polynomials to Jacobi polynomials using relations (2.9), (2.11)
or (2.14) depending on the relation between the polynomial parameter α and the weight
parameter γ,

(a) (1−ζ)γ p̂α
n(ζ), γ−α ≥ 0 : transform integrated Jacobi polynomials to Jacobi polynomials

with same parameter α using (2.9).

(b) (1− ζ)γ p̂α
n(ζ), α = γ+ 1 : transform p̂α

n(ζ) to Jacobi polynomials with parameter α− 1
using relation (2.11).

(c) (1 − ζ)γ p̂α
n(ζ), α = γ + 2 : Use the mixed relation (2.14) to obtain

p̂γ+2
n (ζ) =

1

γ + 1

(

2pγ
n(ζ) + (1 − ζ)pγ+2

n−1(ζ)
)

.

- ENDIF

3. Rewrite the Jacobi polynomials pα
n(ζ) in terms of Jacobi polynomials fitting to the appearing

weights (1− ζ)γ (γ−α > 0) by lifting the polynomial parameter α using (2.4) (γ−α)-times,
i.e.

pα
n(ζ) =

γ−α
∑

m=0

(−1)k

(

γ − α

m

)

(n+ γ −m)γ−α−m nm

(2n+ γ −m+ 1)γ−α+1 (2n− 2m+ γ + 1)pγ
n−m(ζ),

where ak = a(a− 1) · . . . · (a− k + 1) denotes the falling factorial.

- ENDFOR

4. Evaluate the integrals using the orthogonality relation (2.6).
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The algorithm interrupts, if α > γ + 2 in step 2 or α > γ in step 3. The output of the program
are the rational functions to which the original integrals evaluate. Thereby also the maximal
bandwidth for each of these integrals is returned.
Our Mathematica program is executed with the integrand Î(l)(r, s, z) as input and applies the
above algorithm to all possible integrals. Evaluating the x-integrals gives a bounded number of
candidates bx with i−i′ = bx, in which at least one integral can be nonzero. Then, for all candidates
bx, the algorithm is applied to evaluate the y-integrals. This gives a bounded number of candidates
by with j− j′ = by, in which at least one integral can be nonzero. Finally, the algorithm is applied
to the z-integrals for all candidates bx and by. Again, the algorithm gives a bounded number of
candidates bz with k−k′ = bz, in which at least one integral can be nonzero. We point out that for
the integrand Î(l)(r, s, z) the algorithm never interrupts, i.e. never runs into the cases α > γ + 2
in step 2 or α > γ in step 3. This is due to our assumption b ≥ a ≥ 0.
For a = 1 and b = 2 the output of the program is summarized in Table 2. Since |i − i′| ∈ {0, 2},
|i+ j− i′− j′| ≤ 4 and |i+ j+ k− i′− j′ − k′| ≤ 4 for each of the integrands Î(l), l = 1, . . . , 21, the
maximal number of nonzero entries per row is bounded by 3 · 9 · 9 = 243. This proves the sparsity
for a = 1 and b = 2.
For the remaining 24 cases satisfying 0 ≤ a ≤ b ≤ 6, a ≤ 4, each of the terms |i− i′|, |i+ j− i′− j′|
and |i+ j + k − i′ − j′ − k′| is bounded by a constant, which depends on a and b, too.
In the appendix A, we present an example how the algorithm proceeds for a = 1, b = 2 and the
integrand Î(7).

We close this proof by stating the nonzero pattern of the blocks containing the mixed terms
∂
∂ζφi,j,k

∂
∂ηφi′,j′,k′ , (ζ, η) ∈ {(x, y), (x, z), (y, z)}. We compute the partial derivatives again using

the result of Lemma 6.2 and perform the Duffy transformation r = x(1−y)(1−z)
4 and s = y(1−z)

2 to
obtain the integrals,

∫

△̂

∂

∂x
φi,j,k

∂

∂y
φi′,j′,k′ d(x, y, z) :=

23
∑

l=22

∫ 1

−1

∫ 1

−1

∫ 1

−1

Î(l)(r, s, z) dr ds dz

∫

△̂

∂

∂x
φi,j,k

∂

∂z
φi′,j′,k′ d(x, y, z) :=

27
∑

l=24

∫ 1

−1

∫ 1

−1

∫ 1

−1

Î(l)(r, s, z) dr ds dz

∫

△̂

∂

∂y
φi,j,k

∂

∂z
φi′,j′,k′ d(x, y, z) :=

35
∑

l=28

∫ 1

−1

∫ 1

−1

∫ 1

−1

Î(l)(r, s, z) dr ds dz

with the integrands

Î(l)(r, s, z) = clpx,1(r)px,2(r)

(

1 − s

2

)γy

py,1(s)py,2(s)

(

1 − z

2

)γz

pz,1(z)pz,2(z).

The correct structure of the integrands is listed in Table 3. Applying our program to evaluate
these integrals we obtain the following results,

•
∫

△̂

∂

∂x
φi,j,k

∂

∂y
φi′,j′,k′ d(x, y, z) 6= 0

if |i− i′| = 1, |i− i′ + j − j′| ≤ 1 + a and |i− i′ + j − j′ + k − k′| ≤ 2 + b.

•
∫

△̂

∂

∂x
φi,j,k

∂

∂z
φi′,j′,k′ d(x, y, z) 6= 0

if |i− i′| = 1, |i− i′ + j − j′| ≤ 2 + a and |i− i′ + j − j′ + k − k′| ≤ 2 + b.
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i− i′ i− i′ + j − j′ i− i′ + j − j′ + k − k′

Î(1) {0} {−2, . . . , 2} {−4, . . . , 4}

Î(2) {−2, 0, 2} {−2, . . . , 2} {−4, . . . , 4}

Î(3) {0, 2} {−2, . . . , 2} {−4, . . . , 4}

Î(4) {−2, 0} {−2, . . . , 2} {−4, . . . , 4}

Î(5) {0} {−2, . . . , 2} {−4, . . . , 4}

Î(6) {−2, 0, 2} {−4, . . . , 4} {−4, . . . , 4}

Î(7) {−2, 0, 2} {−2, . . . , 4} {−4, . . . , 4}

Î(8) {−2, 0, 2} {−3, . . . , 3} {−4, . . . , 4}

Î(9) {0, 2} {−3, . . . , 3} {−4, . . . , 4}

Î(10) {−2, 0, 2} {−4, . . . , 2} {−4, . . . , 4}

Î(11) {−2, 0, 2} {−3, . . . , 3} {−4, . . . , 4}

Î(12) {−2, 0, 2} {−2, . . . , 2} {−4, . . . , 4}

Î(13) {−2, 0, 2} {−3, . . . , 1} {−4, . . . , 4}

Î(14) {−2, 0, 2} {−1, . . . , 3} {−4, . . . , 4}

Î(15) {−2, 0, 2} {−2, . . . , 2} {−4, . . . , 4}

Î(16) {0, 2} {−3, . . . , 1} {−4, . . . , 4}

Î(17) {0, 2} {−2, . . . , 2} {−4, . . . , 4}

Î(18) {−2, 0} {−3, . . . , 3} {−4, . . . , 4}

Î(19) {−2, 0} {−1, . . . , 3} {−4, . . . , 4}

Î(20) {−2, 0} {−2, . . . , 2} {−4, . . . , 4}

Î(21) {0} {−2, . . . , 2} {−4, . . . , 4}

Table 2: Nonzero pattern for integrals Î(1), . . . , Î(21), a = 1, b = 2

px,1 px,2 γy py,1 py,2 γz pz,1 pz,2

Î(22) p0
i−1 p0

i′−2 i+ i′ − 1 p̂2i−a
j p̂2i′−a

j′ β + β′ p̂
−b+2β
k p̂

−b+2β′

k′

Î(23) p0
i−1 p̂0

i′ i+ i′ p̂2i−a
j p2i′−a

j′−1 β + β′ p̂
−b+2β
k p̂

−b+2β′

k′

Î(24) p0
i−1 p̂0

i′ i+ i′ p̂2i−a
j p̂2i′−a

j′ β + β′ + 1 p̂
−b+2β
k p

−b+2β′

k′−1

Î(25) p0
i−1 p̂0

i′ i+ i′ p̂2i−a
j p2i′−a

j′−2 β + β′ p̂
−b+2β
k p̂

−b+2β′

k′

Î(26) p0
i−1 p̂0

i′ i+ i′ p̂2i−a
j p2i′−a

j′−1 β + β′ p̂
−b+2β
k p̂

−b+2β′

k′

Î(27) p0
i−1 p0

i′−2 i+ i′ − 1 p̂2i−a
j p̂2i′−a

j′ β + β′ p̂
−b+2β
k p̂

−b+2β′

k′

Î(28) p̂0
i p̂0

i′ i+ i′ + 1 p2i−a
j−1 p̂2i′−a

j′ β + β′ + 1 p̂
−b+2β
k p

−b+2β′

k′−1

Î(29) p0
i−2 p̂0

i′ i+ i′ p̂2i−a
j p̂2i′−a

j′ β + β′ + 1 p̂
−b+2β
k p

−b+2β′

k′−1

Î(30) p̂0
i p̂0

i′ i+ i′ + 1 p2i−a
j−1 p2i′−a

j′−2 β + β′ p̂
−b+2β
k p̂

−b+2β′

k′

Î(31) p̂0
i p̂0

i′ i+ i′ + 1 p2i−a
j−1 p2i′−a

j′−1 β + β′ p̂
−b+2β
k p̂

−b+2β′

k′

Î(32) p0
i−2 p̂0

i′ i+ i′ p̂2i−a
j p2i′−a

j′−2 β + β′ p̂
−b+2β
k p̂

−b+2β′

k′

Î(33) p0
i−2 p̂0

i′ i+ i′ p̂2i−a
j p2i′−a

j′−1 β + β′ p̂
−b+2β
k p̂

−b+2β′

k′

Î(34) p̂0
i p0

i′−2 i+ i′ p2i−a
j−1 p̂2i′−a

j′ β + β′ p̂
−b+2β
k p̂

−b+2β′

k′

Î(35) p0
i−2 p0

i′−2 i+ i′ − 1 p̂2i−a
j p̂2i′−a

j′ β + β′ p̂
−b+2β
k p̂

−b+2β′

k′

Table 3: Integrands for the mixed terms ∂
∂ζφi,j,k

∂
∂ηφi′,j′,k′ , where β = i+ j, β′ = i′ + j′.
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•
∫

△̂

∂

∂y
φi,j,k

∂

∂z
φi′,j′,k′ d(x, y, z) 6= 0

if |i− i′| ∈ {0, 2}, |i− i′ + j − j′| ≤ 2 + a and |i− i′ + j − j′ + k − k′| ≤ 2 + b.

This completes the proof of Theorem 3.3.

We close this section with the following two technical remarks on the proof of Theorem 3.3.

Remark 6.3. In step 3 of this algorithm polynomials down to degree n − γ + α are introduced.
Hence, this transformation is a costly one as it increases the number of terms significantly, espe-
cially if a, b are far from the ideal case a = b = 0.

Remark 6.4. Case (c) in step 2 only occurs if we choose a = 0 or a = b. One example is the
y-integration of Î(17) for i′ = i − 2. A direct evaluation of the integrand Î(17) yields to a dense
matrix. However, the y-integration of Î(14) + Î(15) + Î(17) is sparse. Here, the relation (2.15) has
to be used. More details on how to handle these exceptions can be found in [9].

A Evaluation of the integrand Î(7)

Now we execute our algorithm on the integrand

Î(7)(x, y, z) =
(j − 1)

2i+ 2j − 3
p̂0

i (x)p̂
0
i′ (x)

(

1 − y

2

)i+i′+1

p2i−1
j−2 (y)p̂2i′−1

j′ (y)

×

(

1 − z

2

)i+j+i′+j′+1

p̂
2i+2j−2
k (z)p2i′+2j′−2

k′−1 (z),

that is we want to compute

K̂(7) =

∫ 1

−1

∫ 1

−1

∫ 1

−1

Î(7)(x, y, z) dx dy dz

for a = 1 and b = 2. First we evaluate the x-integral, where we only have one integrand at first
and start by transforming integrated Jacobi to classical Jacobi polynomials. For the x-integrals
we always have α = γ = 0, i.e. we are in case 2(a) and use (2.9). Observe that for α = 0, p̂0

n can
be expressed using only p0

n and p0
n−2. Hence we obtain for the first integral,

∫ 1

−1

p̂0
i (x)p̂

0
i′ (x) dx =

∫ 1

−1
(p0

i−2p
0
i′−2 − p0

i p
0
i′−2 − p0

i−2p
0
i′ + p0

i p
0
i′)(x) dx

(2i− 1)(2i′ − 1)

These four integrals are easily evaluated by the orthogonality relation (2.6) and we obtain

∫ 1

−1

p̂0
i (x)p̂

0
i′ (x) dx =

4δi,i′

(2i− 3)(2i− 1)(2i+ 1)
−

2δi,i′−2

(2i− 1)(2i+ 1)(2i+ 3)

−
2δi,i′+2

(2i− 5)(2i− 3)(2i− 1)
,
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see e.g. [16]. So the first integral is nonzero iff |i − i′| ∈ {0, 2}. Now we plug in the above result
into K̂(7) to obtain the following three integrals,

K̂(7) = −
2(j − 1)δi,i′+2

(2i− 5)(2i− 3)(2i− 1)(2i+ 2j − 3)

∫ 1

−1

(

1 − y

2

)2i−1

p2i−1
j−2 (y)p̂2i−5

j′ (y) dy

×

∫ 1

−1

(

1 − z

2

)2i+j+j′−1

p̂
2i+2j−2
k (z)p2i+2j′−6

k′−1 (z) dz

+
4(j − 1)δi,i′

(2i− 3)(2i− 1)(2i+ 1)(2i+ 2j − 3)

∫ 1

−1

(

1 − y

2

)2i+1

p2i−1
j−2 (y)p̂2i−1

j′ (y) dy

×

∫ 1

−1

(

1 − z

2

)2i+j+j′+1

p̂
2i+2j−2
k (z)p2i+2j′−2

k′−1 (z) dz

−
2(j − 1)δi,i′−2

(2i− 1)(2i+ 1)(2i+ 3)(2i+ 2j − 3)

∫ 1

−1

(

1 − y

2

)2i+3

p2i−1
j−2 (y)p̂2i+3

j′ (y) dy

×

∫ 1

−1

(

1 − z

2

)2i+j+j′+3

p̂
2i+2j−2
k (z)p2i+2j′+2

k′−1 (z) dz

After singling out the y-dependent parts of K̂(7) we see that the first integrand is already a Jacobi
polynomial for all three integrals. Moreover, the combination of weight parameter γ and polynomial
parameter α is (2i−1, 2i−1). So, we can omit step 2 for the first polynomial. The second polynomial
is an integrated Jacobi polynomial. Hence, we enter step 2 of the algorithm and transform the
integrated Jacobi into a classical Jacobi polynomials. The combinations of weight parameter γ
and polynomial parameter α occuring are (γ, α) = (2i− 1, 2i− 5), (2i− 1, 2i+ 1), (2i− 1, 2i+ 3).
For each of these pairs we have γ − α ≥ 0, i.e. we are in case 2(a) again. Using relation (2.9) we
obtain e.g. for the first y-integrand of K̂(7),

(

1 − y

2

)2i−1

p2i−1
j−2 (y)p̂2i−5

j′ (y) = −
(j′ − 1)

(i+ j′ − 3)(2i+ 2j′ − 7)

(

1 − y

2

)2i−1

p2i−1
j−2 (y)p2i−5

j′−2(y)

+
2(2i− 5)

(2i+ 2j′ − 7)(2i+ 2j′ − 5)

(

1 − y

2

)2i−1

p2i−1
j−2 (y)p2i−5

j′−1(y)

+
(2i+ j′ − 5)

(i+ j′ − 3)(2i+ 2j′ − 5)

(

1 − y

2

)2i−1

p2i−1
j−2 (y)p2i−5

j′ (y).

Next we have to adjust the Jacobi polynomials to the weight functions under the integral to be
able to exploit their orthogonality, i.e. execute step 3 of the algorithm. After applying (2.4) four
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times to p2i−5
j′−2(y), p2i−5

j′−1(y) and p2i−5
j′ (y) yields for the above integrand,

p2i−1
j−2 (y)p̂2i−5

j′ (y) =
2(2i+ j′ − 1)5

(2i+ 2j′ − 1)6
p2i−1

j−2 (y)p2i−1
j′ (y) (A.1)

+
2(2i− 4j′ − 1)(2i+ j′ − 2)4(2i+ 2j′ − 2)

(2i+ 2j′ − 1)7
p2i−1

j−2 (y)p2i−1
j′−1(y)

−
10(j′ − 1)(2i− j′ − 2)(2i+ j′ − 3)3(2i+ 2j′ − 4)

(2i+ 2j′ − 3)6
p2i−1

j−2 (y)p2i−1
j′−2(y)

+
20(2i− 3)(j′ − 1)2(2i+ j′ − 4)2(2i+ 2j′ − 6)

(2i+ 2j′ − 3)7
p2i−1

j−2 (y)p2i−1
j′−3(y)

−
10(j′ − 1)3(2i+ j′ − 5)(4i+ j′ − 8)(2i+ 2j′ − 8)

(2i+ 2j′ − 5)6
p2i−1

j−2 (y)p2i−1
j′−4(y)

+
4(j′ − 1)4(i+ j′ − 5)(10i+ 4j′ − 25)

(2i+ 2j′ − 5)7
p2i−1

j−2 (y)p2i−1
j′−5(y)

−
(j′ − 1)5

(2i+ 2j′ − 6)6
p2i−1

j−2 (y)p2i−1
j′−6(y)

After executing steps 2 and 3 on all y-integrands of K̂(7) one has to evaluate resulting integrals using
orthogonality relation (2.6). We will now only consider how to proceed with the first summand in
the integrand (A.1), omitting the constants, i.e. the following part of K̂(7),

K̂
(7)
part =

∫ 1

−1

(

1 − y

2

)2i−1

p2i−1
j−2 (y)p2i−1

j′ (y) dy

∫ 1

−1

(

1 − z

2

)2i+j+j′−1

p̂
2i+2j−2
k (z)p2i+2j′−6

k′−1 (z) dz

=
δj,j′+2

i+ j − 2

∫ 1

−1

(

1 − z

2

)2i+2j−3

p̂
2i+2j−2
k (z)p2i+2j−10

k′−1 (z) dz.

In this case the weight parameter γ = 2i+ 2j − 3 and the polynomial parameter α = 2i+ 2j − 2
differ by one. Following step 2(b) of the algorithm we rewrite the integrated Jacobi polynomial
p̂
2i+2j−2
k (z) using (2.11),

p̂
2i+2j−2
k (z) =

2

2i+ 2j + 2k − 3
(p2i+2j−3

k (z) + p
2i+2j−3
k−1 (z)).

These polynomials already correspond to the weight function
(

1−z
2

)2i+2j−3
, what remains to be

done is to apply relation (2.4) seven times to p2i+2j−10
k′−1 (z). So finally we have to evaluate 8×2 = 16

integrals with the orthogonality relation (2.6) to obtain K̂
(7)
part. Figure 6 shows the default output

for the computation of K̂(7) of our Mathematica program.
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In[44]:= K7 = ComputeMatrixEntries@Integrand7, i, j, k, l, m, nD;

--> Evaluating the H1L x-integrals...

Integral over p`i,0 @xD p
`
l,0 @xD evaluates to

-
2 ∆i,-2+l

��������������������������������������������������������������������������
H-1 + 2 iL H1 + 2 iL H3 + 2 iL

+
4 ∆i,l

�����������������������������������������������������������������������������
H-3 + 2 iL H-1 + 2 iL H1 + 2 iL

-
2 ∆i,2+l

��������������������������������������������������������������������������������
H-5 + 2 iL H-3 + 2 iL H-1 + 2 iL

--> Finished x-integrals

-------------------------------------------------------

Evaluation of y-integrals

Step 2: Rewriting integrated Jacobi polynomials in terms of Jacobi polynomials

Case 2HaL for H1 - yL-1+2 i p`m,-5+2 i @yD

Case 2HaL for H1 - yL1+2 i p`m,-1+2 i @yD

Case 2HaL for H1 - yL3+2 i p`m,3+2 i @yD

--> Evaluating the H9L y-integrals...

--> Finished y-integrals

-------------------------------------------------------

Evaluation of z-integrals

Step 2: Rewriting integrated Jacobi polynomials in terms of Jacobi polynomials

Case 2HbL forH1 - zL-3+2 i+2 j p`k,-2+2 i+2 j @zD

Case 2HaL for H1 - zL-2+2 i+2 j p`k,-2+2 i+2 j @zD

Case 2HaL for H1 - zL-1+2 i+2 j p`k,-2+2 i+2 j @zD

Case 2HaL for H1 - zL2 i+2 j p`k,-2+2 i+2 j @zD

Case 2HaL for H1 - zL1+2 i+2 j p`k,-2+2 i+2 j @zD

Case 2HaL for H1 - zL2+2 i+2 j p`k,-2+2 i+2 j @zD

Case 2HaL for H1 - zL3+2 i+2 j p`k,-2+2 i+2 j @zD

--> Evaluating the H20L z-integrals...

--> Finished z-integrals

Figure 6: Screenshot of Mathematica computation for K̂(7)
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Algorithms for High Order Finite Elements. Techn. Report 2006, SFB013 Numerical and Symbolic
Scientific Computing, J. Kepler University Linz, (2006). to appear in Computing.

[9] S. Beuchler and V. Pillwein. Completions to sparse shape functions for triangular and tetrahedral
p-fem. In Proceeding of the DD 17, 2006. submitted.

[10] S. Beuchler, R. Schneider, and C. Schwab. Multiresolution weighted norm equivalences and applica-
tions. Numer. Math., 98(1):67–97, 2004.

[11] S. Beuchler. Extension operator on tensor product structures in itwo and three dimensions. SIAM J.
Sc. Comput., 26(5):1776-1795, 2005.
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