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Abstract

Recently, the metrics of Ky Fan and Prokhorov were introduced as
a tool for studying convergence in stochastic ill-posed problems. In this
work, we show that the Bayesian approach to linear inverse problems
can be examined in the new framework as well. We consider the finite-
dimensional case where the measurements are disturbed by an additive
normal noise and the prior distribution is normal. Convergence and
convergence rate results are obtained when the covariance matrices are
proportional to the identity matrix.

1 Introduction

We are interested in the linear inverse problem

y = Ax (1)

where A ∈ Rm×n is a known matrix, x ∈ Rn and y ∈ Rm. In this work,
we consider problems where the matrix A is ill-conditioned. Such problems
arise, in particular, when A is a discretized version of a compact operator
between infinite-dimensional Hilbert spaces.

Given the exact data y, the least square minimum norm solution to
problem (1) is defined as

x† := arg min
x∈Rn

{
‖x‖ : ‖Ax− y‖ = min

z∈Rn
‖Az − y‖

}
.

For the linear problem (1) the least square minimum norm solution is

x† = A†y
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where A† is the Moore–Penrose inverse of A.
Since problem (1) is unstable, observed inexact data yδ cannot be used

directly to infer an approximate solution xδ to (1), but some regularization
technique must be applied. Using, e. g., the well-known method of Tikhonov
regularization one obtains an approximate solution xδ

α to (1). The quantity
of interest is the distance between the true solution x† and the approximate
solution xδ

α.
In the deterministic setup, it turns out that this distance can in general

be arbitrarily large (at least in the infinite-dimensional case, cf. [5]); an
explicit a-priori bound for the error ‖x† − xδ

α‖ is therefore not possible.
Since a regularization method should naturally be such that less noise leads
to better approximations, an accepted quality criterion are convergence rate
results in terms of the noisy data, i. e., results of the form

‖x† − xδ
α‖ = O(f(‖y − yδ‖)).

The deterministic theory of inverse problems is well-developed (see, e. g.,
[5]); but a main criticism is that the above convergence rate result depends
on a norm bound of the noise which can be seen as a worst-case scenario for
the noise.

In practice, less restrictive stochastic error concepts are more suitable. In
the frequentist inversion theory it is assumed that all probabilities appearing
in the model of an inverse problem are based on frequencies of random
events. Usually, only the noise in the data is modelled by a random variable,
but, e. g., in the biological applications also the true solution may have a
distribution. In addition, the model itself, i. e., the operator A may be
disturbed by a stochastic noise.

In the frequentist approach the regularized solution to an inverse prob-
lem is obtained by same regularization techniques as in the deterministic
theory. However the regularized solution is now a random variable and
hence convergence results must be given in a metric appropriate for random
variables.

Often, convergence results in the frequentist framework are given in the
terms of the mean square error (cf. [1, 26, 20, 10]). In [6, 12, 11, 14], the Ky
Fan metric (a quantitative version of the convergence in probability) and
the Prokhorov distance (a quantitative version of the convergence in dis-
tribution) were used to deduce convergence results for linear and nonlinear
inverse problems. As was demonstrated in [13, 12], there are cases where
convergence can be observed in these two metrics while at the same time
the mean square error remains constant or diverges.

In addition to the frequentist approach, the Bayesian inversion theory
is a widely used tool to tackle stochastic inverse problems. The Bayesian
framework has been applied to various inverse problems with success (see,
e. g., [17] for an overview). Nonetheless, so far the question of convergence
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in a sense similar to the deterministic and the frequentist theories has not
been studied. In this paper, coupling the metric of Ky Fan with the metric
of Prokhorov, we obtain convergence and convergence rate results for the
posterior distribution.

The proofs of the main results of this paper are based on lifting point-wise
obtained deterministic results to the space of random variables equipped
with the Ky Fan metric. Thus this paper can be seen as a step towards
the building of a bridge between two—seemingly different—approaches to
inverse problems, i.e., between the functional analytic and the statistical
inversion theories.

2 Bayesian approach to linear inverse problems

In this section, we summarise the main ideas of the Bayesian inversion the-
ory. A comprehensive introduction into the topic can be found in [17]. We
also present a question of convergence related to the Bayesian framework.

The basis of the Bayesian approach to inverse problems is different from
the deterministic and the frequentist inversion theories since here all quanti-
ties included in the model are treated as random variables. In contrast to the
frequentist approach, the probabilities appearing in the Bayesian approach
need not correspond to frequencies of random events but they are also used
to code the confidence or the degree of belief one has into a particular initial
guess.

In the Bayesian approach the solution to an inverse problem is obtained
via the Bayes formula. The prior information about the quantities of primary
interest is presented in the form of the prior distribution. The likelihood
function is given by the model for the indirect measurements. The solution
to the inverse problem after performing the measurements is the posterior
distribution of the random variables of interest. By the Bayes formula the
posterior distribution is proportional to the product of the prior distribution
and the likelihood function.

Consequently, in the Bayesian inversion theory not just a single regular-
ized solution to (1) is obtained (as it is done in the deterministic and the
frequentist settings) but instead a whole distribution is computed.

We examine the common case where all distributions are assumed to
be normal. Let (Ω,F ,P) be a probability space. Let X and Y be random
variables with values in Rn and Rm, respectively. We suppose that the
random variable X is unobservable and of our primary interest and Y is
directly observable. We call X the unknown, Y the measurement and its
realization ydata in the actual measurement process the data. We assume
that we have a linear model for the measurements with additive noise

Y = AX + E (2)
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where A ∈ Rm×n is a known matrix and E : (Ω,F ,P) → Rm is a ran-
dom variable. We suppose that X and E are mutually independent normal
random variables with probability densities

πpr(x) ∝ exp
(
−1

2
(x− x0)T Γ−1

pr (x− x0)
)

(3)

and

πnoise(e) ∝ exp
(
−1

2
(e− e0)T Γ−1

noise(e− e0)
)

(4)

where x0 ∈ Rn, e0 ∈ Rm, and Γpr ∈ Rn×n and Γnoise ∈ Rm×m are positive
definite symmetric matrices.

For the additive noise model (2), the Bayes theorem yields (indepen-
dently of the particular structure of πpr and πnoise) the posterior distribution

πpost(x) ∝ πpr(x)πnoise(y −Ax).

For the case of normal random variables, this posterior distribution can be
computed explicitly:

Theorem 1. ([17, theorem 3.7]) Let X and E be independent random vari-
ables with probability densities (3) and (4), respectively. Assume that the
measurement Y satisfies the additive noise model (2). Then the posterior
distribution µpost of X conditioned on the data ydata is normal and has the
probability density

πpost(x) ∝ exp
(
−1

2
(x− xpost)T Γ−1

post(x− xpost)
)

where the posterior mean is

xpost =
(
Γ−1

pr + AT Γ−1
noiseA

)−1 (
AT Γ−1

noise(ydata − e0) + Γ−1
pr x0

)
(5)

and the posterior covariance matrix is

Γpost =
(
Γ−1

pr + AT Γ−1
noiseA

)−1
. (6)

For the case where the covariance matrices are proportional to the iden-
tity matrix, the theorem above can be simplified as follows.

Remark 2. ([17, example 5]) Suppose that e0 = 0, Γpr = γ2I, and Γnoise =
σ2I with some γ, σ > 0. Then the posterior distribution of X with the data
ydata is µpost = N (xpost,Γpost) where

xpost =
(

AT A +
σ2

γ2
I

)−1

AT ydata +
σ2

γ2

(
AT A +

σ2

γ2
I

)−1

x0 (7)

and

Γpost = σ2

(
AT A +

σ2

γ2
I

)−1

. (8)
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In the Bayesian approach the posterior distribution µpost defined in the-
orem 1 is the regularized solution to the linear problem (1) given the data
ydata. Imitating the deterministic inversion theory, a possible question of
convergence in the Bayesian framework is ”Does the posterior distribution
µpost converges to the point measure δx† at the least square minimum norm
solution x† when the distribution of the noise E tends to the point measure
at the origin?”. A suitable measure of the distance between probability dis-
tributions is the Prokhorov metric (see definition 4 below). However, also
the stochastic nature of the data must be taken into account.

The data ydata is a realization of the random variable Y . Thus the poste-
rior mean xpost given by (5) is also a realization of a random variable, namely
the random variable

Xpost(ω) =
(
Γ−1

pr + AT Γ−1
noiseA

)−1 (
AT Γ−1

noise(Y (ω)− e0) + Γ−1
pr x0

)
.

The posterior covariance matrix Γpost is according to definition (6) determin-
istic. Hence the posterior distribution µpost given in theorem 1 is a realization
of the random variable

µpost : (Ω,F ,P) → (M(Rn), ρp), ω 7→ N (Xpost(ω), Γpost)

where M(Rn) is the set of all Borel measures in Rn and ρp is the Prokhorov
metric in M(Rn). Therefore instead of the above question, we could ask
”Does the random variable µpost converges to the constant random variable
δx† when the noise E tends to the zero random variable?”. An appropriate
measure of the distance between random variables is the Ky Fan metric (see
definition 3 below). Convergence and convergence rate results corresponding
to the situation of remark 2 are presented in section 4.

In the following section, we revise the definition of the Ky Fan and the
Prokhorov metrics and present some related results needed in the proofs of
the main theorems of the paper.

3 The metrics of Ky Fan and Prokhorov and mul-
tidimensional normal distributions

In the setup of this work, we treat the posterior distribution as a probability
measure valued random variable. The set M(Rn) of Borel measures in Rn

is only a metric space. We want to quantify the convergence in probability
for M(Rn)-valued random variables. Therefore we utilize the metric of Ky
Fan to measure distances between random variables on a metric space:

Definition 3 (Ky Fan metric). Let ξ1 and ξ2 be random variables in a
probability space (Ω,F ,P) with values in a metric space (X, dx). The distance
between ξ1 and ξ2 in the Ky Fan metric is defined as

ρk(ξ1, ξ2) := inf {ε > 0 : P (dx(ξ1(ω), ξ2(ω)) > ε) < ε} .
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The convergence results we obtain are then formulated in terms of this
metric. The Ky Fan metric gives a quantitative version of the convergence
in probability; for some background on this metric see [8, 13, 4].

To be able to use the Ky Fan metric for the posterior distribution, we
need to equip the set M(Rn) with a metric. Here we focus on the Prokhorov
metric, which is defined as follows:

Definition 4 (Prokhorov metric). Let µ1 and µ2 be Borel measures in a
metric space (X, dx). The distance between µ1 and µ2 in the Prokhorov
metric is defined as (see, e. g., [2, 4, 16, 23])

ρp(µ1, µ2) := inf {ε > 0 : µ1(B) ≤ µ2 (Bε) + ε ∀B ∈ B(X)}

where B(X) is the Borel σ-algebra in X. The set Bε is the ε-neighbourhood
of B, i.e.,

Bε :=
{

x ∈ X : inf
z∈B

dx(x, z) < ε

}
.

For some additional background and a comparison with the Ky Fan
metric see, e. g., [13].

An important theorem by Strassen [24] (and also Dudley [3]) connects
the Prokhorov and the Ky Fan metrics. In this work, we need only the
following corollary of Strassen’s theorem.

Proposition 5. ([13, proposition 1.5]) Let (X, dx) be a metric space, x ∈ X,
and ξ be a random variable on X with the distribution µ. Then

ρk(ξ, x) = ρp(µ, δx)

where δx denotes the point measure at x.

The following theorem shows that convergence rates are essentially pre-
served when they are lifted from a metric space to a space of random vari-
ables equipped with the Ky Fan metric.

Theorem 6. Let ξ1, ξ2 and ζ1, ζ2 be random variables on metric spaces
(X, dx) and (Y, dy), respectively. Let

dx(ξ1(ω), ξ2(ω)) ≤ Φ(dy(ζ1(ω), ζ2(ω))) (9)

for almost all ω ∈ Ω with some strictly monotonically increasing right-
continuous function Φ. Then

ρk(ξ1, ξ2) ≤ max {ρk(ζ1, ζ2), Φ(ρk(ζ1, ζ2))} . (10)
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Proof. For an arbitrary η > 0, due to (9), the monotonicity of Φ, and the
definition of the Ky Fan metric,

P (dx(ξ1(ω), ξ2(ω)) ≤ Φ(ρk(ζ1, ζ2) + η))
≥ P (Φ (dy(ζ1(ω), ζ2(ω))) ≤ Φ(ρk(ζ1, ζ2) + η))
= P (dy(ζ1(ω), ζ2(ω)) ≤ ρk(ζ1, ζ2) + η)
> 1− (ρk(ζ1, ζ2) + η) .

Hence by the definition of the Ky Fan distance,

ρk(ξ1, ξ2) ≤ max{ρk(ζ1, ζ2) + η, Φ(ρk(ζ1, ζ2) + η)}.

Since Φ is right-continuous, inequality (10) is attained by letting η → 0.

Similar lifting results have been obtained in the Prokhorov and the Ky
Fan metrics when ξ1 = F (ζ1) and ξ2 = F (ζ2) with a Lipschitz, a locally
Lipschitz and a Hölder continuous function F in [27], [7] and [6, 12, 11],
respectively.

In this paper, we examine the case in which all distributions are normal.
Let y0 ∈ Rm and Σ ∈ Rm×m be a positive definite symmetric matrix. A
normal m-dimensional random variable with mean y0 and covariance matrix
Σ is a random variable in Rm whose distribution is absolutely continuous
with respect to the m-dimensional Lebesgue measure and has the probability
density

π(y) =
(

1
(2π)m|Σ|

) 1
2

exp
(
−1

2
(y − y0)T Σ−1(y − y0)

)

where | · | is the determinant of matrices. The corresponding distribution is
denoted by N (y0, Σ).

In the following lemma, we give an upper bound for the Ky Fan distance
between a normal random variable and its mean when its covariance matrix
is sufficiently small. The proof is given in appendix A.

Lemma 7. Let ξ be a random variable with values in Rm. Assume that
the distribution of ξ is N (y0, Σ). Let us define κ(m) := max{1, m− 2} and
C(m) to be

C(m) :=

{
2π

(m+1)2
, if m is odd,

2m

m2 , if m is even.

Then there exists a positive constant θ(m) such that

ρk(ξ, y0) ≤
√
−‖Σ‖ log

(
C(m)‖Σ‖κ(m)

)

for all Σ with ‖Σ‖ < θ(m).
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According to proposition 5, an upper bound for the Prokhorov distance
between a normal distribution and the point measure at its mean is also
given by lemma 7 when the covariance matrix of the distribution is small
enough.

In the following corollary, we present some important special cases of
lemma 7, which are needed in this paper.

Corollary 8. Let ξ be a random variable with values in Rm. Assume that
the distribution of ξ is N (y0, Σ). Let C(m) and κ(m) be as in lemma 7 and
I ∈ Rm×m be the identity matrix.

(i) If Σ = σ2I for some σ > 0, there exists a positive constant σ(m) such
that

ρk(ξ, y0) ≤ σ
√
− log

(
C(m)σ2κ(m)

)

for all σ < σ(m).

(ii) If Σ = σ2(B + σ2

γ2 I)−1 where B ∈ Rm×m is a symmetric positive
semidefinite matrix and γ, σ > 0, there exist positive constants γ(m)
and σ(m) such that

ρk(ξ, y0) ≤ γσ√
γ2λmin + σ2

√√√√− log

(
C(m)

γ2κ(m)σ2κ(m)

(γ2λmin + σ2)κ(m)

)

for all γ < γ(m) and σ < σ(m) where λmin is the minimal eigenvalue
of B.

Proof. The first claim is obvious. In case (ii)

‖Σ‖ =
γ2σ2

γ2λmin + σ2
.

If λmin = 0, the norm of Σ is equal to γ2. Hence the claim follows from
lemma 7 when γ(m) is chosen to be

√
θ(m) and σ(m) is arbitrary.

If λmin 6= 0, the norm of Σ is less than θ(m) only if γ and σ satisfy the
inequality

λminθ(m)γ2 + θ(m)σ2 − γ2σ2 > 0.

Therefore an upper bound for either γ or σ can be chosen freely, but then the
upper bound for the second parameter is given by the equation λminθ(m)γ2+
θ(m)σ2 − γ2σ2 = 0. If either γ or σ is selected to be small enough, i. e.,
γ <

√
θ(m) or σ <

√
λminθ(m), the second parameter can be arbitrary.

By an appropriate choice of upper bounds for γ and/or σ the claim is a
consequence of lemma 7.
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4 Convergence rates for the Bayesian approach

In this section, we investigate convergence and convergence rate results for
the Bayesian approach to linear inverse problems. In particular, we answer
the question of convergence posed in section 2 for the situation of remark 2.

We assume that the prior distribution of the unknown X is N (x0, γ
2I)

and the noise E has the distribution N (0, σ2I) with some γ, σ > 0 and
x0 ∈ Rn (like in remark 2). As we have seen in theorem 1, the posterior
distribution with the data ydata is given as

µpost = N (xpost, Γpost)

with xpost and Γpost defined in (7) and (8), respectively.
As noticed before, the mean of the posterior distribution is actually

a realization of the random variable Xpost while the covariance matrix is
constant. To deduce a full convergence result for the Bayesian approach,
we first of all bound the error ρp(N (Xpost(ω), Γpost), δx†) given a concrete
realization ydata = Y (ω) of the measurement.

In the following proposition, we give an upper bound for the Prokhorov
distance between the posterior distribution and the point measure at the
least square minimum norm solution for a particular data.

Proposition 9. Let the assumptions of theorem 1 and remark 2 be satisfied.
Then the distance between the posterior distribution and the point measure
at the solution x† is bounded in the Prokhorov metric by

ρp(N (Xpost(ω),Γpost), δx†) (11)

≤ σ2 ‖x† − (I − P )x0‖
γ2λ2

p + σ2
+ ρp(N (0,Γpost), δ0) +

γ

2σ
‖Y (ω)− y‖ + ‖Px0‖

for all ω ∈ Ω where λp is the minimal positive singular value of A and P is
the orthogonal projection onto N (A).

Let λmin denote the minimal eigenvalue of AT A. Then there exist positive
constants γ(n) and σ(n) such that

ρp(N (0,Γpost), δ0)

≤ γσ√
γ2λmin + σ2

√√√√− log

(
C(n)

γ2κ(n)σ2κ(n)

(γ2λmin + σ2)κ(n)

)
(12)

for all γ < γ(n) and σ < σ(n) where the constants C(n) and κ(n) are given
in lemma 7.

Proof. By the triangle inequality of the Prokhorov metric (e. g., [16]), and
proposition 5,

ρp(N (Xpost(ω), Γpost), δx†) ≤ ρp(N (0, Γpost), δ0) + ‖Xpost(ω)− x†‖
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for all ω ∈ Ω. We may rewrite

Xpost(ω) =
(

AT A +
σ2

γ2
I

)−1

AT (Y (ω)−Ax0) + x0.

Thus Xpost(ω)−x0 is the Tikhonov regularized solution to the linear inverse
problem

Az = y −Ax0 (13)

with the regularization parameter σ2/γ2 and the noisy data Y (ω) − Ax0.
The least square minimum norm solution to (13) is

z† = A†y −A†Ax0 = x† − (I − P )x0.

By using the singular value decomposition of the matrix A we can estimate

‖Xpost(ω)− x†‖ ≤ σ2

γ2λ2
p + σ2

‖x† − (I − P )x0‖ +
γ

2σ
‖Y (ω)− y‖ + ‖Px0‖

for all ω ∈ Ω. Bound (12) is a consequence of proposition 5 and item (ii) in
corollary 8.

Remark 10. Since the representation for µpost given in theorem 1 is only
valid when the noise E is normal, proposition 9 gives no immediate bound on
the error ρp(N (Xpost(ω), Γpost), δx†) for all ω ∈ Ω. In principle, ‖Y (ω)− y‖
can be arbitrarily large and hence the right hand side of (11) is in general
unbounded.

For any positive definite symmetric matrix Σ ∈ Rn×n the function x 7→
N (x,Σ) is continuous from Rn to M(Rn) equipped with the Prokhorov
metric. Therefore, to turn (11) into an actual bound on the error, we may
consider the posterior distribution as a random variable,

µpost(ω) := N (Xpost(ω), Γpost),

i. e., as a measurable function from (Ω,F ,P) to (M(Rn), ρp). Since µpost is
a random variable on a metric space, we can compute the error between the
posterior distribution and the constant random variable δx† in the Ky Fan
metric.

Theorem 11. Let the assumptions of theorem 1 and remark 2 be satisfied.
Then the distance between the posterior distribution and the constant random
variable δx† is bounded in the Ky Fan metric by

ρk (µpost, δx†) ≤ max
{

ρk(Y, y) ,

σ2 ‖x† − (I − P )x0‖
γ2λ2

p + σ2
+ ρp(N (0, Γpost), δ0) +

γ

2σ
ρk(Y, y) + ‖Px0‖

}

where λp is the minimal positive singular value of A and P is the orthogonal
projection onto N (A).
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Proof. The proof follows by combining proposition 9 and theorem 6. The
right hand side of (11) plays the role of the function Φ in theorem 6 and the
metric dx is given by the Prokhorov metric.

We are interested in the case when the noise E tends to zero in the Ky
Fan metric, i. e., the distribution of the noise tends to the point distribution
at the origin in the Prokhorov metric.

Lemma 12. Let ξ be a random variable with values in Rm. Assume that
the distribution of ξ is N (0, σ2I) for some σ > 0. Then

ρk(ξ, 0) → 0 ⇐⇒ σ → 0.

Proof. According to the proof of lemma 7 the Ky Fan distance ρk(ξ, 0) is
equal to the unique positive solution to the equation

z =
2

Γ(m/2)
Im−1

(
z√
2σ

)
(14)

where Γ is the gamma function and the function Im−1 is

Im−1(x) =
∫ ∞

x
tme−t2dt

for all x ≥ 0. The explicit formula of the function Im−1 is given in ap-
pendix A. The function Im−1 is strictly monotonically decreasing and con-
tinuous. Furthermore, Im−1(x) → 0 as x → ∞. Hence the claim follows
from equation (14).

Therefore a proper question of convergence is if the error ρk(µpost, δx†)
tends to zero as σ → 0.

We can use the result of theorem 11 and deduce parameter choice rules
for the Bayesian approach to obtain convergence and convergence rates for
the posterior distribution. The following theorems are the main results of
this work and give the positive answer to the question of section 2.

Theorem 13. Let the assumptions of theorem 1 and remark 2 be valid and
x0 ∈ N (A)⊥. Let γ(σ) satisfy

σ

γ(σ)
−→ 0 and γ(σ)

√
− log(C(m)σ2κ(m)) −→ 0 (15)

as σ → 0 where the constants C(m) and κ(m) are given in lemma 7. Then

ρk (µpost, δx†) −→ 0

as σ → 0.
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Proof. Since the distribution of Y is N (y, σ2I), according to corollary 8
there exists a positive constant σ(m) such that

ρk(Y, y) ≤ σ
√
− log

(
C(m)σ2κ(m)

)

for all σ < σ(m). By combining the results of theorem 11 and proposition 9
there exist positive constants γ(n) and σ(m,n) such that

ρk (µpost, δx†) ≤
σ2 ‖x† − x0‖
γ2λ2

p + σ2
+ max

{γ

2
, σ

}√
− log

(
C(m)σ2κ(m)

)

+
γσ√

γ2λmin + σ2

√√√√− log

(
C(n)

γ2κ(n)σ2κ(n)

(γ2λmin + σ2)κ(n)

) (16)

for all γ < γ(n) and σ < σ(m,n) where λp is the minimal positive singular
value of A and λmin is the minimal eigenvalue of AT A.

The second term on the right hand side of (16) tends to zero when
γ
√
− log(C(m)σ2κ(m)) → 0 as σ → 0. In the first term it is required

that γ/σ → ∞ as σ → 0. If λmin = 0, the third term tends to zero
as σ → 0 under the above assumptions. When λmin 6= 0, it is enough if
γ
√
− log(C(n)σ2κ(n)) → 0 and γ/σ ≥ 1 as σ → 0. If λmin 6= 0, then n ≤ m.

Thus the parameter choice (15) guarantees the convergence.

For example, γ(σ) ∼ ση with some 0 < η < 1 fulfills the requirements of
theorem 13.

Remark 14. The assumption x0 ∈ N (A)⊥ in theorem 13 is necessary. The
least square minimum norm solution belongs to the orthocomplement of
the null space of the matrix A and PXpost(ω) = Px0 for all ω ∈ Ω where
P is the orthogonal projection onto N (A). Hence the convergence of the
posterior distribution to the point measure at the least square minimum
norm solution x† is possible only when Px0 = 0. If Px0 6= 0 and γ(σ)
satisfies the parameter choice (15), the posterior distribution converges to
the point measure at the least square solution x† + Px0.

Besides this convergence result, also convergence rate results can be ob-
tained.

Theorem 15. Let the assumptions of theorem 1 and remark 2 be satisfied
and x0 ∈ N (A)⊥. Let γ be chosen as

γ ∼
(

σ2/
√
− log(C(m,n)σ2κ(m,n)

) 1
3

(17)

where the constants C(m,n) := C(max(m,n)) and κ(m,n) := κ(max(m,n))
are defined in lemma 7. Then

ρk (µpost, δx†) ≤ O
((

σ
√
− log

(
C(m,n)σ2κ(m,n)

)) 2
3

)
. (18)
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Proof. As in the proof of theorem 13 we have the upper bound (16) for the
distance between the posterior distribution and the point measure at the
true solution for small enough γ and σ. To obtain a convergence rate for the
error the right hand side of (16) should be minimized for a fixed σ. Since
the minimizing γ(σ) is not easy to derive, we estimate the right hand side
of (16) from above. When γ and σ are small enough and γ/σ ≥ 1,

ρk (µpost, δx†) ≤
σ2

γ2λ2
p

‖x† − x0‖ +
5γ

2

√
− log

(
C(m,n)σ2κ(m,n)

)

where λp is the minimal positive singular value of the matrix A. By choice (17)
the two terms on the right-hand side are balanced and hence rate (18) is
obtained.

In theorem 13 as well as 15 we show that the parameter γ must tend to
0 in order to obtain the convergence of µpost to δx† . This condition on γ is
counter-intuitive compared to the common notion of the Bayesian approach,
where γ = 0 essentially implies that the mean of the prior distribution should
be taken as a true solution. To explain this discrepancy, it should be noted
that, compared with the variance of the noise, the variance of the prior
distribution does tend to the infinity (γ/σ →∞), i. e., the prior distribution
becomes non-informative. This is also visible from the fact that the mean
of the prior distribution need not to converge to the desired solution but it
may just remain constant.

The exponent κ depends on the dimension of the measurement. Hence
the convergence rate also depends on the dimension unlike in the determin-
istic regularization theory. Nonetheless, the dimension-dependence appears
only in the logarithmic factor, i. e., it diminishes the rate when σ is large,
but the influence becomes smaller as σ → 0.

While the rate of convergence in theorem 15 is independent of the matrix
A, the constant in the convergence rate (18) depends on A. If A is ill-
conditioned and hence the minimal positive singular value λp of A is tiny,
the constant in (18) is huge. Therefore convergence rate results independent
of the matrix A are of interest.

In the deterministic inversion theory, explicit results on convergence rates
for infinite-dimensional linear inverse problems are only possible when ad-
ditional assumptions on the solution are imposed (cf. [5, proposition 3.11]).
These assumptions can, for instance, be formulated in terms of abstract
smoothness conditions, so called source conditions.

Definition 16. The least square minimum norm solution x† satisfies a de-
terministic source condition with source function f if there exist v ∈ Rn and
τ > 0 such that

x† = f(AT A)v and ‖v‖ ≤ τ. (19)

13



Typical choices of the source function are f(λ) = λν , ν ≤ 1 and f(λ) =
(− log λ)−ν (see [5, 15]). Source conditions are needed to bound the approx-
imation error:

Definition 17. The source function f allows the deterministic convergence
rate h if there exists an increasing function h such that h(0) = 0 and

x† ∈ {z ∈ Rn : z = f(AT A) v, ‖v‖ ≤ τ} =⇒ ‖x† − xα‖ ≤ τh(α)

for any A ∈ Rm×n and τ > 0 where xα := (AT A + αI)−1AT Ax†.

For the Hölder and the logarithmic source functions f above, it has been
shown that f = h (see [5] and [15], respectively). Nevertheless, this is not
the case in general, e. g., when saturation occurs (cf., e. g., [5]). For some
general results on connections between f and h, using weak assumptions
only (e. g., monotonicity or concavity of f) we refer to [22, 25].

Theorem 18. Let the assumptions of theorem 1 and remark 2 be valid and
x0 ∈ N (A)⊥. Let x† − x0 satisfy the deterministic source condition (19)
with the source function f(λ) = λν for some 0 ≤ ν ≤ 1. Furthermore, let γ
be chosen as

γ ∼
(

σ2ν/
√
− log(C(m,n)σ2κ(m,n)

) 1
2ν+1

(20)

where the constants C(m,n) := C(max(m,n)) and κ(m,n) := κ(max(m,n))
are defined in lemma 7. Then

ρk (µpost, δx†) ≤ O
((

σ
√
− log

(
C(m,n)σ2κ(m,n)

)) 2ν
2ν+1

)
. (21)

Proof. The source function f(λ) = λν allows the deterministic convergence
rate h(λ) = λν [5, (5.18)]. The source condition is used to bound the
approximation error in the proof of proposition 9 instead of the singular
value decomposition of the matrix A. Hence by lifting a result similar to
theorem 11 can be obtained. By combining that result with proposition 9
and corollary 8 there exist positive constants γ(n) and σ(m,n) such that

ρk (µpost, δx†) ≤ τ

(
σ

γ

)2ν

+ max
{γ

2
, σ

}√
− log

(
C(m)σ2κ(m)

)

+
γσ√

γ2λmin + σ2

√√√√− log

(
C(n)

γ2κ(n)σ2κ(n)

(γ2λmin + σ2)κ(n)

)

for all γ < γ(n) and σ < σ(m,n) where λp is the minimal positive singular
value of A and λmin is the minimal eigenvalue of AT A. Similarly as in the
proof of theorem 15 when γ and σ are small enough and γ/σ ≥ 1,

ρk (µpost, δx†) ≤ τ

(
σ

γ

)2ν

+
5γ

2

√
− log

(
C(m,n)σ2κ(m,n)

)
.

14



By choice (20) the two terms on the right-hand side are balanced and hence
rate (21) is obtained.

5 Conclusions

In this paper, we have examined convergence and convergence rate results
for the Bayesian inversion theory. As a tool for quantifying convergence
of the posterior distribution, a coupling of the Ky Fan and the Prokhorov
metrics appeared to be the natural choice. As far as we know, the paper
contains the first convergence result for the Bayesian approach to inverse
problems.

In this work, we considered only normal distributions. While this is an
accepted choice for the noise, for the prior information in the Bayesian frame-
work also different options are in use (see [17, chapter 3] for an overview).
Alternative prior distributions may lead to better reconstructions, but it is
often not possible to deduce explicit solutions, either posterior distributions
or point estimates. Instead, Markov chain Monte Carlo (MCMC) methods
are used to determine approximate estimates. Convergence results similar
to the ones presented in this paper are not straight-forward to achieve for
arbitrary prior distributions.

Furthermore, this work is based on the assumption that the model of the
inverse problem is finite-dimensional. The received results are dimension-
dependent in a way that prevents generalization to the infinite-dimensional
case. The dimension-dependence can be attributed to the fact that in an
infinite-dimensional Hilbert space the noise E in the additive noise model (2)
(and consequently Y as well) cannot as a Gaussian random variable belong
to the underlying Hilbert space since the covariance of E is not a trace-class
operator (cf. [18, theorem 2.3]).

The Bayesian inversion theory in infinite-dimensional spaces is not com-
pletely developed. The existence of the regular version of conditional dis-
tributions is well-known in Polish spaces, i. e., in complete separable metric
spaces [9, theorem I.3.3], in the dual space of nuclear countable Hilbert
spaces [19, theorem 3.2], and in the space of distributions in an open do-
main of Rn [19, theorem 5.2]. For Gaussian linear inverse problems in an
infinite-dimensional Hilbert space, in the dual space of a nuclear countable
Hilbert space, and in the space of distributions the form of the posterior
distribution is presented in [21] and [19], respectively. Convergence results
for the infinite-dimensional Bayesian inversion theory require more sophis-
ticated stochastic analysis than used in this paper.

So far, the functional analytic and the statistical approach to inverse
problems have mainly been studied by separate communities. In this paper,
we have deduced convergence results for the Bayesian framework by using
well-known results of the deterministic theory and by lifting them to the
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space of random variables. We hope that this paper will provide a step
towards the building of a bridge between the deterministic and the statistical
inversion theories.
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A Proof of lemma 7

Proof of lemma 7. Let ζ be an Rm-valued random variable with distribution
N (0,Σ). We need to estimate the Ky Fan distance

ρk(ξ, y0) = ρk(ζ, 0) = inf{ε > 0 : P(‖ζ(ω)‖ > ε) < ε}.

Let z > 0. For the normal random variable ζ, the probability of realizations
with large norms is

P(‖ζ(ω)‖ > z) =
(

1
(2π)m|Σ|

) 1
2
∫

‖x‖>z
exp

(
−1

2
xT Σ−1x

)
dx

where | · | denotes the determinant of matrices. Transformation to spherical
coordinates leads to

P(‖ζ(ω)‖ > z) ≤ 2
Γ(m/2)

∫ ∞

z√
2‖Σ‖

tm−1e−t2dt

where Γ is the gamma function. If Σ = σ2I with some σ > 0, the equality
holds. We denote

Im(x) =
∫ ∞

x
tme−t2dt

for all m ∈ N0 and x ≥ 0. With this notation,

ρk(ξ, y0) ≤ inf

{
z > 0 :

2
Γ(m/2)

Im−1

(
z√

2‖Σ‖

)
< z

}
.

There exists a unique point z(m, ‖Σ‖) such that

2
Γ(m/2)

Im−1

(
z(m, ‖Σ‖)√

2‖Σ‖

)
= z(m, ‖Σ‖) (22)
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and

2
Γ(m/2)

Im−1

(
z√

2‖Σ‖

)
< z for all z > z(m, ‖Σ‖),

2
Γ(m/2)

Im−1

(
z√

2‖Σ‖

)
> z for all 0 < z < z(m, ‖Σ‖).

Thus ρk(ξ, y0) ≤ z(m, ‖Σ‖). To derive bounds on ρk(ξ, y0) it therefore
suffices to deduce estimates on z(m, ‖Σ‖).

By induction, we obtain the following recursive representation for the
integrals Im





I0(x) =
√

π
2 erfc(x),

I1(x) = 1
2e−x2

,

Im(x) = 1
2xm−1e−x2

+ m−1
2 Im−2(x), m ≥ 2

where the complementary error function erfc(·) is defined as

erfc(x) =
2√
π

∫ ∞

x
e−t2dt

for x ∈ R. The explicit formulae for the functions Im, m ≥ 2, are

Im(x) =





1
2e−x2 ∑m−1

2
i=0

(m−1
2 )!

(m−1
2
−i)!x

m−2i−1

1
2e−x2 ∑m

2
−1

i=0
1
2i

(m−1)!!
(m−2i−1)!!x

m−2i−1 +
√

π

2m/2+1 (m− 1)!! erfc(x)

for an odd and even m, respectively, and for all x ≥ 0 where

(2l + 1)!! = 1 · 3 · 5 · . . . · (2l + 1)

for all l ∈ N0.
When exploring equation (22) we distinguish the cases (i) m = 1, (ii)

m = 2, (iii) m > 2 is even and (iv) m > 2 is odd. Notice that the solution
z(m, ‖Σ‖) to equation (22) satisfies z(m, ‖Σ‖) → 0 and z(m, ‖Σ‖)/

√
‖Σ‖ →

∞ as ‖Σ‖ → 0 in all four cases.
(i) When m = 1, the matrix Σ is a positive number σ2. Hence, we are

interested in the equation

z = erfc
(

z√
2σ

)
.

Since erfc(x) ≤ exp (−x2)/x
√

π for all x > 0, the solution z̃(1, σ) to the
equation

z =
σ

z

√
2
π

exp
(
− z2

2σ2

)
(23)
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satisfies z(1, σ2) ≤ z̃(1, σ) for all σ ≥ 0. We make the ansatz z̃(1, σ) =
σA(1, σ) and take the logarithm of both sides of (23). Then

log
(√

π

2
σ

)
+ 2 log A(1, σ) = −1

2
A(1, σ)2.

For the ansatz we need to have A(1, σ) → ∞ as σ → 0. Therefore there
exists a positive constant σ1 such that A(1, σ) ≥ 1 for all σ < σ1. Hence

A(1, σ) ≤
√
− log

(π

2
σ2

)

for all σ < σ1 and thus

ρk(ξ, y0) ≤ σ

√
− log

(π

2
σ2

)

for all σ < min
{

σ1,
√

2/π
}

. This result resembles theorem 6.9 in [12], but
while there the result was only stated in an asymptotic form, here we gave
a more explicit relation for the region of validity.

(ii) When m = 2, taking the logarithm from both sides of equation (22)
yields

log z = − z2

2‖Σ‖ .

Since z(m, ‖Σ‖)/
√
‖Σ‖ → ∞ as ‖Σ‖ → 0, there exists a positive constant

σ2 such that z(m, ‖Σ‖) ≥
√
‖Σ‖ when ‖Σ‖ < σ2. Therefore

log
(√

‖Σ‖
)
≤ − z2

2‖Σ‖
when ‖Σ‖ < σ2. Hence

ρk(ξ, y0) ≤
√
−‖Σ‖ log (‖Σ‖)

for all Σ such that ‖Σ‖ < min{σ2, 1}.
(iii) When m > 2 is even, i.e., m = 2l for some l ≥ 2, equation (22) is of

the form

z = exp
(
− z2

2‖Σ‖
) l−1∑

i=0

1
(l − i− 1)!

(
z√

2‖Σ‖

)2l−2i−2

.

We notice that

e−x2
l−1∑

i=0

x2l−2i−2

(l − i− 1)!
≤ lx2l−2e−x2

when x ≥ 1 and x2l−2 ≤ x when x ≤ 1. Since z(2l, ‖Σ‖)/
√
‖Σ‖ → ∞ and

z(2l, ‖Σ‖) → 0 as ‖Σ‖ → 0, there exists a positive constant σ2l such that
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√
2‖Σ‖ ≤ z(2l, ‖Σ‖) ≤ 1 when ‖Σ‖ < σ2l. Therefore the solution z̃(2l, ‖Σ‖)

to the equation
2l−1

l
‖Σ‖l−1 = exp

(
− z2

2‖Σ‖
)

is greater than z(2l, ‖Σ‖) when ‖Σ‖ < σ2l. Hence

ρk(ξ, y0) ≤
√
−‖Σ‖ log

(
22l−2

l2
‖Σ‖2l−2

)

for all Σ such that ‖Σ‖ < min{σ2l, l
1/(l−1)/2}.

(iv) When m > 2 is odd, i.e., m = 2l + 1 for some l ≥ 1, equation (22)
is equal to

z = erfc

(
z√

2‖Σ‖

)

+ exp
(
− z2

2‖Σ‖
) l−1∑

i=0

2l−i

√
π (2(l − i)− 1)!!

(
z√

2‖Σ‖

)2(l−i)−1

.

We notice that

e−x2
l−1∑

i=0

2l−i x2(l−i)−1

√
π (2(l − i)− 1)!!

+ erfc(x) ≤ 2l

√
π

(l + 1)x2l−1 e−x2

when x ≥ 1 and x2l−1 ≤ x when x ≤ 1. Since z(2l + 1, ‖Σ‖) → 0 and
z(2l + 1, ‖Σ‖)/

√
‖Σ‖ → ∞ as ‖Σ‖ → 0, there exists a positive constant

σ2l+1 such that
√

2‖Σ‖ ≤ z(2l + 1, ‖Σ‖) ≤ 1 when ‖Σ‖ < σ2l+1. Therefore
the solution z̃(2l + 1, ‖Σ‖) to the equation

1
(l + 1)

√
π

2
‖Σ‖l− 1

2 = exp
(
− z2

2‖Σ‖
)

is greater than z(2l + 1, ‖Σ‖) when ‖Σ‖ < σ2l+1. Hence

ρk(ξ, y0) ≤
√
−‖Σ‖ log

(
π

2(l + 1)2
‖Σ‖2l−1

)

for all Σ such that ‖Σ‖ < min{σ2l+1, (2(l + 1)2/π)1/(2l−1)}.
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