
Shift Equivalence of P-finite Sequences

Manuel Kauers∗

Research Institute for Symbolic Computation

Johannes Kepler University

Altenbergerstraße 69
A4040 Linz, Austria

Abstract

We present an algorithm which decides the shift equivalence problem for P-finite sequences.

A sequence is called P-finite if it satisfies a homogeneous linear recurrence equation with poly-

nomial coefficients. Two sequences are called shift equivalent if shifting one of the sequences

s times makes it identical to the other, for some integer s. Our algorithm computes, for any

two P-finite sequences, given via recurrence equation and initial values, all integers s such

that shifting the first sequence s times yields the second.

1 Introduction

This paper is part of a long-term project concerning the development of a symbolic summation
algorithm for finding closed forms of sums

n∑

k=1

rat(n, f1(n), . . . , fr(n)),

where f1(n), . . . , fr(n) satisfy homogeneous linear recurrence equations with polynomial coeffi-
cients and rat is a multivariate rational function. The principal question is to decide whether there
exists another rational function rat1 such that the above sum is equal to rat1(n, f1(n), . . . , fr(n))
for n ≥ 1, and if so, to compute one.

Already the case where the fi(n) satisfy linear recurrence equations with constant coefficients is
unsolved. In a recent paper, Greene and Wilf [11] have provided a partial result by restricting
the fi(n) to such sequences and assuming in addition that the summand involves these sequences
only polynomially. For this situation, they have obtained a complete summation algorithm.

The solution to the shift equivalence problem is a step towards allowing nontrivial denominators
in the summand expression. The problem is, for two given sequences to decide whether one of
them can be matched to the other by shifting it an appropriate number of times. Formally, given
f, g : N→ k, we want to determine all s ∈ Z such that, for all possible n, f(n) = g(n + s).

Several summation algorithms include a subroutine for deciding this problem for some classes of
sequences. Gosper’s algorithm [10, 19] for indefinite hypergeometric summation requires solving
the shift equivalence problem for univariate polynomials, i.e., given p, q ∈ Q[n], to determine
s ∈ Z with p(n) = q(n + s). Also the computation of a greatest factorial factorisation (GFF)
requires solving shift equivalence problems [19, 8, 9]. The problem can be solved for polynomials
by observing that all possible solutions s must be among the integer roots of the polynomial

∗Partially supported by FWF grants SFB F1305 and P16613-N12, email: mkauers@risc.uni-linz.ac.at

1

resn(p(n), q(n + s)) ∈ Q[s], so in order to solve the problem it suffices to check all those roots.
Alternative algorithms are available, we refer to [2, 17, 20] for further information about this case.

Karr’s algorithm [12, 13] for simplifying nested sum and product expressions also includes an
algorithm for deciding shift equivalence. In Karr’s algorithm, sequences are represented as elements
of certain types of difference fields (k, E) [6]. The shift equivalence algorithm is, roughly stated,
based on finding the orbits in the multiplicative group {E(f)/f : f ∈ k \ {0} }. See [3, 22] for
details.

In the present paper, we present a solution to the shift equivalence problem for sequences f, g : N→
k which are defined by homogeneous linear recurrence equations with polynomial coefficients (P-
finite sequences). This is sufficiently general for solving the shift equivalence problems arising in
summation. There, we are given multivariate polynomials p1, p2 and a tuple of P-finite sequences
f1, . . . , fr and we have to solve the shift equivalence problem for f(n) := p1(f1(n), . . . , fr(n))
and g(n) := p2(f1(n), . . . , fr(n)). As the set of P-finite sequences is closed under addition and
multiplication [23], also f and g are P-finite and recurrence equations for them can be obtained
algorithmically from p1, p2 and recurrence equations for f1, . . . , fr [21, 16].

2 P-finite and C-finite Sequences

In all theoretical statements made in this paper, it is assumed that k is an arbitrary field of
characteristic 0. For the algorithms, however, it is necessary to choose the field k such that certain
problems can be solved in k. These are explained at the end of Section 3.2 below.

Definition 1 [24] Let f : N→ k be a sequence.

1. f is called P-finite if there exist polynomials a0, . . . , ar ∈ k[n] such that

a0(n)f(n) + a1(n)f(n + 1) + · · · + ar(n)f(n + r) = 0 (n ∈ N).

2. f is called C-finite if there exist constants a0, . . . , ar ∈ k such that

a0f(n) + a1f(n + 1) + · · · + arf(n + r) = 0 (n ∈ N).

In this section, we recall some known facts about P-finite and C-finite sequences that will be
needed in the sequel.

2.1 Annihilating Operators

Let k(n) be the field of univariate rational functions over k, and let k(n)[E] be the univariate skew
polynomial ring over k(n) with the commutation rules En = (n+1)E and Ec = cE for each c ∈ k.
This is a special instance of an Ore ring [18]. It acts on the ring kN of sequences via

((a0 + a1E + · · · + arE
r) · f)(n) := a0(n)f(n) + a1(n)f(n + 1) + · · · + ar(n)f(n + r).

In view of this action, we will refer to the elements of k(n)[E] as operators. If a sequence f : N→ k
is P-finite, then there exists an operator L ∈ k(n)[E] such that L · f = 0. The set of all such
operators forms a left ideal of k(n)[E], the annihilating ideal of f . Occasionally we will allow also
negative powers of E, naturally interpreting them as backwards shift. For s < 0, we understand
that the sequence Es · f is defined only for n > −s, but we prefer to suppress this detail in order
to keep the notation simple.

Annihilating operators are heavily used in symbolic computation algorithms for special functions.
For a thorough account on annihilating operators, we refer to [24, 5] and the references given
there.

2

We write deg(L) for the degree of L ∈ k(n)[E] with respect to E, i.e., the maximum index r ∈ N
such that the coefficient of Er in L is nonzero. Further we define deg(0) := −∞. In view of the
operator interpretation, we shall use the words “order” and “degree” as synonyms for the degree
of skew polynomials.

We need some elementary facts about the ring k(n)[E].

Definition 2 Let A, B, D ∈ k(n)[E]. If there exist A′, B′ ∈ k(n)[E] such that A = A′D and
B = B′D then D is called a common right divisor of A and B. If D is a common right divisor
of maximum degree, then D is called a greatest common right divisor of A and B, written D =
gcrd(A, B).

The greatest common right divisor of two operators A, B ∈ k(n)[E] is uniquely determined up
to multiplication by elements of the ground field k(n). The monic greatest common right divisor
of A and B is called the greatest common right divisor (gcrd). The gcrd of any two specific
operators can be computed by a modified version of the Euclidean algorithm [4, Sect. 3]. Also,
by a modification of the extended Euclidean algorithm, one can compute for any A, B ∈ k(n)[E]
cofactor operators S, T with

SA + TB = gcrd(A, B).

As in the commutative case, S and T can be chosen such that deg(S) ≤ deg(B) and deg(T) ≤
deg(A). Li [14, 15] has shown that the subresultant theory for efficient computation of gcds can
be generalized to gcrds in k(n)[E] as well. We need here the following resultant criterion, which
is classic for commutative polynomials, and which is contained in Li’s work for skew polynomials.

Definition 3 Let A, B ∈ k(n)[E], with coefficients

A = a0(n) + a1(n)E + · · · + ar(n)Er, B = b0(n) + b1(n)E + · · · + bs(n)Es.

Then we call

res(A, B) :=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

ar(n + s − 1) 0 · · · 0 bs(n + r − 1) 0 · · · 0

ar−1(n + s − 1) ar(n + s − 2)
. . .

...
...

. . .
. . .

...
... ar−1(n + s − 2)

. . . 0
...

. . . 0
...

. . . ar(n) b1(n + r − 1) bs(n)

a0(n + s − 1) ar−1(n) b0(n + r − 1)
. . .

...

0 a0(n + s − 2)
... 0

. . .
. . .

...
...

. . .
. . .

...
...

. . .
. . . b1(n)

0 · · · 0 a0(n) 0 · · · 0 b0(n)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

the resultant of A and B (with respect to E).

The resultant of two operators A, B ∈ k(n)[E] belongs to k(n). Note that no noncommutative
arithmetic is required for its computation.

Proposition 1 [15, Prop. 9.1(1,2)] Let A, B ∈ k(n)[E] \ k(n). Then res(A, B) = 0 if and only if
deg(gcrd(A, B)) > 0.

If L ∈ k(n)[E] is an annihilating operator of a sequence f : N → k, then so is AL for any
A ∈ k(n)[E]. In particular, by choosing an appropriate A ∈ k(n), we can always replace L by an
equivalent operator whose coefficients belong to k[n] instead of k(n). If L ∈ k(n)[E] is such an
operator, i.e.,

L = l0(n) + l1(n)E + · · · + lr(n)Er

3

with l0, . . . , lr ∈ k[n], then f is uniquely defined by L and sufficiently many initial values. The
number of initial values necessary to define f is given by max(0, n0) + r, where n0 is the greatest
integer root of lr. (Set n0 := 0 if lr does not have integer roots.) Given this data, many questions
about f can be answered algorithmically [21, 16], in particular, it can be decided whether already
a right divisor D of L annihilates f .

Proposition 2 Let f : N→ k be annihilated by L ∈ k[n][E], and let A = a0(n) + a1(n)E + · · · +
ar(n)Er ∈ k[n][E], B = b0(n) + b1(n)E + · · · + bs(n)Es ∈ k[n][E] be such that L = AB. Then
B ·f = 0 if and only if (B ·f)(n) = 0 for n = 0, . . . , max(0, n0)+r, where n0 is the greatest integer
root of ar.

Proof. First of all, we have (A · g)(n) = 0 for n = 0, . . . , max(0, n0)+ r if and only if g is the zero
sequence. For n > max(0, n0), this can be seen by induction:

ar(n)g(n + r) = a0(n)g(n) + a1(n)g(n + 1) + · · · + ar−1(n)g(n + r − 1)

= a0(n)0 + a1(n)0 + · · · + ar−1(n)0 = 0,

hence, since ar(n) 6= 0, we must have g(n + r) = 0. Now take g = B · f . Then A · (B · f) =
(AB) · f = L · f = 0 implies the claim. �

Note that A can be computed from L and B by right division, if it is not given. Also note that more
generally, we can test for any L′ ∈ k(n)[E] whether it annihilates f by applying the proposition
to B := gcrd(L, L′).

2.2 Characteristic Polynomial and Companion Matrix

It will be convenient to adopt matrix notation for C-finite operators. If f : N→ k is C-finite, say
L · f = 0 for some L = (Er − a0 − a1E − · · · − ar−1E

r−1) · f ∈ k[E], then we have the matrix
identity

f(n + 1)
...
...

f(n + r − 1)
f(n + r)

=

0 1 0 . . . 0
...

. . .
. . .

. . .
...

...
. . .

. . . 0
0 · · · · · · 0 1
a0 a1 · · · · · · ar−1

f(n)
...
...

f(n + r − 2)
f(n + r − 1)

for every n ∈ N. The r × r matrix in this equation is called the companion matrix of L.

Iterating the above equation n times, it follows that

f(n + 1)
...
...

f(n + r − 1)
f(n + r)

=

0 1 0 . . . 0
...

. . .
. . .

. . .
...

...
. . .

. . . 0
0 · · · · · · 0 1
a0 a1 · · · · · · ar−1

n

f(0)
...
...

f(r − 2)
f(r − 1)

,

thus any value of f can be obtained by multiplying the vector of initial values by a suitable power
of the companion matrix.

The characteristic polynomial of the companion matrix is precisely L. For this reason, L is also
called the characteristic polynomial of the sequence f . We can always assume that a0 6= 0 by
changing to an operator of lower order, if necessary. In this case, the companion matrix will not
have 0 as an eigenvalue.

4

3 Shift Equivalence of C-finite Sequences

We now introduce an algorithm for solving the shift equivalence problem for two C-finite sequences.
The algorithm for the P-finite case calls this algorithm as a subroutine.

Let f1, f2 : N→ k be C-finite sequences, and suppose that L1, L2 ∈ k[E] are given with L1 · f1 =
L2 · g2 = 0. We want to determine all s ∈ Z such that f1 = Es · f2.

Lemma 1 Let f1, f2 : N→ k be annihilated by L1, L2 ∈ k[E], respectively.

1. For all s ∈ Z and all L ∈ k[E], we have L · f1 = 0 if and only if L · (Es · f1) = 0.

2. If there exists some s ∈ Z with f1 = Es · f2, then L · f1 = L · f2 = 0 for L := gcd(L1, L2).

Proof.

1. Let s ∈ Z and L = l0 + l1E + · · · + lrE
r ∈ k[E]. Then

L · f1 = 0 ⇐⇒ ∀n ∈ N : l0f1(n) + l1f1(n + 1) + · · · + lrf1(n + r) = 0

⇐⇒ ∀n ∈ N : l0f1(n + s) + l1f1(n + s + 1) + · · · + lrf1(n + s + r) = 0

⇐⇒ ∀n ∈ N : l0(E
sf1)(n) + l1(E

sf1)(n + 1) + · · · + lr(E
sf1)(n + r) = 0

⇐⇒ L · (Es · f1) = 0.

2. Let s ∈ Z be such that f1 = Esf2. Then, by part 1, L2 · f1 = 0. By assumption, L1 · f1 = 0,
hence (SL1 + TL2) · f1 = 0 for any S, T ∈ k[E]. As it is possible to choose S, T such that
SL1 + TL2 = L, it follows that L · f1 = 0. For the same reason, L · f2 = 0. �

In order to solve the shift equivalence problem for f1, f2, we check in a preprocessing step whether
these sequences are annihilated by the same recurrence. Computing L = gcd(L1, L2), we need to
check whether L · f1 = 0 and L · f2 = 0, which is possible by Prop. 2. If one or both of the two
sequences is not annihilated by L, then there is no solution to the shift equivalence problem, and
we return the empty set. Otherwise, we proceed as described in the remainder of this section.
From now on, we may assume that L ∈ k[E] monic with L · f1 = L · f2 = 0 is given.

3.1 Reduction to a Matrix Equation

Let r = deg(L) and let C ∈ kr×r be the companion matrix of L. Writing

F1(n) :=

f1(n)
f1(n + 1)

...
f1(n + r − 1)

and F2(n) :=

f2(n)
f2(n + 1)

...
f2(n + r − 1)

,

we then have the matrix identities

F1(n) = CnF1(0) and F2(n) = CnF2(0)

for all n ∈ N.

Lemma 2 In the notation above, we have f1 = Esf2 if and only if

F1(0) = CsF2(0), (1)

for any s ∈ Z.

5

Proof. Let s ∈ Z. Then

f1 = Esf2 ⇐⇒ ∀n ∈ N : F1(n) = F2(n + s) ⇐⇒ ∀n ∈ N : CnF1(0) = Cn+sF2(0)

⇐⇒ F1(0) = CsF2(0),

as claimed. �

Thus in order to solve the shift equivalence problem for f1, f2, it remains to solve the matrix
equation (1).

3.2 Solution of the Matrix Equation

Let C ∈ kr×r be invertible, and u, v ∈ kr. We seek all s ∈ Z satisfying the matrix equation
u = Csv. Consider the Jordan decomposition of C, i.e., let T, J ∈ k̄r×r be invertible such that
C = T−1JT and J is of the form

J =

J1 0 · · · 0

0 J2
. . .

...
...

. . .
. . . 0

0 · · · 0 Jm

with Ji =

αi 1 0 · · · 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
...

. . .
. . . 1

0 · · · · · · 0 αi

(i = 1, . . . , m),

where each αi is an eigenvalue of C. Owing to the cancellation of T−1 with T , we have Cs =
T−1JsT , and so we are done if we find all s ∈ Z such that ū = Jsv̄, where ū := Tu and v̄ := Tv.

Since

Js =

J1

s

0 · · · 0

0 J2

s . . .
...

...
. . .

. . . 0

0 · · · 0 Jm

s

(s ∈ Z),

we can solve the problem for each Jordan block separately. The intersection of the individual
solution sets gives the set of all solutions:

Algorithm 1 INPUT: A matrix C ∈ kr×r, vectors u = (u1, . . . , ur), v = (v1, . . . , vr) ∈ kr

OUTPUT: All s ∈ Z such that u = Csv

1 function solveMatrixEquation(C, u, v; k)
2 Compute J, T ∈ k̄r×r such that C = T−1JT and J is in Jordan form
3 ū := Tu; v̄ := Tv
4 S := Z
5 foreach Jordan block Ji of J do

6 Let r0, r1 be the index of the first and last row of Ji in J , respectively
7 S := S ∩ solveMESingleJordanBlock(Ji, (ūr0

, . . . , ūr1
), (v̄r0

, . . . , v̄r1
); k̄) // Alg. 2

8 return S

Now assume that J ∈ kr×r consists of a single Jordan block, and let α 6= 0 be its eigenvalue. We
can assume without loss of generality that ūr 6= 0 6= v̄r. (Otherwise: If ū = v̄ = 0, the solution
set is Z. If ūr = v̄r = 0 we can drop the last entries of ū, v̄ and the last row and the last column
from J , and iterate if necessary. If ūr = 0 and v̄r 6= 0 or ūr 6= 0 and v̄r = 0, then the solution set

6

is ∅.) As can be shown easily by induction, we have

Js =

α 1 0 · · · 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
...

. . .
. . . 1

0 · · · · · · 0 α

s

=

αs sαs−1
(

s

2

)
αs−2 · · ·

(
s

r−1

)
αs−(r−1)

0
. . .

. . .
. . .

...
...

. . .
. . .

. . .
(

s

2

)
αs−2

...
. . . αs sαs−1

0 · · · · · · 0 αs

(s ∈ Z).

If r = 1, the solution set for ū = Jv̄ is simply given by

{ s ∈ Z : ūr/v̄r = αs }.

If r > 1, then the last two rows of the matrix equation yield

ūr−1 = αsv̄r−1 + sαs−1v̄r =
ūr

v̄r

v̄r−1 +
s

α

ūr

v̄r

v̄r

=⇒ s = α
(ūr−1

ūr

−
v̄r−1

v̄r

)

as a unique solution candidate. If this s is not an integer, or it does not satisfy ū = Jsv̄, then the
solution set is ∅, otherwise it is {s}. This gives the following algorithm.

Algorithm 2 INPUT: A Jordan block J ∈ kr×r, vectors u = (u1, . . . , ur), v = (v1, . . . , vr) ∈ kr

OUTPUT: All s ∈ Z such that u = Jsv

1 function solveMESingleJordanBlock(J, u, v; k)
2 if u = v = (0, . . . , 0) then return Z
3 while vr = 0 do

4 if ur = 0 then r := r − 1 else return ∅
5 // now vr 6= 0
6 if ur = 0 then return ∅
7 // now ur 6= 0 6= vr

8 Let α ∈ k be the diagonal element of J
9 if r = 1 then return {s ∈ Z : ur/vr = αs}

10 s := α(ur−1/ur − vr−1/vr)
11 if s ∈ Z and u = Jsv then return {s} else return ∅

The correctness of Algorithms 1 and 2 should be clear by the above discussion. Several restrictions,
however, have to be made for the field k in order that every step in these algorithms can be carried
out algorithmically. Of course, it is necessary that k is a computable, i.e., that every element has
a finite representation, that the arithmetic operations +,−, ·, / are computable, and that zero
equivalence can be decided. Furthermore, for the computation of a Jordan decomposition (Line 2
in Alg. 1), we need to be able to compute absolute factorizations of univariate polynomials in k[X].
The algebraic closure k̄ also has to be a computable field. Line 11 of Algorithm 2 requires to decide
whether an element of k̄ is an integer. All these requirements can be accommodated for most fields
k that might be of interest. More restrictive is the final requirement, originating from line 9: We
have to be able to compute the set {s ∈ Z : a = bs} for given a, b ∈ k̄. An algorithm for this
purpose was given by Abramov and Bronstein [1]. This algorithm is applicable whenever k is
such that it can be decided for any given x ∈ k whether x is transcendental or algebraic over Q,
and that for any two elements x, y ∈ k it can be decided whether these elements are algebraically
independent overQ. Ge’s algorithm [7] gives rise to an efficient alternative if k is a single algebraic
extension of Q, i.e., if k = Q(α) for some algebraic number α.

7

3.3 Summary

Lemma 2 reduces the shift equivalence problem for C-finite sequence to solving a matrix equation,
and this matrix equation can be solved by means of Algorithm 1. Putting things together, we thus
obtain the following algorithm for solving the shift equivalence problem for C-finite sequences.

Algorithm 3 INPUT: f1, f2 : N → k C-finite, specified by annihilating operators L1, L2 ∈ k[E]
and initial values
OUTPUT: all s ∈ Z such that f1 = Esf2

1 function cfiniteSE(f1, f2)
2 L := gcd(L1, L2) ∈ k[E]
3 if L · f1 6= 0 or L · f2 6= 0 then return ∅
4 Let r := deg(L) and C ∈ kr×r be the companion matrix of L
5 return solveMatrixEquation(C, (f1(0), . . . , f1(r − 1)), (f2(0), . . . , f2(r − 1)))

3.4 Examples

Example 1 Let f1, f2 : Z→ Q be defined by

f1(n + 3) = 5f1(n + 2) − 8f1(n + 1) + 4f1(n), f1(0) = 0, f1(1) = −16, f1(2) = −64,

f2(n + 3) = 2f2(n + 2) + 4f2(n + 1) − 8f2(n), f2(0) = 1
4 , f2(1) = 7

16 , f2(2) = 3
4 .

In operator notation, we have

(E3 − 5E2 + 8E − 4)
︸ ︷︷ ︸

=:L1

·f1 = 0, (E3 − 2E2 − 4E + 8)
︸ ︷︷ ︸

=:L2

·f2 = 0.

The greatest common divisor of these operators is

L := gcd(L1, L2) = E2 − 4E + 4 = (E − 2)2,

and it can be checked that L · f1 = L · f2 = 0.

Computing the Jordan decomposition of the companion matrix, we find

C :=

(
0 1
−4 4

)

=

(
0 1/2
−2 1

)
−1

·

(
2 1
0 2

)

·

(
0 1/2
−2 1

)

=: T−1JT.

Applying T to the vectors of initial values leads to

ū =

(
0 1/2
−2 1

) (
0

−16

)

=

(
−8
−16

)

, v̄ =

(
0 1/2
−2 1

) (
1/4
7/16

)

=

(
7/32
−1/16

)

.

It remains to determine s ∈ Z such that
(
−8
−16

)

=

(
2 1
0 2

)s (
7/32
−1/16

)

. (2)

Since J consists of a single Jordan block of size two, we have a unique solution candidate:

s = 2
(−8

−16
−

7/32

−1/16

)

= 8

Indeed, (2) is fullfilled for s = 8, and it follows that f1 = Esf2 if and only if s = 8.

8

Example 2 Consider f1, f2 : N→ Q defined via

f1(n + 3) = −f1(n + 2) + f1(n + 1) + f1(n), f1(0) = 0, f1(1) = 0, f1(2) = 4,

f2(n + 3) = −f2(n + 2) + f2(n + 1) + f2(n), f2(0) = 8, f2(1) = 8, f2(2) = 4.

We have L · f1 = L · f2 = 0 for

L = E3 + E2 − E − 1 = (E + 1)(E − 1)2 ∈ k[E].

Computing the Jordan decomposition of the companion matrix, we find

C :=

0 1 0
0 0 1
−1 1 1

 =

1/4 −1/2 1/4
−1/4 1/2 3/4
−1/2 0 1/2

−1

−1 0 0
0 1 1
0 0 1

1/4 −1/2 1/4
−1/4 1/2 3/4
−1/2 0 1/2

 =: T−1JT.

Applying T to the vectors of initial values leads to

ū = T

0
0
4

 =

1
3
2

 , v̄ = T

8
8
4

 =

−1
5
−2

 .

It remains to find s ∈ Z such that

1
3
2

 =

−1 0 0
0 1 1
0 0 1

s

−1
5
−2

 .

The matrix J consists of two Jordan blocks which have to be considered separately. The first block
has length 1, and it restricts the solutions to the set

S1 := { s ∈ Z :
1

−1
= (−1)s } = 1 + 2Z

of all odd integers. The second block has length 2, so it leads to the unique solution candidate

s = 1(3
2 − (− 5

2)) = 4.

Since S1 ∩ {4} = ∅, it follows that the two sequences f1 and f2 are not shift equivalent.

4 Shift Equivalence of P-finite Sequences

The algorithm for the P-finite case consists of a case distinction: either the question can be reduced
to a shift equivalence problem for C-finite sequences, and then Algorithm 3 above can be applied,
or it is possible to determine a finite number of candidate solutions s, which can be checked one
ofter the other.

Contrary to the C-finite case, for a general operator L ∈ k(n)[E], it is no longer the case that
L · f = 0 ⇐⇒ L · (Es · f) = 0. The following definition is made in order to repair this deficiency.

Definition 4 For A = a0(n) + a1(n)E + · · · + ar(n)Er ∈ k(n)[E] and s ∈ k, we define

A(s) = a0(n + s) + a1(n + s)E + · · · + ar(n + s)Er.

With this definition, we can formulate the following generalization of Lemma 1.

Lemma 3 Let f1, f2 : N→ k be annihilated by L1, L2 ∈ k(n)[E], respectively.

9

1. For all s ∈ Z and all L ∈ k(n)[E], we have L · f1 = 0 if and only if L(s) · (Es · f1) = 0.

2. If there exists some s ∈ Z with f1 = Es · f2, then L · f1 = L · f2 = 0 for L := gcrd(L1, L
(s)
2).

Proof.

1. Let s ∈ Z and L = l0(n) + l1(n)E + · · · + lr(n)Er ∈ k(n)[E]. Then

L · f1 = 0 ⇐⇒ ∀n ∈ N : l0(n)f1(n) + · · · + lr(n)f1(n + r) = 0

⇐⇒ ∀n ∈ N : l0(n + s)f1(n + s) + · · · + lr(n + s)f1(n + s + r) = 0

⇐⇒ ∀n ∈ N : l0(n + s)(Es · f1)(n) + · · · + lr(n + s)(Es · f1)(n + r) = 0

⇐⇒ L(s) · (Es · f1) = 0.

2. Let s ∈ Z such that f1 = Esf2. Then, by part 1, L
(s)
2 · f1 = 0. By assumption, L1 · f1 = 0,

hence (SL1+TL
(s)
2)·f1 = 0 for any S, T ∈ k(n)[E]. As it is possible to choose S, T ∈ k(n)[E]

such that SL1 + TL
(s)
2 = L, it follows that L · f1 = 0. For the same reason, L · f2 = 0. �

4.1 The degenerate Case

Let L1, L2 ∈ k(n)[E] be given. We may extend the ground field k by a new transcendental
element s, commuting with E, and consider L1, L2 as elements of k(s)(n)[E], with coefficients free

of s. In this setting we can form L
(s)
2 for symbolic s and consider L := gcrd(L1, L

(s)
2). It turns out

that the coefficients of L neither contain s nor n:

Lemma 4 Let L1, L2 ∈ k(n)[E].

1. deg(gcrd(L1, L
(s)
2)) > 0 for infinitely many s ∈ Z if and only if deg(gcrd(L1, L

(s)
2)) > 0

where L1, L
(s)
2 are viewed as elements of k(s)(n)[E].

2. If L1, L
(s)
2 are viewed as elements of k(s)(n)[E], then L := gcrd(L1, L

(s)
2) belongs to k[E].

Proof.

1. Consider the resultant res(L1, L
(s)
2) ∈ k(s)(n). By Prop. 1, a nontrivial gcrd appears precisely

for those values of s where the resultant vanishes. Since the resultant is a rational function
in s over a field of characteristic zero, it can only have infinitely many integer roots if it is
identically zero. Then, however, already the gcrd over k(s)(n) must be nontrivial, again by
Prop. 1.

2. Since L is a right divisor of L1 and L1 does not involve s, also L is free of s. Furthermore, we

have that L(−s) = gcrd(L
(−s)
1 , (L

(s)
2)(−s)) = gcrd(L

(−s)
1 , L2) is a right divisor of L2 ∈ k(n)[E]

and therefore it is free of s, too. But L and L(−s) can be simulaniously free of s only if they
are also free of n. �

The degenerate case happens if L := gcrd(L1, L
(s)
2) (computed in k(s)(n)[E]) is already an an-

nihilator for both f1, f2. In this case, the sequences f1, f2 are C-finite and we can proceed with
Algorithm 3.

10

4.2 The nondegenerate Case

The nondegenerate case happens if L := gcrd(L1, L
(s)
2) (computed in k(s)(n)[E]) is not an anni-

hilator of f1, f2. In this case, in view of Lemma 3, part 2, it is necessary for every solution s ∈ Z
of the shift equivalence problem that gcrd(L1/L, L

(s)
2 /L) is nontrivial. By Prop. 1, this happens

precisely for the integer roots of

res(rquo(L1, L), rquo(L
(s)
2 , L)) ∈ k(s, n),

where rquo(A, B) denotes the right quotient of A ∈ k(s)(n)[E] by B ∈ k(s)(n). By Lemma 4, it
follows that the resultant is not identically zero, for otherwise L would not be the greatest common

right divisor of L1 and L
(s)
2 .

Thus the resultant can only have finitely many roots in the integers, and the shift equivalence
problem can be solved by trying each of them.

4.3 Summary

Putting things together, we obtain the following algorithm for solving the shift equivalence problem
for P-finite sequences.

Algorithm 4 INPUT: f1, f2 : N → k, specified by annihilating operators L1, L2 ∈ k(n)[E] and
sufficiently many initial values.
OUTPUT: all s ∈ Z such that f1 = Esf2

1 function pfiniteSE(f1, f2)

2 L := gcrd(L1, L
(s)
2) // computed in k(s)(n)[E]

3 if L · f1 = 0 and L · f2 = 0 then

4 return cfiniteSE(f1, f2) // specifying L as annihilating operator of both f1 and f2

5 R(s) := res(rquo(L1, L), rquo(L
(s)
2 , L)) ∈ k(s)(n)

6 C := {s ∈ Z : R(s) = 0}; S := ∅
7 forall s ∈ C do

8 if f1 = Esf2 then S := S ∪ {s}
9 return S

4.4 Examples

Example 3 Let f1, f2 : N→ Q be defined via

(
(n + 1)E3 − (5n + 4)E2 + 4(2n + 1)E − 4n

)

︸ ︷︷ ︸

=:L1

·f1 = 0, f1(0) = 0, f1(1) = −16, f1(2) = −64,

(
nE3 − (5n + 1)E2 + 4(2n + 1)E − 4(n + 1)

)

︸ ︷︷ ︸

:=L2

·f2 = 0, f2(0) = 1
4 , f2(1) = 7

16 , f2(2) = 3
4 .

Computing L := gcrd(L1, L
(s)
2) in Q(s)(n)[E], we obtain

L = E2 − 4E + 4,

and since L · f1 = L · f2 = 0, we may proceed as in Example 1, obtaining that f1 = Esf2 if and
only if s = 8.

11

Example 4 Let f1, f2 : N→ Q be defined via

L1 · f1 = 0, f1(0) = 5, f1(1) = 125
8 , f1(2) = 209

4 ,

L2 · f2 = 0, f2(0) = 5, f2(1) = 5
2 , f2(2) = 5.

where

L1 := (n + 6)(n + 1)E3 − (6n2 + 33n + 7)E2 + (9n2 + 30n− 49)E − (2n − 3)(n + 4),

L2 := (n + 4)2E3 − 2(3n2 + 18n + 28)E2 + 3(3n2 + 9n + 4)E − 2n(n + 2).

We have gcrd(L1, L
(s)
2) = 1 when computing in Q(s)(n)[E], and 1 obviously does not annihilate

f1 or f2, so we are in the nondegenerate case. The resultant reads

res(L1, L
(s)
2) = −3(s − 2)2(27n7 + 18sn6 + 549n6 − 108s2n5 − 72sn5 + 3276n5

− 162s3n4 − 2304s2n4 − 3714sn4 − 1722n4 − 63s4n3 − 2196s3n3

− 15753s2n3 − 29847sn3 − 50634n3 − 513s4n2 − 8976s3n2 − 32808s2n2

− 34370sn2 − 26246n2 − 213s4n + 699s3n + 53200s2n + 227440sn

+ 353172n + 3222s4 + 60336s3 + 237486s2 + 205572s− 95040)

The last factor is irreducible, so the resultant has the only integer root s = 2. Comparing initial
values confirms that f1 = Esf2 if and only if s = 2.

Acknowledgement. I would like to thank Carsten Schneider for helpful discussions.

References

[1] Sergei A. Abramov and Manuel Bronstein. Hypergeometric dispersion and the orbit problem.
In Proceedings of ISSAC’00, pages 8–13, 2000.

[2] Sergej A. Abramov. On the summation of rational functions. Zh. vychisl. mat. Fiz, pages
1071–1075, 1971.

[3] Manuel Bronstein. On solutions of linear ordinary difference equations in their coefficient
field. Journal of Symbolic Computation, 29:841–877, 2000.

[4] Manuel Bronstein and Marko Petkovšek. An introduction to pseudo-linear algebra. Theoretical
Computer Science, 157(1):3–33, 1996.

[5] Frédéric Chyzak and Bruno Salvy. Non-commutative elimination in Ore algebras proves
multivariate identities. Journal of Symbolic Computation, 26:187–227, 1998.

[6] Richard M. Cohn. Difference Algebra. Interscience Publishers, John Wiley & Sons, 1965.

[7] Guoqiang Ge. Algorithms related to multiplicative representations of algebraic numbers. PhD
thesis, U.C. Berkeley, 1993.

[8] Jürgen Gerhard. Modular algorithms for polynomial basis conversion and greatest factorial
factorization. In Proceedings of the 7th Rhine Workshop of Computer Algebra, pages 125–141,
1999.

[9] Jürgen Gerhard. Modular Algorithms in Symbolic Summation and Symbolic Integration, vol-
ume 3218 of LNCS. Springer, 2004.

[10] William Gosper. Decision procedure for indefinite hypergeometric summation. Proceedings
of the National Academy of Sciences of the United States of America, 75:40–42, 1978.

12

[11] Curtis Greene and Herbert S. Wilf. Closed form summation of C-finite sequences. Transac-
tions of the American Mathematical Society, 2006. to appear.

[12] Michael Karr. Summation in finite terms. Journal of the ACM, 28:305–350, 1981.

[13] Michael Karr. Theory of summation in finite terms. Journal of Symbolic Computation,
1(3):303–315, 1985.

[14] Ziming Li. A Subresultant Theory for Linear Differential, Linear Difference, and Ore Poly-
nomials, with Applications. PhD thesis, RISC-Linz, 1996.

[15] Ziming Li. A subresultant theory for Ore polynomials with applications. In Proceedings of
ISSAC’98, pages 132–139, 1998.

[16] Christian Mallinger. Algorithmic manipulations and transformations of univariate holonomic
functions and sequences. Master’s thesis, J. Kepler University, Linz, August 1996.

[17] Yiu-Kwong Man and Francis J. Wright. Fast polynomial dispersion computation and its
application to indefinite summation. In Proceedings of ISSAC’94, pages 175–180, 1994.

[18] O. Ore. Theory of non-commutative polynomials. Annals of Mathematics, 34:480–508, 1933.

[19] Peter Paule. Greatest factorial factorization and symbolic summation. Journal of Symbolic
Computation, 20:235–268, 1995.

[20] Peter Paule and Volker Strehl. Symbolic summation – some recent developments. In Computer
Algebra in Science and Engeneering – Algorithms, Systems, and Applications, pages 138–162,
1995.

[21] Bruno Salvy and Paul Zimmermann. Gfun: a Maple package for the manipulation of gener-
ating and holonomic functions in one variable. ACM Transactions on Mathematical Software,
20(2):163–177, 1994.

[22] Carsten Schneider. A collection of denominator bounds to solve parameterized linear differ-
ence equations in ΠΣ-extensions. In Proceedings of SYNASC’04, pages 269–282, 2004.

[23] Richard P. Stanley. Enumerative Combinatorics, Volume 2. Cambridge Studies in Advanced
Mathematics 62. Cambridge University Press, 1999.

[24] Doron Zeilberger. A holonomic systems approach to special functions. Journal of Computa-
tional and Applied Mathematics, 32:321–368, 1990.

13

