SIMPLIFYING SUMS IN $\Pi \Sigma^{*}$-EXTENSIONS

CARSTEN SCHNEIDER

Abstract

We present algorithms which split a rational expression in terms of indefinite nested sums and products into a summable part which can be summed by telescoping and into a non-summable part which is degree-optimal with respect to one of the most nested sums or products. If possible, our algorithms find a non-summable part where all these most nested sums and products are eliminated.

1. Introduction

Indefinite summation can be described by the following telescoping problem: Given f where f belongs to some domain of sequences \mathbb{E}, find $g \in \mathbb{E}$ such that

$$
\begin{equation*}
f(k)=g(k+1)-g(k) \tag{1}
\end{equation*}
$$

Then given such a solution g, we get the closed form evaluation

$$
\sum_{k=a}^{b} f(k)=g(b+1)-g(a)
$$

i.e., the sum $\sum_{k=a}^{b} f(k)$ can be simplified in terms of the sequences given in \mathbb{E}. E.g., there are algorithms for the rational case, see [Abr71], for hypergeometric terms, see [Gos78, PS95], for q-hypergeometric terms, see [Koo93, PR97], or more generally, for $\Pi \Sigma^{*}$-terms, see [Kar81, Sch04b]. Here arbitrarily nested indefinite sums and products are represented in the difference field setting of $\Pi \Sigma^{*}$-fields. Typical examples of such sums and products are d'Alembertian solutions [AP94, Sch01], a subclass of Liouvillian solutions [HS99] of linear recurrences.

We consider the following refined problem: Given $f \in \mathbb{E}$, find $\left(f^{\prime}, g\right) \in \mathbb{E}^{2}$ such that

$$
\begin{equation*}
f(k)=g(k+1)-g(k)+f^{\prime}(k) \tag{2}
\end{equation*}
$$

where f^{\prime} is as "small" as possible. Since we consider $f^{\prime}=0$ as the "smallest" possible choice, f^{\prime} is also called the non-summable part. Then given such a solution $\left(f^{\prime}, g\right)$, we obtain

$$
\sum_{k=a}^{b} f(k)=g(b+1)-g(a)+\sum_{k=a}^{b} f^{\prime}(k)
$$

i.e., the sum $\sum_{k=a}^{b} f(k)$ can be simplified in terms of the sequences given in \mathbb{E} and by the sum $\sum_{k=a}^{b} f^{\prime}(k)$. In a nutshell, one tries to solve the classical telescoping problem in $\mathbb{E}\left(f^{\prime}=0\right)$, and if this is not possible, tries to keep the non-summable part $f^{\prime}(k)$ as small as possible.

For the rational case this refined telescoping approach has been considered in [Abr75]; here the minimality of f^{\prime} is defined by the degree of the denominator polynomial. Theoretical inside and different algorithms have been derived in [Pau95].

For the $\Pi \Sigma^{*}$-field case the following variation has been considered in [Sch04c, Sch05b]: find a summand $f^{\prime}(k)$ where the depth of the nested sums and products is optimal.

Based on the algorithmic theory given in [Kar81] we shall develop a framework which combines both versions: choose one of the most nested sums or products in $f(k)$ and find $f^{\prime}(k)$ such that the degrees of its polynomial and fractional part are optimal w.r.t. to the

[^0]selected sum or product. Applying this strategy recursively, we can eliminate, if possible, all such most nested sums and products in $f^{\prime}(k)$. Typical examples are
\[

$$
\begin{align*}
& \sum_{k=2}^{n} \frac{-k H_{k}^{5}+H_{k}^{4}-k H_{k}+2}{H_{k}-k H_{k}^{2}}=(n+1) H_{n}^{3}-(2 n+1)\left(\frac{3}{2} H_{n}^{2}-3 H_{n}+\frac{3}{2}\right)+\frac{1}{H_{n}}+\sum_{k=2}^{n} \frac{k^{2}+H_{k}}{k^{2} H_{k}} \tag{3}\\
& \sum_{k=0}^{n}\left(\sum_{i=0}^{k}\binom{x}{i}\right)^{2}=(x-n)\binom{x}{n} \sum_{i=0}^{n}\binom{x}{i}-\frac{x-2 n-2}{2}\left(\sum_{i=0}^{n}\binom{x}{i}\right)^{2}-\frac{x}{2} \sum_{k=0}^{n}\binom{x}{k}^{2}, \tag{4}\\
& \sum_{k=1}^{n-1} H_{k}^{2} H_{k}^{(2)}=-\frac{H_{n}^{3}}{3}+\left(n H_{n}^{(2)}+1\right) H_{n}^{2}+(2 n+1)\left(H_{n}^{(2)}-H_{n}^{(2)} H_{n}\right)-2 H_{n}+\frac{1}{3} H_{n}^{(3)} \tag{5}
\end{align*}
$$
\]

where $H_{k}=\sum_{j=1}^{k} 1 / j$ denote the harmonic numbers and $H_{k}^{(r)}=\sum_{j=1}^{k} 1 / j^{r}, r>1$, are its generalized versions. In (3) we simplify the sum on the left-hand side by finding $f^{\prime}(k)=\frac{k^{2}+H_{k}}{k^{2} H_{k}}$ where the degrees w.r.t H_{k} are optimal. Moreover, in (4), which is a generalized version from [AP99, Page 9], we compute $f^{\prime}(k)=\binom{n}{k}^{2}$ which is free of $\sum_{i=0}^{k}\binom{n}{i}$. In (5) we simplify the sum on the left-hand side by finding $f^{\prime}(k)=\frac{1}{k^{3}}$ which is free of H_{k} and $H_{k}^{(2)}$.

The algorithms under consideration are illustrated by various concrete examples; some of them pop up in [Zha99, PS03, Sch04b, DPSW05]. All these ideas are implemented in the summation package Sigma [Sch04b].

The general structure is as follows. In Section 2 we formulate the refined telescoping problem $R T$ in difference fields and supplement it by examples. In Section 3 we split problem $R T$ in the two subproblems $P P$ and $R P$ which we solve in Sections 4 and 5 . Using these results, we get an algorithm which can eliminate, if possible, all the extensions which are most nested, see Section 6. In Section 7 we show how problem (2) is related to the theory of $\Pi \Sigma^{*}$-extensions.

2. The Problem in $\Pi \Sigma^{*}$-EXTENSIONS

We describe the domain of sequences \mathbb{E} in problem (2) by difference fields, i.e., by a field \mathbb{E} and a field automorphism $\sigma: \mathbb{E} \rightarrow \mathbb{E}$; in short we write (\mathbb{E}, σ). All fields in this paper are understood as having characteristic 0 . The constant field of (\mathbb{E}, σ) is defined by $\mathbb{K}:=\{c \in \mathbb{E} \mid \sigma(c)=c\}$. It is easy to see that \mathbb{K} is a subfield of \mathbb{E}; this implies that $\mathbb{Q} \subseteq \mathbb{K}$. Then problem (2) can be formulated as follows. Given $f \in \mathbb{E}$, find $\left(f^{\prime}, g\right) \in \mathbb{E}^{2}$ such that

$$
\begin{equation*}
\sigma(g)-g+f^{\prime}=f \tag{6}
\end{equation*}
$$

where f^{\prime} is as simple as possible. We call $\left(f^{\prime}, g\right) \in \mathbb{E}$ a Σ-pair for f if it fulfills (6).
Subsequently, we restrict to difference fields which can be obtained by certain difference field extensions called $\Pi \Sigma^{*}$-extensions. A difference field (\mathbb{E}, σ) is called a difference field extension of $\left(\mathbb{F}, \sigma^{\prime}\right)$, if \mathbb{F} is a sub-field of \mathbb{E} and $\left.\sigma\right|_{\mathbb{F}}=\sigma^{\prime}$ (since σ and σ^{\prime} agree on \mathbb{F}, we do not distinguish them anymore). A difference field extension (\mathbb{E}, σ) of (\mathbb{F}, σ) is called a $\Pi \Sigma^{*}$ extension, if $\mathbb{E}=\mathbb{F}(t)$ is a rational function field extension, the field automorphism $\sigma: \mathbb{F} \rightarrow \mathbb{F}$ is extended to $\sigma: \mathbb{F}(t) \rightarrow \mathbb{F}(t)$ by $\sigma(t)=a t$ or $\sigma(t)=t+a$ for some $a \in \mathbb{F}^{*}$, and the constant field remains unchanged, i.e., const ${ }_{\sigma} \mathbb{F}(t)=$ const $_{\sigma} \mathbb{F}=\mathbb{K}$. If $\sigma(t)=a t$, we call the extension also a Π-extension; if $\sigma(t)=t+a$, we call it a Σ^{*}-extension.

Remark 2.1. Note that there are decision procedures which enable one to test if a given extension is a $\Pi \Sigma^{*}$-extension. For Σ^{*}-extensions we refer to Section 7. For general Π-extensions we refer to [Kar81]. Here we mention only that a hypergeometric term, like $\binom{n}{k}$ or k !, can be always represented by a Π-extension; only objects like $(-1)^{k}$ cannot be handled, see [Sch05c].

For such a $\Pi \Sigma^{*}$-extension $(\mathbb{F}(t), \sigma)$ of (\mathbb{F}, σ) we are interested in the following problem:

RT: Refined Telescoping with optimal degree

Given $f \in \mathbb{F}(t)$; find a Σ-pair $\left(f^{\prime}, g\right)$ for f where among the possible f^{\prime} with

$$
\begin{equation*}
f^{\prime}=p+\frac{q}{d} \quad \text { where } \quad p, q, d \in \mathbb{F}[t], \text { and } \operatorname{deg}(q)<\operatorname{deg}(d) \tag{7}
\end{equation*}
$$

the degree of d and the degree of p are minimal; we set $\operatorname{deg}(0)=-\infty$.
Remark. (1) The constraint that $\operatorname{deg}(p)$ is minimal does not restrict the constraint that $\operatorname{deg}(d)$ is minimal and vice versa. For further explanations we refer to Section 3.
(2) In [Sch05c] we consider the analogue problem for products: given $f \in \mathbb{F}(t)$, find $\left(f^{\prime}, g\right) \in$ $\mathbb{F}(t)^{2}$ with $\frac{\sigma(g)}{g} f^{\prime}=f$ where the degrees of the numerator and denominator of f^{\prime} are minimal.

In this article we develop algorithms for problem $R T$ where \mathbb{F} is a $\Pi \Sigma^{*}$-field. This means that we start with the constant field \mathbb{K} and adjoin step by step either a Π - or a Σ^{*}-extension t_{i} on top. Following [Kar81] we call such a tower of $\Pi \Sigma^{*}$-extensions $\mathbb{K}\left(t_{1}\right) \ldots\left(t_{e}\right)$ a $\Pi \Sigma^{*}$-field. Usually, one chooses for t in $R T$ a sum or product which is most nested.

We illustrate problem $R T$ by various concrete examples. In Examples 2.1-2.5 we focus on the problem to obtain non-summable parts where the degree of p is reduced. In Examples 2.62.9 we compute non-summable parts where the degree of d reduced. In Example 2.10 (see identity (5)) we compute a non-summable part where the degrees in p and d are optimal.

Example 2.1. Consider the rational case, i.e., take the difference field $(\mathbb{K}(k), \sigma)$ with $\sigma(k)=$ $k+1$ and const $_{\sigma} \mathbb{K}(k)=\mathbb{K}$; note that this is a Σ^{*}-extension of $(\mathbb{K}(k), \sigma)$. Then for any $f \in \mathbb{K}[k]$ we can compute a $g \in \mathbb{K}[k]$ with $\sigma(g)-g=f$; see e.g. [GKP94, (6.10),(6.11),(2.45)]. For the q-rational case we have the same result: Take the constant field $\mathbb{K}(q)$ with a parameter q and consider the $\Pi \Sigma^{*}$-extension $(\mathbb{K}(q)(P), \sigma)$ with $\sigma(P)=q P$. Then we can find for any $f \in \mathbb{K}(q)[P]$ a $g \in \mathbb{K}(q)[P]$ with $\sigma(g)-g=f$; note that $\left(0, P^{i} /(q-1)\right)$ is a Σ-pair for P^{i}.
Example 2.2. Given $\sum_{k=1}^{n} H_{k}^{4}$, we derive the identity

$$
\begin{equation*}
\sum_{k=1}^{n} H_{k}^{4}=H_{n}^{2}\left((n+1) H_{n}^{2}-2(2 n+1) H_{n}+12 n\right)+\sum_{k=1}^{n} \frac{12 k^{2}-8 k-1-2 k H_{k}\left(12 k^{2}-6 k-1\right)}{k^{3}} \tag{8}
\end{equation*}
$$

as follows. Take the difference field $(\mathbb{Q}(k), \sigma)$ with $\sigma(k)=k+1$, and extend it with the Σ^{*}-extension $(\mathbb{Q}(k)(H), \sigma)$ where $\sigma(H)=H+\frac{1}{k+1}$. Note that the shift of H_{k} in k is reflected by the automorphism σ acting on H. Then we compute the Σ-pair $\left(f^{\prime}, g\right)=$ $\left(\frac{12 k^{2}-8 k-1-2 k H\left(12 k^{2}-6 k-1\right)}{k^{3}}, \frac{(H k-1)^{2}\left(\left(H^{2}-4 H+12\right) k^{2}-8 k-1\right)}{k^{3}}\right)$ for $f=H^{4}$; for further details see Example 4.2. This delivers (2) with $f(k)=H_{k}^{4}, f^{\prime}(k)=\frac{12 k^{2}-8 k-1-2 k H_{k}\left(12 k^{2}-6 k-1\right)}{k^{3}}$ and $g(k)=\frac{\left(H_{k} k-1\right)^{2}\left(\left(H_{k}^{2}-4 H_{k}+12\right) k^{2}-8 k-1\right)}{k^{3}}$. Summing (2) over k gives (8). Note that $\sum_{k=1}^{n} f^{\prime}(k)=$ $12 \sum_{k=1}^{n} \frac{H_{k}}{k}+2 \sum_{k=1}^{n} \frac{H_{k}}{k^{2}}-24 \sum_{k=1}^{n} H_{k}+12 H_{n}-8 H_{n}^{(2)}-H_{n}^{(3)}$. With the identities $\sum_{k=1}^{n} H_{k}=$ $H_{n}(n+1)-n$ and $\sum_{k=1}^{n} \frac{H_{k}}{k}=H_{n}^{2}+H_{n}^{(2)}$, which we can also find with our machinery, we get

$$
\begin{equation*}
\sum_{k=1}^{n} H_{k}^{4}=(n+1) H_{n}^{4}-(2 n+1)\left(2 H_{n}^{3}-6 H_{n}^{2}+12 H_{n}\right)+24 n-H_{n}^{(3)}-2 H_{n}^{(2)}+2 \sum_{k=1}^{n} \frac{H_{k}}{k^{2}} . \tag{9}
\end{equation*}
$$

Example 2.3. Given $\sum_{k=1}^{n} H_{k}^{3}$, we take $(\mathbb{Q}(k)(H), \sigma)$ from Example 2.2 and compute the Σ-pair $\left(f^{\prime}, g\right)=\left(-\frac{12 k^{2}-6 k-1}{2 k^{2}}, \frac{(H k-1)\left(2 H^{2} k^{2}-6 H k^{2}+12 k^{2}-H k-6 k-1\right)}{2 k^{2}}\right)$ for H^{3}; see Example 4.6. Summing the result over k and using $\sum_{k=1}^{n}-\frac{12 k^{2}-6 k-1}{2 k^{2}}=\frac{1}{2}\left(-12 n+6 H_{n}+H_{n}^{(2)}\right)$ gives

$$
\begin{equation*}
\sum_{k=1}^{n} H_{k}^{3}=\frac{1}{2}\left(2(n+1) H_{n}^{3}-3(2 n+1) H_{n}^{2}+6(2 n+1) H_{n}-12 n+H_{n}^{(2)}\right) . \tag{10}
\end{equation*}
$$

Example 2.4. We find (4), a generalization given in [AP99, Page 9], as follows. Take the difference field $(\mathbb{Q}(x)(k), \sigma)$ with constant field $\mathbb{Q}(x)$ and $\sigma(k)=k+1$ and extend it with the Π-extension $(\mathbb{Q}(x)(k)(B), \sigma)$ with $\sigma(B)=\frac{x-k}{k+1} B$. Afterwards, extend it with the Σ^{*} extension $(\mathbb{Q}(x)(k)(B)(S), \sigma)$ with $\sigma(S)=S+\sigma(B)$; note that the shift of $\binom{x}{k}$ and $\sum_{i=0}^{k}\binom{x}{i}$ in k is reflected by the automorphism σ acting on B and S. Then we compute the Σ-pair $\left(f^{\prime}, g\right)=\left(-\frac{x}{2} B^{2},-\frac{1}{2}(B-S)(x B+(2 k-x) S)\right)$ for $f=S^{2}$. This gives $f^{\prime}(k)=-\frac{x}{2}\binom{x}{k}^{2}$ and $g(k)=-\frac{1}{2}\left(\binom{x}{k}-\sum_{i=0}^{k}\binom{x}{i}\right)\left(x\binom{x}{k}+(2 k-x) \sum_{i=0}^{k}\binom{x}{i}\right)$ for (2). Summing (2) over k gives (4). With the same mechanism we find the identities

$$
\begin{gathered}
\sum_{k=0}^{n}(-1)^{k}\left(\sum_{j=0}^{k}\binom{x}{j}\right)^{2}=(-1)^{n}\left(2(x-n)\binom{x}{n} \sum_{j=0}^{n}\binom{x}{j}+x\left(\sum_{j=0}^{n}\binom{x}{j}\right)^{2}\right)-\sum_{k=0}^{n}(x-2 k)\binom{x}{k}^{2}(-1)^{k}, \\
\sum_{k=1}^{n} \frac{p(k)}{(1-3 k)^{2}(2-3 k)^{2}(1-2 k)^{2} k^{2}} \sum_{j=1}^{k} \frac{108 j^{3}-153 j^{2}+68 j-10}{j(2 j-1)(3 j-2)(3 j-1)}=2\left(\sum_{j=1}^{n} \frac{108 j^{3}-153 j^{2}+68 j-10}{j(2 j-1)(3 j-2)(3 j-1)}\right)^{2}+ \\
-\sum_{k=1}^{n} \frac{289656 k^{7}-842886 k^{6}+101583 k^{5}-622368 k^{4}+213418 k^{3}-38207 k^{2}+2720 k+20}{k^{2}(2 k-1)^{2}(3 k-2)^{2}(3 k-1)^{2}}
\end{gathered}
$$

where $p(k)=\left(-289656 k^{7}+819558 k^{6}-935487 k^{5}+546174 k^{4}-167482 k^{3}+22839 k^{2}+\right.$ $\left.4\left(1944 k^{6}-5670 k^{5}+6759 k^{4}-4221 k^{3}+1460 k^{2}-266 k+20\right) k-220\right)$. The first identity is a generalization given in [Zha99]. Note that in this identity $(-1)^{k}$ occurs which cannot be expressed in $\Pi \Sigma^{*}$-extensions; see Remark 2.1 - nevertheless the machinery under consideration can be adapted for this case, see Section 8. The second identity has been used in [DPSW05].
Example 2.5. For (5) we take $\left(\mathbb{Q}(k)\left(H^{(2)}\right)(H), \sigma\right)$ with $\sigma(k)=k+1, \sigma\left(H^{(2)}\right)=H^{(2)}+\frac{1}{(k+1)^{2}}$ and $\sigma(H)=H+\frac{1}{k+1}$, and compute the Σ-pair $\left(-\frac{6 k^{2}-3 k-1}{3 k^{3}},-\frac{H^{3}}{3}+\left(H^{(2)} k+1\right) H^{2}-H^{(2)}(2 k+\right.$ 1) $\left.H+\frac{6 H^{(2)} k^{4}-6 k^{2}+3 k+1}{3 k^{3}}\right)$ for $f=H^{2} H^{(2)}$; see Example 6.1. This gives (5).

Example 2.6. In [Sch04b, Page 381] we needed the simplification

$$
\begin{equation*}
\sum_{k=1}^{n} \frac{k+1}{k(k+2)}=-\frac{n(3 n+5)}{4(n+1)(n+2)}+\sum_{k=1}^{n} \frac{1}{k} . \tag{11}
\end{equation*}
$$

Given $(\mathbb{Q}(k), \sigma)$ with $\sigma(k)=k+1$, we can use any of the algorithms from [Abr75, Pau95] to compute the Σ-pair $\left(f^{\prime}, g\right)=\left(\frac{1}{k}, \frac{2 k+1}{2 k(k+1)}\right)$ for $f=\frac{k+1}{k(k+2)}$; in Example 5.5 we will apply our generalized method. Then summing (2) over k yields (11).
Example 2.7. In order to find the identity $\sum_{j=0}^{n} j H_{j}\binom{n}{j}=-\frac{1}{2}+2^{n-1}\left(1+n H_{n}-n \sum_{j=1}^{n} \frac{1}{j 2 j}\right.$ in [PS03, Page 370] we needed the identity

$$
\begin{equation*}
\sum_{k=2}^{n} \frac{1}{k(k-1) 2^{k}}=-\frac{1}{n 2^{n+1}}+\frac{1}{4}-\frac{1}{2} \sum_{k=2}^{n} \frac{1}{k 2^{k}} . \tag{12}
\end{equation*}
$$

Extend $(\mathbb{Q}(k), \sigma)$ with the Π-extension $(\mathbb{Q}(k)(P), \sigma)$ where $\sigma(P)=2 P$, and compute the Σ-pair $\left(-\frac{1}{2 k P}, \frac{-1}{(k-1) P}\right)$ for $\frac{1}{(k-1) k P}$; see Example 5.6. This produces (2) with $f(k)=\frac{1}{(k-1) k P}$, $f^{\prime}(k)=-\frac{1}{2 k 2^{k}}$ and $g(k)=\frac{-1}{(k-1) 2^{k}}$. Summing (2) over k gives (12).
Example 2.8. We find the right-hand side of

$$
\begin{align*}
&\left.\sum_{k=1}^{n} \frac{k!\left(k^{2}+k\right.}{}+k!\left(k(k+1)^{2}+k!\left(k(k+1)^{2}+\left(2 k^{2}-1\right) k!-3\right)-2\right)+1\right)+1 \\
&(k!)^{3}(k!+1)((k+1) k!+1) \tag{13}\\
&=\frac{3(n+1)(n!)^{3}+(3-2 n)(n!)^{2}-2(n+2) n!-2}{2(n!)^{2}((n+1) n!+1)}+\sum_{k=1}^{n} \frac{k(k!)^{3}+k!+1}{(k!)^{3}(k!+1)}
\end{align*}
$$

as follows. Take the Π-extension $(\mathbb{Q}(k)(F), \sigma)$ with $\sigma(F)=(k+1) F$ and represent the summand with $f=\frac{F\left(k^{2}+k+F\left(k(k+1)^{2}+F\left(k(k+1)^{2}+F\left(2 k^{2}-1\right)-3\right)-2\right)+1\right)+1}{F^{3}(F+1)(k F+F+1)}$. Then we compute the Σ-pair $\left(f^{\prime}, g\right)=\left\{\frac{k F^{3}+F+1}{F^{3}(F+1)},-\frac{k F^{2}-F^{2}+k^{2} F+k F+k^{2}}{F^{2}(F+1)}\right\}$ for f; the details can be found in Examples 5.1, 5.2, 5.3, 5.4, and 5.8. Reinterpreting $\left(f^{\prime}, g\right)$ in terms of $k!$ gives the closed form (13).

Example 2.9. Starting with the left-hand side of

$$
\begin{align*}
& \sum_{k=2}^{n} \frac{(k+1)\left(k(k+1)^{2}(k+2) H_{k}^{3}+k\left(3 k^{2}+8 k+5\right) H_{k}^{2}-(k+2) H_{k}-k-2\right)}{H_{k}\left(k(k+1)^{2}(k+2) H_{k}^{3}+2\left(k^{3}+2 k^{2}-1\right) H_{k}^{2}-\left(k^{2}+5 k+5\right) H_{k}-2 k-3\right)} \\
& \quad=\frac{-6(n+1)(n+2) H_{n}^{2}-6(2 n+3) H_{n}+11(n+1)(n+2)}{11 H_{n}\left(2 n+(n+1)(n+2) H_{n}+3\right)}+\sum_{k=2}^{n} \frac{k(k+1)}{k H_{k}-1} \tag{14}
\end{align*}
$$

we take the difference field $(\mathbb{Q}(k)(H), \sigma)$ from Example 2.2 and compute the Σ-pair $\left(f^{\prime}, g\right)=$ $\left(\frac{k(k+1)}{H k-1}, \frac{k(k+1)}{(H k-1)(k H+H+1)}\right)$ for $f=\frac{(k+1)\left(k(k+1)^{2}(k+2) H^{3}+k\left(3 k^{2}+8 k+5\right) H^{2}-(k+2) H-k-2\right)}{H\left(k(k+1)^{2}(k+2) H^{3}+2\left(k^{3}+2 k^{2}-1\right) H^{2}-\left(k^{2}+5 k+5\right) H-2 k-3\right)}$; see Example 5.9. This gives the right hand side of (14).

Example 2.10. We derive identity (3) as follows. Take $(\mathbb{Q}(k)(H), \sigma)$ from Example 2.2 and compute the Σ-pair $\left(f^{\prime}, g\right)=\left(-\frac{12 H k^{2}-2 k^{2}-6 H k-H}{2 H k^{2}}, k H^{3}-\frac{3}{2}(2 k+1) H^{2}+6 k H+\frac{3}{k}+\frac{k}{H k-1}+\right.$ $\left.\frac{1}{2 k^{2}}-6\right)$ for $f=\frac{-k H^{5}+H^{4}-k H+2}{H-H^{2} k}$; see Example 3.1. This produces (3).

The following simple facts are heavily used throughout this article.
Lemma 2.1. Let (\mathbb{F}, σ) be a difference field.
(1) If $\left(f_{i}^{\prime}, g_{i}\right) \in \mathbb{F}^{2}$ are Σ-pairs for $f_{i} \in \mathbb{F},\left(f_{0}^{\prime}+f_{1}^{\prime}, g_{0}+g_{1}\right)$ is a Σ-pair for $f_{0}+f_{2}$.
(2) If $\left(f^{\prime}, g\right) \in \mathbb{F}^{2}$ is a Σ-pair for f and $(\phi, \gamma) \in \mathbb{F}^{2}$ is a Σ-pair for $f^{\prime},(\phi, \gamma+g)$ is one for f.
(3) Let $i \in \mathbb{Z}$ and $f \in \mathbb{F}$. Then (f, g) is a Σ-pair for $\sigma^{i}(f)$ where $g=\sum_{j=0}^{i-1} \sigma^{j}(f)$ if $i \geq 0$, and $g=-\sum_{j=0}^{-i-1} \sigma^{j+i}(f)$ if $i<0$.

Proof. (1) and (2) are obvious. Take f, f^{\prime}, g from (3). If $i \geq 0, \sigma(g)-g=\sum_{j=1}^{i} \sigma^{j}(h)-$ $\sum_{j=0}^{i-1} \sigma^{j}(h)=\sigma^{i}(h)-h$. If $i<0, \sigma(g)-g=\sum_{j=0}^{-i-1} \sigma^{j+i}(f)-\sum_{j=1}^{-i} \sigma^{j+i}(f)=\sigma^{i}(f)-f$.

3. Problem Reduction

Subsequently, let $(\mathbb{F}(t), \sigma)$ be a $\Pi \Sigma^{*}$-extension of $(\mathbb{F}, \sigma), \mathbb{K}=$ const $_{\sigma} \mathbb{F}$, and $f \in \mathbb{F}(t)$. By polynomial division we get $f=f_{0}+f_{1}$ with $f_{0} \in \mathbb{F}[t]$ and $f_{1} \in \mathbb{F}(t)_{(r)}$ where

$$
\mathbb{F}(t)_{(r)}:=\left\{\left.\frac{a}{b} \right\rvert\, a, b \in \mathbb{F}[t] \text { and } \operatorname{deg}(a)<\operatorname{deg}(b)\right\}
$$

In short we write $f=f_{0}+f_{1} \in \mathbb{F}[t] \oplus \mathbb{F}(t)_{(r)}$ and say that f_{0} is the polynomial part and f_{1} is the fractional part. The following lemma tells us how we can continue.

Lemma 3.1. Let $(\mathbb{F}(t), \sigma)$ be a $\Pi \Sigma^{*}$-extension of (\mathbb{F}, σ). Let $f, f^{\prime}, g \in \mathbb{F}(t)$ and write $f=$ $f_{0}+f_{1} \in \mathbb{F}[t] \oplus \mathbb{F}(t)_{(r)}, f^{\prime}=f_{0}^{\prime}+f_{1}^{\prime} \in \mathbb{F}[t] \oplus \mathbb{F}(t)_{(r)}$ and $g=g_{0}+g_{1} \in \mathbb{F}[t] \oplus \mathbb{F}(t)_{(r)}$. Then $\left(f^{\prime}, g\right)$ is a Σ-pair for f iff $\left(f_{0}^{\prime}, g_{0}\right)$ is a Σ-pair for f_{0} and $\left(f_{1}^{\prime}, g_{1}\right)$ is a Σ-pair for f_{1}.

Proof. For the direction from right to left follows by Lemma 2.1.1. Suppose that $\left(f^{\prime}, g\right)$ is a Σ pair for f. Then $\left[\sigma\left(g_{0}\right)-g_{0}+f_{0}^{\prime}-f_{0}\right]+\left[\sigma\left(g_{1}\right)-g_{1}+f_{1}^{\prime}-f_{1}\right]=0$. Since $\sigma\left(g_{0}\right)-g_{0}+f_{0}^{\prime}-f_{0} \in \mathbb{F}[t]$, $\sigma\left(g_{1}\right)-g_{1}+f_{1}^{\prime}-f_{1} \in \mathbb{F}(t)_{(r)}$ and $\mathbb{F}(t)=\mathbb{F}[t] \oplus \mathbb{F}(t)_{(r)}$ is a direct sum $\left(\mathbb{F}[t], \mathbb{F}(t)_{(r)}\right.$ are considered as subspaces of $\mathbb{F}(t)$ over $\mathbb{F})$, we have $\sigma\left(g_{i}\right)-g_{i}+f_{i}^{\prime}-f_{i}=0$ for $i \in\{0,1\}$.

This motivates us to consider the following problems separately.
$-P P:$ Polynomial Problem

Given $f \in \mathbb{F}[t]$; find from all the Σ-pairs $\left(f^{\prime}, g\right) \in \mathbb{F}[t]^{2}$ for f a pair where $\operatorname{deg}\left(f^{\prime}\right)$ is minimal.

$R P$: Rational Problem

Given $f \in \mathbb{F}(t)_{(r)}$; find from all the Σ-pairs $\left(f^{\prime}, g\right) \in \mathbb{F}(t)_{(r)}^{2}$ for f a pair where the degree of the denominator of f^{\prime} is minimal.

This explains, why we can impose simultaneously optimal degrees of p and d in problem $R T$.
Example 3.1. (Cont. Example 2.10) Given f from Example 2.10 we compute the polynomial part $f_{0}=H^{3}$ and the fractional part $f_{1}=\frac{H k-2}{H(H k-1)}$ with $f=f_{0}+f_{1}$. Denote with $\left(f_{0}^{\prime}, g_{0}\right)$ the computed Σ-pair from Example 2.3. Next, we compute a solution of problem $R P$, namely the Σ-pair $\left(f_{1}^{\prime}, g_{1}\right)=\left(\frac{1}{H}, \frac{k}{k H-1}\right)$ for f_{1}, see Example 5.7 (as byproduct we get $\sum_{k=2}^{n} \frac{k H_{k}-2}{H_{k}\left(k H_{k}-1\right)}=$ $\frac{1}{H_{n}}-1+\sum_{k=2}^{n} \frac{1}{H_{k}}$. Combining the Σ-pairs, see Lemma 2.1.1, we get the Σ-pair $\left(f^{\prime}, g\right)=$ $\left(f_{0}+f_{1}, g_{0}+g_{1}\right)$ for f which we used in Example 2.10.

Based on the previous considerations we propose the following algorithm.
Algorithm 3.1. RefinedTelescoping $((\mathbb{F}(t), \sigma), f)$
Input: A $\Pi \Sigma^{*}$-extension $(\mathbb{F}(t), \sigma)$ of (\mathbb{F}, σ) and algorithms for $P P$ and $R P ; f \in \mathbb{F}[t]$. Output: A solution of problem RT.
(1) Split $f=f_{0}+f_{1}$ with $f_{0} \in \mathbb{F}[t]$ and $f_{1} \in \mathbb{F}(t)_{(r)}$ by polynomial division.
(2) Let $\left(f_{0}^{\prime}, g_{0}\right) \in \mathbb{F}[t]^{2}$ be a solution of problem $P P$ for f_{0}.
(3) Let $\left(f_{1}^{\prime}, g_{1}\right) \in \mathbb{F}(t)_{(r)}^{2}$ be a solution of problem $R P$ for f_{1}.
(4) RETURN $\left(f_{0}^{\prime}+f_{1}, g_{0}+g_{1}\right)$.

In Sections 4 and 5 we will solve problems $P P$ and $R P$ under the assumption that the two subproblems $P L D E$ and $S E F$ can be solved. Namely, we suppose that we can deal with

Problem PLDE: Solving First order-Parameter Linear Difference Equations

Given $a_{1}, a_{2} \in \mathbb{F}^{*}$ and $f, \phi \in \mathbb{F} ;$ find $g \in \mathbb{F}$ and $c \in \mathbb{K}$ with $a_{1} \sigma(g)+a_{2} g=f+c \phi$.
Moreover, we must be able to factorize a polynomial $f \in \mathbb{F}[t]$ into its irreducible factors. Furthermore, we must be able to solve problem $S E F$; here we need the following definition: we say that $f, g \in \mathbb{F}[t]^{*}$ are σ-prime, in short, $h \perp_{\sigma} f$, if $\operatorname{gcd}\left(h, \sigma^{k}(f)\right)=1$ for all $k \in \mathbb{Z}$.

Problem $S E F$: Separate Equivalent Factors

Given $q \in \mathbb{F}[t]^{*}$ and an irreducible $h \in \mathbb{F}[t]$; find $m_{i} \geq 0$ and $c \in \mathbb{F}[t]$ with

$$
\begin{equation*}
q=c \prod \sigma^{i}\left(h^{m_{i}}\right), \quad c \perp_{\sigma} h \tag{15}
\end{equation*}
$$

The following remarks are in place: If $f \in \mathbb{F}[t]^{*}$ is irreducible and $m \in \mathbb{Z}$, then $\sigma^{m}(f) \in \mathbb{F}[t]$ is irreducible. Hence, on the set of all irreducible polynomials from $\mathbb{F}[t]$ we get an equivalence relation $f \sim g$ (the shift-equivalence) iff $f \Lambda_{\sigma} g$. Thus, solving problem $S E F$ means to separate the irreducible polynomials in q into the factors which are all shift-equivalent with h, i.e., $\prod_{i} \sigma^{i}\left(h^{m_{i}}\right)$, and into the factors which are not shift-equivalent to h, i.e., c. Expanding this refined factorization on c, i.e., collecting it into shift-equivalent classes, gives Karr's σ-factorization introduced in [Kar81].

Summarizing, we will obtain the following results.
Corollary 3.1. Let $(\mathbb{F}(t), \sigma)$ be a $\Pi \Sigma^{*}$-extension of (\mathbb{F}, σ) where one can solve problems PLDE and SEF; let $f \in \mathbb{F}[t]$. Then Algorithm 3.1 is applicable and the output $\left(f^{\prime}, g\right)$ is a solution of RT. Moreover, we have: (1) If there is a Σ-pair $\left(\phi^{\prime}, \gamma\right) \in \mathbb{F} \times \mathbb{F}(t)$ for f, then $f^{\prime} \in \mathbb{F}$.
(2) If there is a $\gamma \in \mathbb{F}(t)$ with $\sigma(\gamma)-\gamma=f$, then $f^{\prime}=0$.

To this end, we emphasize that there are algorithms for problems $P L D E$ and $S E F$ if \mathbb{F} is a $\Pi \Sigma^{*}$-field. For problem PLDE see [Kar81, Section 3]; a simplified version is given in [Sch05d, Thm. 4.7] which uses results from [Bro00, Sch04a, Sch05a]. For problem SEF see [Kar81, Thm. 9]. Hence Algorithm 3.1 can be applied for any $\Pi \Sigma^{*}$-field $(\mathbb{F}(t), \sigma)$.

4. The Polynomial Problem

We reduce problem $P P$ to problem $P L D E$. Here we consider two cases.
4.1. The Π-extension case. The solution of problem $P P$ is immediate with Lemma 4.1; the proof follows by coefficient comparison.

Lemma 4.1. Let $(\mathbb{F}(t), \sigma)$ be $a \Pi$-extension of (\mathbb{F}, σ) with $\sigma(t)=\alpha t$, and suppose that $f, f^{\prime}, g \in \mathbb{F}[t]$ with $f=\sum_{i=0}^{n} f_{i} t^{i}, f^{\prime}=\sum_{i=0}^{n} f_{i}^{\prime} t^{i}$, and $g=\sum_{i=0}^{n} g_{i} t^{i} \in \mathbb{F}[t]$. Then $\left(f^{\prime}, g\right)$ is a Σ-pair for f iff $\left(f_{i}^{\prime} t^{i}, g_{i} t^{i}\right)$ are Σ-pairs for $f_{i} t^{i}$ for all $0 \leq i \leq n$.

Start with the Σ-pair $\left(f^{\prime}, g\right)$ given by $f^{\prime}:=f$ and $g:=0$. Then we can eliminate a monomial $f_{i} t^{r} \neq 0$ in f^{\prime} iff there is a $g_{r} \in \mathbb{F}$ with $\sigma\left(g_{r} t^{r}\right)-g_{r} t^{r}=f_{r} t^{r}$ or equivalently if

$$
\begin{equation*}
\alpha^{r} \sigma\left(g_{r}\right)-g_{r}=f_{r} \tag{16}
\end{equation*}
$$

Consequently, if we find such a solution g_{r} with (16), we can adapt the Σ-pair $\left(f^{\prime}, g\right)$ with $f^{\prime}:=f-f_{r} t^{r}$ and $g:=g+g_{r} t^{r}$. In this way we can eliminate all terms of highest degree in f^{\prime} and get a Σ-pair $\left(f^{\prime}, g\right)$ where $\operatorname{deg}\left(f^{\prime}\right)$ is minimal. Summarizing, we get
Algorithm 4.1. OptimalPolyПExtension $((\mathbb{F}(t), \sigma), f)$
Input: A Π-extension $(\mathbb{F}(t), \sigma)$ of (\mathbb{F}, σ) and $f=\sum_{i} f_{i} t^{i} \in \mathbb{F}[t]$; an algorithm for problem PLDE.
Output: A solution of problem $P P$.
(1) Set $g:=0, f^{\prime}:=f, r:=\operatorname{deg}(f)$. DO
(2) If $f_{r} \neq 0$ and if there is no g_{r} with (16), STOP and RETURN $\left(f^{\prime}, g\right)$.
(3) Otherwise, take such a g_{r} and set $g:=g+g_{r} t^{r}$ and $f^{\prime}:=f-f_{r} t^{r}$. Set $r:=r-1$.
(4) UNTIL $r=-1$.
(5) RETURN $\left(f^{\prime}, g\right)$.

Remark. If one continues the DO-loop although one fails to find a g_{r} one removes all possible terms in f. In this case the number of non-zero terms in f^{\prime} is minimal.
Example 4.1. Take $(\mathbb{Q}(k)(F), \sigma)$ from Example 2.8 and let $f=\left(F^{3}+(k H+1)(k H+\right.$ $\left.2 H+1) F^{2}+\left(k^{2}+k+1\right) F\right)$. The subproblems are $(k+1)^{i} \sigma\left(g_{i}\right)-g_{i}=f_{i}$ with $f_{0}=0$, $f_{1}=\left(k^{2}+k+1\right), f_{2}=(k H+1)(k H+2 H+1)$, and $f_{3}=1$. The solutions are $g_{2}=H^{2}$, $g_{1}=k$, and $g_{0}=0$; there is no such $g_{3} \in \mathbb{Q}(k)(H)$. Hence $\left(f^{\prime}, g\right)=\left(F^{3}, H^{2} F^{2}+k F\right)$ is a Σ-pair for f which solves $P P$ and is optimal w.r.t. the number of terms in F.
4.2. The Σ^{*}-extension case. We solve problem $P P$ by refining Karr's algorithm. First we bound the degree of the possible solutions; see also [Sch05a, Cor. 6].
Lemma 4.2. $\left[\operatorname{Kar81}\right.$, Cor. 1] Let $(\mathbb{F}(t), \sigma)$ be a $\Pi \Sigma^{*}$-extension of (\mathbb{F}, σ) and $f \in \mathbb{F}[t]^{*}$. If there is a $g \in \mathbb{F}[t]$ with $\sigma(g)-g=f$, then $\operatorname{deg}(g) \leq \operatorname{deg}(f)+1$.
Then we try to compute step by step the coefficients of the polynomial solution $g=\sum_{k=0}^{b} g_{i} t^{i}$ with $b:=\operatorname{deg}(f)+1$. If this fails, i.e., if there does not exist a telescoping solution, we can extract a solution of problem PP. The following example illustrates these ideas.

Example 4.2. (Cont. Example 2.2) Take the $\Pi \Sigma^{*}$-field $(\mathbb{Q}(k)(H), \sigma)$ with $\sigma(k)=k+1$ and $\sigma(H)=H+\frac{1}{k+1}$. We look for a $g \in \mathbb{Q}(k)[H]$ such that

$$
\begin{equation*}
\sigma(g)-g=H^{4} \tag{17}
\end{equation*}
$$

for convenience we set $f_{4}:=H^{4}$. Since $\operatorname{deg}(g) \leq 5$ by Lemma 4.2, we can set up the solution as $g=\sum_{i=0}^{5} g_{i} H^{i}$ with $g_{i} \in \mathbb{Q}(k)$. By plugging in g into (17) we get by coefficient comparison the constraint $\sigma\left(g_{5}\right)-g_{5}=0$ for the leading coefficient g_{5}. It follows that $g_{5}:=c_{4} \in \mathbb{Q}$ for a constant c_{4} which is not determined yet. Using this information it remains to look for $c_{4} \in \mathbb{Q}$ and $\sum_{i=0}^{4} g_{i} H^{i}$ such that

$$
\sigma\left(\sum_{i=0}^{4} g_{i} H^{i}\right)-\sum_{i=0}^{4} g_{i} H^{i}=f_{4}-c_{4} \psi_{4}
$$

where $\psi_{4}:=\sigma\left(H^{5}\right)-H^{5}$, i.e., $\psi_{4}=\frac{1+5(1+k) H+10(1+k)^{2} H^{2}+10(1+k)^{3} H^{3}+5(1+k)^{4} H^{4}}{(1+k)^{5}}$. Coefficient comparison gives the constraint $\sigma\left(g_{4}\right)-g_{4}=1+c_{4} \frac{-5}{k+1}$ for g_{4}. The only possible solution is $c_{4}=0$ and $g_{4}=k+c_{3}$ for a new parameter $c_{3} \in \mathbb{Q}$. Thus, we have to find $g_{i} \in \mathbb{Q}(k)$ and $c_{3} \in \mathbb{Q}$ with

$$
\sigma\left(\sum_{i=0}^{3} g_{i} H^{i}\right)-\sum_{i=0}^{3} g_{i} H^{i}=f_{3}-c_{3} \psi_{3}
$$

where $f_{3}:=f_{4}-c_{4} \psi_{4}-\left(\sigma\left(k H^{3}\right)-k H^{3}\right)=-\frac{1+4(1+k) H+6(1+k)^{2} H^{2}+4(1+k)^{3} H^{3}}{(1+k)^{3}}$ and $\psi_{3}:=$ $\sigma\left(H^{3}\right)-H^{3}=\frac{1+4(1+k) H+6(1+k)^{2} H^{2}+4(1+k)^{3} H^{3}}{(1+k)^{4}}$. Coefficient comparison gives the constraint $\sigma\left(g_{3}\right)-g_{3}=-4+c_{3} \frac{-4}{k+1}$. The only possible solution for $g_{3} \in \mathbb{Q}(k)$ and $c_{3} \in \mathbb{Q}$ is $g_{3}=-4 k+c_{2}$ with a new parameter $c_{2} \in \mathbb{Q}$ and $c_{3}=0$. Therefore, it remains to look for $g_{i} \in \mathbb{Q}(k)$ and $c_{2} \in \mathbb{Q}$ such that

$$
\sigma\left(\sum_{i=0}^{2} g_{i} H^{i}\right)-\sum_{i=0}^{2} g_{i} H^{i}=f_{2}-c_{2} \psi_{2}
$$

where $f_{2}:=f_{3}-c_{3} \psi_{3}-\left(\sigma\left(-4 k H^{3}\right)+4 k H^{3}\right)=\frac{3+4 k+4\left(2+5 k+3 k^{2}\right) H+6(1+k)^{2}(1+2 k) H^{2}}{(1+k)^{3}}$ and $\psi_{2}:=$ $\sigma\left(H^{3}\right)-H^{3}=\frac{1+3(1+k) H+3(1+k)^{2} H^{2}}{(1+k)^{3}}$. We obtain the constraint $\sigma\left(g_{2}\right)-g_{2}=6 \frac{1+2 k}{k+1}+c_{2} \frac{-3}{k+1}$. The solution is $g_{2}=12 k+c_{1}$ with $c_{1} \in \mathbb{Q}$ and $c_{2}=-2$. To this end, we have to look for $g_{i} \in \mathbb{Q}(k)$ and $c_{1} \in \mathbb{Q}$ such that

$$
\sigma\left(\sum_{i=0}^{1} g_{i} H^{i}\right)-\sum_{i=0}^{1} g_{i} H^{i}=f_{1}-c_{1} \psi_{1}
$$

where $f_{1}=f_{2}-c_{2} \psi_{2}-\left(\sigma\left(12 k H^{2}\right)-12 k H^{2}\right)=\frac{-7-20 k-12 k^{2}+\left(-10-46 k-60 k^{2}-24 k^{3}\right) H}{(1+k)^{3}}$ and $\psi_{1}=$ $\sigma\left(H^{2}\right)-H^{2}=\frac{1+2(1+k) H}{(1+k)^{2}}$. This time we obtain the constraint $\sigma\left(g_{1}\right)-g_{1}=\frac{-2\left(5+18 k+12 k^{2}\right)}{(1+k)^{3}}+$ $c_{1} \frac{-2}{(1+k)^{2}}$ which does not have any solution for $g_{1} \in \mathbb{Q}(k)$ and $c_{1} \in \mathbb{Q}$. Here Karr's algorithm stops with the answer: there is no $g \in \mathbb{Q}(k)[H]$ with (17). Note that there is the following sub-result. Define $\gamma_{r}:=\sum_{i=r}^{5} g_{i} H^{i}$ for $1 \leq r \leq 4$ by the given $g_{r} \in \mathbb{Q}(k)$. Then

$$
\sigma\left(\gamma_{r}\right)-\gamma_{r}=f-f_{r}
$$

i.e., $\left(f_{r}, \gamma_{r}\right)$ is a Σ-pair for f. As it turns out $\left(f_{1}, \gamma_{1}\right)$ solves problem $P P$ for H^{4}.

In general, let $(\mathbb{F}(t), \sigma)$ be a Σ^{*}-extension of (\mathbb{F}, σ) with $\sigma(t)=t+\beta$ and $\mathbb{K}:=$ const $_{\sigma} \mathbb{F}$. Then we can solve problem $P P$ for $f \in \mathbb{F}[t]$ with $s:=\operatorname{deg}(f)$ in the following way.
We start with the trivial Σ-pair $\left(f^{\prime}, g\right)$ with $f^{\prime}:=f$ and $g:=0$. Given $\left(f^{\prime}, g\right)$, we check if f^{\prime} has already the minimal degree; this will be possible by Lemma 4.3.1. If yes, we are done. If no, Lemma 4.3.2 explains how we can construct a Σ-pair $\left(\phi^{\prime}, \gamma\right) \in \mathbb{F}[t]^{2}$ for f with $\operatorname{deg}(\phi)<\operatorname{deg}\left(f^{\prime}\right)$. Applying this degree reduction at most s times we find a Σ-pair $\left(\phi^{\prime}, \gamma\right) \in \mathbb{F}[t]^{2}$ where $\operatorname{deg}\left(\phi^{\prime}\right)$ is minimal.

Lemma 4.3. Let $(\mathbb{F}(t), \sigma)$ be a Σ^{*}-extension of (\mathbb{F}, σ) and $\mathbb{K}:=$ const $_{\sigma} \mathbb{F}(t)$. Let $\left(f^{\prime}, g\right) \in \mathbb{F}[t]^{2}$ be a Σ-pair for $f \in \mathbb{F}[t]$ with $s:=\operatorname{deg}\left(f^{\prime}\right)$ and define $\psi:=\sigma\left(t^{s+1}\right)-t^{s+1}$. Then:
(1) If there are no $w \in \mathbb{F}$ and $c \in \mathbb{K}$ with 1

$$
\begin{equation*}
\sigma(w)-w=\operatorname{coeff}\left(f^{\prime}, s\right)-c \operatorname{coeff}(\psi, s) \tag{18}
\end{equation*}
$$

then $\left(f^{\prime}, g\right)$ is a Σ-pair for f where $\operatorname{deg}\left(f^{\prime}\right)$ is minimal.
(2) If there are $w \in \mathbb{F}$ and $c \in \mathbb{K}$ with (18), then we get the Σ-pair (ϕ, γ) for f with

$$
\begin{equation*}
\phi:=\sigma\left(w t^{s}\right)-w t^{s}+c \psi-f^{\prime}, \quad \gamma:=g+c t^{s+1}+w t^{s} \tag{19}
\end{equation*}
$$

where $\operatorname{deg}(\psi)<\operatorname{deg}\left(f^{\prime}\right)$.
Proof. (1) Suppose there is a Σ-pair $(\phi, \gamma) \in \mathbb{F}[t]$ with $\operatorname{deg}(\phi)<s$. Then $\sigma(g-\gamma)-(g-\gamma)=$ $f^{\prime}-\phi$ with $\operatorname{deg}\left(f^{\prime}-\phi\right)=s$. By Lemma 4.2 it follows that $\operatorname{deg}(g-\gamma) \leq s+1$. Consequently, $g-\gamma=c t^{s+1}+w t^{s}+v$ with $c \in \mathbb{K}, w \in \mathbb{F}$ and $v \in \mathbb{F}[t]$ with $\operatorname{deg}(v)<s$. Therefore

$$
\sigma\left(w t^{s}+v\right)-\left(w t^{s}+v\right)=f^{\prime}-\phi-c \psi
$$

Note that $\operatorname{deg}(\psi) \leq s$ (we even have equality by Lemma 4.2). By coefficient comparison of the leading coefficient we get (18).
(2) Conversely, suppose there are such $w \in \mathbb{F}$ and $c \in \mathbb{K}$ with (18). Then take $\gamma:=g+$ $c t^{s+1}+w t^{s}$. We have $\phi:=f-(\sigma(\gamma)-\gamma)=f^{\prime}-\left(\sigma\left(w t^{s}\right)-w t^{s}\right)-c \psi$ with $\operatorname{deg}(\phi) \leq s$. By (18), $\operatorname{deg}(\phi)<s$. By construction (ϕ, γ) is a Σ-pair for f.
Corollary 4.1. Let $(\mathbb{F}(t), \sigma)$ be a Σ^{*}-extension of (\mathbb{F}, σ) and $\mathbb{K}:=\operatorname{const}_{\sigma} \mathbb{F}(t)$. Let $\left(f^{\prime}, g\right) \in$ $\mathbb{F}[t]^{2}$ be a Σ-pair for $f \in \mathbb{F}[t]$ with $s:=\operatorname{deg}\left(f^{\prime}\right)$ and define $\psi:=\sigma\left(t^{s+1}\right)-t^{s+1}$. Then $\left(f^{\prime}, g\right)$ is a solution of problem $P P$ iff there are no $w \in \mathbb{F}$ and $c \in \mathbb{K}$ with (18).

Summarizing, we reduce problem $P P$ to problem $P L D E$ as follows.
Algorithm 4.2. OptimalPoly Σ Extension $((\mathbb{F}(t), \sigma), f)$
Input: $\mathrm{A} \Sigma^{*}$-extension $(\mathbb{F}(t), \sigma)$ of (\mathbb{F}, σ) with $\mathbb{K}:=$ const $_{\sigma} \mathbb{F}, f \in \mathbb{F}[t]$; an algorithm for problem $P L D E$. Output: A solution of problem PP.
(1) Set $\left(f^{\prime}, g\right):=(f, 0)$.
(2) WHILE $f^{\prime} \neq 0$ DO
(3) Define $s:=\operatorname{deg}(f)$ and set $\psi:=\sigma\left(t^{s+1}\right)-t^{s+1}$. Decide if there are $w \in \mathbb{F}$ and $c \in \mathbb{K}$ with (18).
(4) IF not, STOP and RETURN $\left(f^{\prime}, g\right)$.
(5) Otherwise, take such a w and c, and define (ϕ, γ) as in (19). Set $\left(f^{\prime}, g\right):=(\phi, \gamma)$.
(6) OD
(7) RETURN $\left(f^{\prime}, g\right)$

Example 4.3. (Cont. Example 3.1) With Algorithm 4.2 we compute for $f=H^{3}$ the Σ pairs $\left(H^{3}, 0\right),\left(-\frac{3 k^{2} H^{2}+6 k H^{2}+3 H^{2}+3 k H+3 H+1}{(k+1)^{2}}, H^{3} k\right),\left(\frac{6 H k^{2}+9 H k+3 k+3 H+2}{(k+1)^{2}},(H-3) H^{2} k\right)$ and $\left(-\frac{12 k^{2}+18 k+5}{2(k+1)^{2}}, \frac{1}{2} H\left(2 k H^{2}-6 k H-3 H+12 k\right)\right)$. Since there are no $g \in \mathbb{Q}(k)$ and $c \in \mathbb{Q}$ with $\sigma(g)-g=-\frac{12 k^{2}+18 k+5}{2(k+1)^{2}}+\frac{c}{k+1}$, the last Σ-pair solves problem $P P$ by Corollary 4.1.

Example 4.4. (Cont. Example 4.2) The computed Σ-pairs $\left(f_{r}, \gamma_{r}\right)$ for H^{4} from Example 4.2 are the $\left(f^{\prime}, g\right)$ in each iteration step. By Corollary 4.1 the output $\left(f_{1}, \gamma_{1}\right)$ is a solution of $P P$.

Remark 4.1. Let (ϕ, γ) be a Σ-pair for f with $s:=\operatorname{deg}(\phi)$ minimal. The following remarks are in place. (1) The coefficients of the monomials t^{i} with $i>s+1$ in γ are uniquely determined. Namely, take any other Σ-pair $\left(\phi^{\prime}, \gamma^{\prime}\right) \in \mathbb{F}[t]^{2}$ for f with $\operatorname{deg}\left(\phi^{\prime}\right)=s$. Then $\sigma\left(\gamma-\gamma^{\prime}\right)-\left(\gamma-\gamma^{\prime}\right)=\phi^{\prime}-\phi$, and therefore by Lemma 4.3 it follows that $\gamma-\gamma^{\prime} \leq \operatorname{deg}\left(\phi^{\prime}-\phi\right)+1 \leq$ $s+1$. Hence all coefficients of the monomials t^{i} with $i>s+1$ in γ and γ^{\prime} must be equal.

[^1](2) From Remark 4.1.1 we get the following additional consequence. If $\left(\phi^{\prime}, \gamma^{\prime}\right) \in \mathbb{F}[t]^{2}$ is a Σ-pair for f with $\operatorname{deg}\left(\phi^{\prime}\right)=s$, then there is a $w \in \mathbb{F}[t]$ with $\operatorname{deg}(w) \leq s+1$ such that
\[

$$
\begin{equation*}
\sigma(w)-w+\phi^{\prime}=\phi . \tag{20}
\end{equation*}
$$

\]

Hence for all degree optimal ϕ, ϕ^{\prime} we have (20) for some $w \in \mathbb{F}[t]$ with $\operatorname{deg}(w) \leq s+1$.
E.g., with Lemma 2.1.3 in combination with Lemma 2.1.2 we can get a rather simple transformation: we can shift the non-summable part in positive or negative direction.

Example 4.5. (Cont. Example 4.4) Take for $f=H^{4}$ the already computed Σ-pair $\left(f^{\prime}, g\right)=$ $\left(-\frac{12 k^{2}+20 k+2 H\left(12 k^{3}+30 k^{2}+23 k+5\right)+7}{(k+1)^{3}}, H^{2}\left(k H^{2}-2(2 k+1) H+12 k\right)\right)$. By Lemma 2.1.3 we get the Σ-pair $\left(f^{\prime}, f^{\prime}\right)$ for $\sigma\left(f^{\prime}\right)$. Hence $\left(\sigma^{-1}\left(f^{\prime}\right), \sigma^{-1}\left(f^{\prime}\right)\right)$ is a Σ-pair for f^{\prime}. With Lemma 2.1.1 we get the Σ-pair $\left(\sigma^{-1}\left(f^{\prime}\right), \sigma^{-1}\left(f^{\prime}\right)+g\right.$) for H^{4} which we used in Example 2.2.
Example 4.6. (Cont. Example 4.3) Let $\left(f^{\prime}, g\right)=\left(-\frac{122^{2}+18 k+5}{2(k+1)^{2}}, \frac{1}{2} H\left(2 k H^{2}-6 k H-3 H+\right.\right.$ $12 k)$) be the Σ-pair for H^{3} from Example 4.3. Like in Example 4.5 we get the Σ-pair $\left(\sigma^{-1}\left(f^{\prime}\right), \sigma^{-1}\left(f^{\prime}\right)+g\right)$ for H^{3} which we used in Example 3.1.

5. The Rational Problem

Under the assumption that we can solve $S E F$ and $P L D E$ we reduce problem $R P$ to problem $S F P$ given below. The corresponding algorithms generalize the results in [Abr75, Pau95].

To accomplish this task, we proceed as follows. Write ${ }^{2} f=\frac{p}{q} \in \mathbb{F}(t)_{(r)} \backslash\{0\}$ and let $h \in \mathbb{F}[t]$ be an irreducible factor of q. Then solve SEF and compute $m_{i} \geq 0$ and $c \in \mathbb{F}[t]^{*}$ with (15); note that not all m_{i} are zero.

Example 5.1. (Cont. Example 2.8) Given $f=\frac{p}{q}$ from Example 2.8 with $q=F^{3}(F+1)(k F+$ $F+1)$, we choose $h=F$ and get $q=F^{3} c$ with $c=(F+1)(k F+F+1)$ and $c \perp_{\sigma} F$.

Since c and $\prod_{i} \sigma^{i}\left(h^{m_{i}}\right)$ are σ-prime, in particular co-prime, we can compute by the extended Euclidean algorithm, see [Win96, Corollary, p. 53], polynomials $a, b, c \in \mathbb{F}[t]$ such that

$$
f=\frac{p}{\prod_{i} \sigma^{i}\left(h^{m_{i}}\right) c}=\frac{a}{\prod_{i} \sigma^{i}\left(h^{m_{i}}\right)}+\frac{b}{c}
$$

where $\frac{a}{\prod_{i} \sigma^{2}\left(h^{m_{i}}\right)}, \frac{b}{c} \in \mathbb{F}(t)_{(r)}$.
Example 5.2. (Cont. Example 5.1) We get $f=f_{0}+f_{1}$ with $f_{0}:=\frac{k F^{2}-F^{2}+k^{2} F-F+1}{F^{3}}$ and $f_{1}=\frac{b}{c}:=\frac{k(F k+1)}{(F+1)(k F+F+1)}$.
Given this representation of f the following lemma tells us how to proceed.
Lemma 5.1. Let $(\mathbb{F}(t), \sigma)$ be a $\Pi \Sigma^{*}$-extension of (\mathbb{F}, σ), let $f, f^{\prime}, g \in \mathbb{F}(t)_{(r)}$, and let $h \in \mathbb{F}[t]^{*}$ be irreducible. Write $f=f_{0}+f_{1}, f^{\prime}=f_{0}^{\prime}+f_{1}^{\prime}$ and $g=g_{0}+g_{1}$ with $f_{i}, f_{i}^{\prime}, g_{i} \in \mathbb{F}(t)_{(r)}$ and

$$
\begin{array}{lll}
f_{0}=\frac{a}{\prod_{i} \sigma^{i}\left(h^{m_{i}}\right)}, & f_{1}=\frac{b}{c} & \text { for some } a, b, c \in \mathbb{F}[t] \text { with } h \perp_{\sigma} c, m_{i} \geq 0, \\
f_{0}^{\prime}=\frac{a^{\prime}}{\prod_{i} \sigma^{i}\left(h^{m_{i}^{\prime}}\right)} & f_{1}^{\prime}=\frac{b^{\prime}}{c^{\prime}} & \text { for some } a^{\prime}, b^{\prime}, c^{\prime} \in \mathbb{F}[t] \text { with } h \perp_{\sigma} c^{\prime}, m_{i}^{\prime} \geq 0, \\
g_{0}=\frac{\alpha}{\prod_{i} \sigma^{i}\left(h^{\mu_{i}}\right)} & g_{1}=\frac{\beta}{\gamma} & \text { for some } \alpha, \beta, \gamma \in \mathbb{F}[t] \text { with } h \perp_{\sigma} \gamma, \mu_{i} \geq 0 . \tag{23}
\end{array}
$$

[^2](i) Then $\left(f^{\prime}, g\right)$ is a Σ-pair for f iff $\left(f_{i}^{\prime}, g_{i}\right)$ are Σ-pairs for f_{i} with $i \in\{0,1\}$.
(ii) Let $\left(f^{\prime}, g\right)$ be a Σ-pair for f, and $\left(f_{i}^{\prime}, g_{i}\right)$ be Σ-pairs for f_{i} with $i \in\{0,1\}$ where the f_{i}, f_{i}^{\prime} and g_{i} are as above. Then $\left(f^{\prime}, g\right)$ is a solution of problem $R P$ for f iff $\left(f_{1}^{\prime}, g_{1}\right)$ is a solution of problem $R P$ for f_{1} and $\operatorname{deg}\left(\operatorname{den}\left(f_{0}^{\prime}\right)\right)$ is minimal w.r.t. all Σ-pairs in $\mathbb{F}(t)_{(r)}^{2}$ where the denominators are of the form $\prod_{i} \sigma^{i}\left(h^{\nu_{i}}\right)$ for some $\nu_{i} \geq 0$ (see problem SFP).

Proof. (i) The direction from left to right follows by Lemma 2.1.1. Now suppose that $\left(f^{\prime}, g\right)$ is a Σ-pair for f. Then $0=\sigma(g)-g+f^{\prime}-f=\left[\sigma\left(g_{0}\right)-g_{0}+f_{0}^{\prime}-f_{0}\right]+\left[\sigma\left(g_{1}\right)-g_{1}+f_{1}^{\prime}-f_{1}\right]=h_{0}+h_{1}$ with $h_{i}:=\sigma\left(g_{i}\right)-g_{i}+f_{i}^{\prime}-f_{i}$. We have $h_{0}=\frac{A}{\prod_{i} \sigma^{i}\left(h^{\left.\nu_{i}\right)}\right.}$ and $h_{1}=\frac{B}{C}$ for some $\nu_{i} \geq 0$, and $A, B, C \in \mathbb{F}[t]$ with $h \perp_{\sigma} C$. Suppose that $h_{0}, h_{1} \neq 0$. Since $h_{0}=-h_{1}, C=u \prod_{i} \sigma^{i}\left(h^{\nu_{i}}\right)$ with $u \in \mathbb{F}^{*}$ and $\operatorname{deg}(C)>0$. A contradiction that $h \perp_{\sigma} C$. Hence $h_{0}=0=h_{1}$, and therefore $\left(f_{i}^{\prime}, g_{i}\right)$ are Σ-pairs for f_{i} with $i \in\{0,1\}$.
(ii) Suppose that $\operatorname{deg}\left(\operatorname{den}\left(f_{i}^{\prime}\right)\right)$ is not minimal for some $i \in\{0,1\}$ as stated in the lemma. Let $j \in\{0,1\} \backslash\{i\}$ and take $\psi, \gamma \in \mathbb{F}(t)_{(r)}$ such that $\sigma(\gamma)-\gamma+\psi=f_{i}$ and $\operatorname{deg}(\operatorname{den}(\psi))<$ $\operatorname{deg}\left(\operatorname{den}\left(f_{i}^{\prime}\right)\right)$. Then $\left(\psi+f_{j}^{\prime}, \gamma+g_{j}\right)$ is a Σ-pair for f by Lemma 2.1.1. We have
$\operatorname{deg}\left(\operatorname{den}\left(\psi+f_{j}^{\prime}\right)\right) \leq \operatorname{deg}(\operatorname{den}(\psi))+\operatorname{deg}\left(\operatorname{den}\left(f_{j}^{\prime}\right)\right)<\operatorname{deg}\left(\operatorname{den}\left(f_{0}^{\prime}\right)\right)+\operatorname{deg}\left(\operatorname{den}\left(f_{1}^{\prime}\right)\right)=\operatorname{deg}\left(\operatorname{den}\left(f^{\prime}\right)\right)$.
Conversely, suppose that $\operatorname{deg}\left(\operatorname{den}\left(f_{0}\right)\right)$ and $\operatorname{deg}\left(\operatorname{den}\left(f_{1}\right)\right)$ are minimal as stated in the lemma, but $\left(f^{\prime}, g\right)$ does not solve $R P$. Take a Σ-pair $(\psi, \gamma) \in \mathbb{F}(t)_{(r)}^{2}$ for f with $\operatorname{deg}(\operatorname{den}(\psi))<$ $\operatorname{deg}\left(\operatorname{den}\left(f^{\prime}\right)\right)$. By (i) there are $\psi=\psi_{0}+\psi_{1}$ and $\gamma=\gamma_{0}+\gamma_{1}$ such that $\left(\psi_{i}, \gamma_{i}\right)$ are Σ-pairs for f_{i} with $i \in\{0,1\}$ and where we can write $\psi_{0}=\frac{A}{\prod_{i} \sigma^{i}\left(h^{\left.\nu_{i}\right)}\right.}$ and $\psi_{1}=\frac{B}{C}$ for some $\nu_{i} \geq 0$, and $A, B, C \in \mathbb{F}[t]$ with $h \perp_{\sigma} C$. Then it follows that
$\operatorname{deg}\left(\operatorname{den}\left(\psi_{0}\right)\right)+\operatorname{deg}\left(\operatorname{den}\left(\psi_{1}\right)\right)=\operatorname{deg}(\operatorname{den}(\psi))<\operatorname{deg}\left(\operatorname{den}\left(f^{\prime}\right)\right)=\operatorname{deg}\left(\operatorname{den}\left(f_{0}\right)\right)+\operatorname{deg}\left(\operatorname{den}\left(f_{1}\right)\right)$,
a contradiction to $\operatorname{deg}\left(\operatorname{den}\left(f_{i}^{\prime}\right)\right) \leq \operatorname{deg}\left(\operatorname{den}\left(\psi_{i}\right)\right)$ for $i=0,1$.
This gives the following reduction. Write f in the representation $f=f_{0}+f_{1}$ with (21), see above. Then find a Σ-pair $\left(f_{0}^{\prime}, g_{0}\right)$ for f_{0} where the degree of the denominator of f_{0}^{\prime} is minimal. More precisely, solve problem $S F P$ for f_{0}.

$S F P$: Simple Fractional Part

Given $f=\frac{a}{\prod_{i} \sigma^{i}\left(h^{m_{i}}\right)} \in \mathbb{F}(t)_{(r)} \backslash\{0\}$ for some $a \in \mathbb{F}[t]$ and $h \in \mathbb{F}[t]$ irreducible (not all m_{i} are zero); find $f^{\prime}=\frac{a^{\prime}}{\prod_{i} \sigma^{i}\left(h^{m_{i}^{\prime}}\right)} \in \mathbb{F}(t)_{(r)}$ and $g=\frac{\alpha}{\prod_{i} \sigma^{2}\left(h^{\mu_{i}}\right)} \in \mathbb{F}(t)_{(r)}$ for some $a^{\prime}, \alpha \in \mathbb{F}[t]$ and $m_{i}, \mu_{i} \in \geq 0$ with (6) where the degree of $\prod_{i} \sigma^{i}\left(h^{m_{i}^{\prime}}\right)$ is optimal w.r.t. all Σ-pairs in $\mathbb{F}(t)_{(r)}^{2}$ where the denominators are of the form $\prod_{i} \sigma^{i}\left(h^{\nu_{i}}\right)$ for some $\nu_{i} \geq 0$.

Then continue to solve problem $R P$ for f_{1}; note that the degree of the denominator of f_{1} is reduced by $\operatorname{deg}(h) \sum_{i} m_{i}>0$. If $f_{1}=0$, take the Σ-pair $(0,0)$. Otherwise, apply the same reduction strategy to $f_{1} \in \mathbb{F}(t)_{(r)} \backslash\{0\}$ as sketched above (for a new irreducible polynomial $h \in \mathbb{F}[t]$ in the denominator of $\left.f_{1}\right)$. This finally gives the solution $\left(f_{1}^{\prime}, g_{1}\right)$ of problem $R P$ for f_{1}. By Lemma 5.1 we get the solution $\left(f_{0}^{\prime}+f_{1}^{\prime}, g_{0}+g_{1}\right)$ of problem $R P$ for f.

Example 5.3. (Cont. Example 5.2) We solve problem $S F P$ for f_{0} and get the Σ-pair $\left(f_{0}^{\prime}, g_{0}\right)=$ $\left(\frac{1}{F^{3}},-\frac{k^{2}}{F^{2}}-\frac{k}{F}\right)$; see Example 5.4. As byproduct we get $\sum_{k=0}^{n} \frac{(k-1) k!^{2}+\left(k^{2}-1\right) k!-1}{(k!)^{3}}=\frac{2 n!^{2}-n!-1}{n!^{2}}+$ $\sum_{k=1}^{n} \frac{1}{k!}$. Next we solve problem $R P$ for f_{1}. As result we get the Σ-pair $\left(f_{1}^{\prime}, g_{1}\right)=\left(\frac{1}{F+1}, \frac{k}{F+1}\right)$ for f_{1}; see Example 5.8. This results in $\sum_{k=1}^{n} \frac{k(k!k+1)}{(k!+1)(k k!+k!+1)}=\frac{-(n+1) n!+1}{2((n+1) n!+1)}+\sum_{k=1}^{n} \frac{k}{1+k!}$. Combining the results we get the solution $\left(f^{\prime}, g\right)=\left(f_{0}^{\prime}+f_{1}^{\prime}, g_{0}+g_{1}\right)$ of problem $R P$ for f.

Summarizing, we can reduce problem $S E F$ to problem $S F P$ as follows.

Algorithm 5.1. ReduceFractionalPart $((\mathbb{F}(t), \sigma), f)$
Input: A $\Pi \Sigma^{*}$-extension $(\mathbb{F}(t), \sigma)$ of (\mathbb{F}, σ) and $f \in \mathbb{F}(t)_{(r)}$; algorithms for problems $S F P, S E F$. Output: A solution of problem RP.
(1) Set $g:=0$ and $f^{\prime}:=f$. WHILE $f \neq 0$ DO
(2) Let $f=\frac{p}{q}$. Take an irreducible factor $h \in \mathbb{F}[t]^{*}$ of q and represent q in the form (15).
(3) By the extended Euclidean algorithm write $f=f_{0}+f_{1}$ in the form (21).
(4) Compute a Σ-pair $\left(f_{0}^{\prime}, g_{0}\right)$ for f_{0} which is a solution of problem $S F P$.
(5) Set $f:=f-f_{0}, f^{\prime}:=f^{\prime}+f_{0}^{\prime}$ and $g:=g+g_{0}$.
(6) OD
(7) RETURN $\left(f^{\prime}, g\right)$

To this end, we show how we can solve problem $S F P$. Here the following property is essential.
Lemma 5.2. Let $(\mathbb{F}(t), \sigma)$ be a $\Pi \Sigma^{*}$-extension of (\mathbb{F}, σ) and $h \in \mathbb{F}[t]^{*}$ be irreducible. Suppose that $\frac{\sigma(t)}{t} \notin \mathbb{F}$ or $\frac{h}{t} \in \mathbb{F}$. Then $\operatorname{gcd}\left(\sigma^{k}(h), \sigma^{l}(h)\right)=1$ for all integers k, l with $k \neq l$.
Proof. Assume $\operatorname{gcd}\left(\sigma^{k}(h), \sigma^{l}(h)\right) \neq 1$. Since $\sigma^{k}(h), \sigma^{l}(h) \in \mathbb{F}[t]$ are irreducible, $\frac{\sigma^{k}(h)}{\sigma^{l}(h)} \in \mathbb{F}$. Hence $\frac{\sigma^{k-l}(h)}{h} \in \mathbb{F}$. By [Kar81, Thm. 4] (compare [Bro00, Cor. 1,2] or [Sch01, Thm. 2.2.4]) it follows that $\frac{\sigma(t)}{t} \in \mathbb{F}$ and $h / t \in \mathbb{F}$.

Since Lemma 5.2 cannot be applied if $h=t$ and $\frac{\sigma(t)}{t} \in \mathbb{F}$, we do a case distinction.
5.1. A special case. Let $(\mathbb{F}(t), \sigma)$ be a Π-extension of (\mathbb{F}, σ) with $\sigma(t)=\alpha t$, let $h=t$, and let $f=\frac{a}{\prod_{i=1}^{n} \sigma^{i}\left(h^{m_{i}}\right)} \neq 0$ as in problem $S F P$. Then for some $u \in \mathbb{F}^{*}, n>0$ and $t \nmid a$ we have

$$
f=\frac{a u}{t^{n}}, \quad 0 \leq \operatorname{deg}(a)<n
$$

Hence we can write $f=\sum_{i=1}^{n} f_{i} \frac{1}{t^{i}}$ for some $f_{i} \in \mathbb{F}$, i.e., $f \in \mathbb{F}\left[\frac{1}{t}\right]$. Similarly, the $f^{\prime}, g \in \mathbb{F}(t)_{(r)}$ in problem $S F P$ are also elements from $\mathbb{F}\left[\frac{1}{t}\right]$. Thus, problem $S F P$ boils down to find a Σ-pair $\left(f^{\prime}, g\right) \in \mathbb{F}\left[\frac{1}{t}\right]^{2}$ for $f \in \mathbb{F}\left[\frac{1}{t}\right]$ where in $f^{\prime}=\sum_{i=0}^{n^{\prime}} f_{i}^{\prime} \frac{1}{t^{i}}$ the degree n^{\prime} is minimal.

Now observe that the difference field $\left(\mathbb{F}\left(\frac{1}{t}\right), \sigma\right)$ with $\sigma\left(\frac{1}{t}\right)=\frac{1}{\alpha} \frac{1}{t}$ is a Π-extension of (\mathbb{F}, σ). This is a direct consequence of $[\mathrm{Kar} 81, \mathrm{Thm} .2]$; see also [Sch05c, Prop. 4.4]. Hence in $\left(\mathbb{F}\left(\frac{1}{t}\right), \sigma\right)$ problem $S F P$ is nothing else than problem $P P$ handled in Subsection 4.1. In a nutshell, we can apply Algorithm 4.1 with the function call OptimalPoly Π Extension $\left(\left(\mathbb{F}\left(\frac{1}{t}\right), \sigma\right), f\right)$.
Example 5.4. (Cont. Example 5.3) Given $f=\frac{(k-1)(F)^{2}+\left(k^{2}-1\right) F-1}{F^{3}}=\frac{1}{F^{3}}+\frac{k^{2}-1}{F^{2}}+\frac{k-1}{F}=$ $\sum_{i=1}^{3} f_{i} \frac{1}{F^{i}}$ we have to solve the problems $\frac{1}{(k+1)^{2}} \sigma\left(g_{i}\right)-g_{i}=f_{i}$ with $f_{3}=1, f_{2}=k^{2}-1$ and $f_{1}=k-1$. We get the solutions $g_{2}=-k^{2}, g_{1}=-k$; there is no solution $g_{3} \in \mathbb{Q}(k)$. Hence we obtain $\left(f^{\prime}, g\right)=\left(\frac{1}{F^{3}}, \frac{-k^{2}}{F^{2}}+\frac{-k}{F}\right)$ for problem $S F P$.
5.2. The remaining cases. The solution of problem $S F P$ can be summarized in

Theorem 5.1. Let $(\mathbb{F}(t), \sigma)$ be a $\Pi \Sigma^{*}$-extension of (\mathbb{F}, σ) and let $h \in \mathbb{F}[t]$ be irreducible with $h \neq t$ or $\frac{\sigma(t)}{t} \notin \mathbb{F}$. Let $f \in \mathbb{F}(t)_{(r)} \backslash\{0\}$ with $\operatorname{den}(f)=\prod_{i} \sigma^{i}\left(h^{m_{i}}\right)$ for some $m_{i} \geq 0$. Then:
(1) A Σ-pair $\left(f^{\prime}, g\right) \in \mathbb{F}(t)_{(r)}^{2}$ of f can be computed where the denominator of f^{\prime} has the form

$$
\begin{equation*}
u \sigma^{i}(h)^{m} \quad \text { for some } u \in \mathbb{F}^{*}, i \in \mathbb{Z} \text { and } m \geq 0 \tag{24}
\end{equation*}
$$

(2) A Σ-pair $\left(f^{\prime}, g\right) \in \mathbb{F}(t)_{(r)}^{2}$ of f solves SFP iff the denominator of f^{\prime} is of the form (24).

In the remaining part of the subsection we prove the theorem. Let $(\mathbb{F}(t), \sigma)$ be a $\Pi \Sigma^{*}$ extension of (\mathbb{F}, σ) where either $\frac{\sigma(t)}{t} \notin \mathbb{F}\left(\right.$ a Σ^{*}-extension) or $h \neq t$. Moreover, consider $f=\frac{a}{\prod_{i=1}^{n} \sigma^{i}\left(h^{m_{i}}\right)}$ with $m_{i} \geq 0$ as in problem $S F P$.

Proof of Theorem 5.1.1. By Lemma 5.2 all the $\sigma^{i}\left(h^{m_{i}}\right)$ with $m_{i} \neq 0$ are pairwise coprime. Thus, we can invoke the extended Euclidean algorithm and compute polynomials $s_{i} \in \mathbb{F}[t]$ with

$$
\begin{equation*}
f=\frac{a}{\prod_{i=1}^{n} \sigma^{i}\left(h^{m_{i}}\right)}=\sum_{i=0}^{n} \frac{s_{i}}{\sigma^{i}\left(h^{m_{i}}\right)} \tag{25}
\end{equation*}
$$

where $\operatorname{deg}\left(s_{i}\right)<\operatorname{deg}(h) m_{i}$. Equivalently, we can write

$$
f=\sum_{i} \sigma^{i}\left(f_{i}\right)
$$

with $f_{i}:=\frac{\sigma^{-i}\left(s_{i}\right)}{h^{m i}}$. Then by Lemma 2.1.3 we can compute $g_{i} \in \mathbb{F}(t)_{(r)}$ with

$$
\begin{equation*}
\sigma^{i}\left(f_{i}\right)=\sigma\left(g_{i}\right)-g_{i}+f_{i} \tag{26}
\end{equation*}
$$

Therefore, with (25), (26) and Lemma 2.1.1 we get a Σ-pair $\left(f^{\prime}, g\right)$ for f defined by

$$
f^{\prime}:=\sum_{i=0}^{n} \frac{\sigma^{-i}\left(s_{i}\right)}{h^{m_{i}}} \quad \text { and } \quad g:=\sum_{i=0}^{n} g_{i} \quad \text { with } g_{i}= \begin{cases}\sum_{j=0}^{i-1} \sigma^{j}\left(\frac{\sigma^{-i}\left(s_{i}\right)}{h^{m i}}\right) & \text { if } i \geq 0 \tag{27}\\ -\sum_{j=0}^{-i-1} \sigma^{j+i}\left(\frac{\sigma^{-i}\left(s_{i}\right)}{h^{m_{i}}}\right) & \text { if } i<0\end{cases}
$$

f^{\prime} and g are of the required form given in problem SFP. This proves Theorem 5.1.1.
Example 5.5. (Cont. Example 2.6) Write $f=\frac{1+k}{k(k+2)}=\frac{1}{2 k}+\frac{1}{2(k+1)}$. We apply Lemma 2.1.3 and get $\frac{1}{2(k+1)}=\frac{1}{2 k}+\sigma(g)-g$ with $g=\frac{1}{2 k}+\frac{1}{2(k+1)}=\frac{2 k+1}{2 k(k+1)}$. Hence we obtain $f=$ $\frac{1}{2 k}+\frac{1}{2 k}+\sigma(g)-g$, and therefore $\left(\frac{1}{k}, \frac{2 k+1}{2 k(k+1)}\right)$ is a Σ-pair for f.
Example 5.6. (Cont. Example 2.7) Write $f=\frac{1}{k(k-1) P}=\frac{1}{(k-1) P}-\frac{1}{k P}$. By $\frac{1}{(k-1) P}=$ $\sigma\left(\frac{1}{(k-1) P}\right)+\sigma(g)-g$ with $g=\frac{-1}{(k-1) P}$ we get the Σ-pair $\left(-\frac{1}{2 k P}, \frac{-1}{(k-1) P}\right)$ for f.
Example 5.7. (Cont. Example 3.1) Write $f=\frac{H k-2}{H(H k-1)}=\frac{2}{H}+\frac{-1}{\sigma^{-1}(H)}$. We have $\frac{-1}{\sigma^{-1}(H)}=$ $\frac{-1}{H}+\sigma(g)-g$ with $g=\frac{1}{\sigma^{1}(H)}=\frac{k}{k H-1}$. Thus we get the Σ-pair $\left(f^{\prime}, g\right)=\left(\frac{1}{H}, \frac{k}{k H-1}\right)$ for f.
Example 5.8. (Cont. Example 5.3) Write $f=\frac{k(F k+1)}{(F+1)(k F+F+1)}=\frac{k(F k+1)}{(F+1) \sigma(F+1)}=\frac{k-1}{F+1}+\frac{1}{\sigma(F+1)}$. Then $\sigma\left(\frac{1}{F+1}\right)=\sigma(g)-(g)+\frac{1}{F+1}$ with $g=\frac{1}{F+1}$. Hence $\left(f^{\prime}, g\right)=\left(\frac{1}{F+1}, \frac{k}{F+1}\right)$ is a Σ-pair for f.

Example 5.9. (Cont. Example 2.9) Take f from Example 2.9 and split it in the form
$f=\frac{k(k+1)^{2}}{(2 k+1) h}+\frac{(k+1)^{2}(k+2)}{(2 k+3) \sigma(h)}+\frac{k(k+1)(k+2)}{(2 k+1) \sigma^{2}(h)}-\frac{(k+1)(k+2)(k+3)}{(2 k+3) \sigma^{3}(h)}=f_{0}+f_{1}+f_{2}+f_{3}$.
Then by Lemma 2.1.3 we obtain $\left(f_{i}^{\prime}, g_{i}\right)$ with $f_{i}^{\prime}=f_{i}+\sigma\left(g_{i}\right)-g_{i}$ where

$$
\begin{gathered}
\left(f_{1}^{\prime}, g_{1}\right)=\left(\frac{k^{2}(k+1)}{(2 k+1) h}, \frac{k^{2}(k+1)}{(2 k+1)(H k-1)}, \quad\left(f_{2}^{\prime}, g_{2}\right)=\left(\frac{(k-2)(k-1) k}{(2 k-3) h}, \frac{(k-1) k\left(-2 k+3+H\left(4 k^{2}-8 k+2\right)\right)}{H(H k-1)\left(4 k^{2}-8 k+3\right)}\right)\right. \\
\left(f_{3}^{\prime}, g_{3}\right)=\left(\frac{-(k-2)(k-1) k}{(2 k-3) h}, \frac{-k\left(-4 k^{3}+8 k^{2}-k-3-4 H\left(4 k^{3}-6 k^{2}-k+2\right)+H^{2}\left(12 k^{5}-12 k^{4}-21 k^{3}+12 k^{2}+7 k-2\right)\right)}{H\left(8 k^{3}-12 k^{2}-2 k+3\right)\left(k(k+1) H^{2}-H-1\right)}\right)
\end{gathered}
$$

This gives the Σ-pair $\left(f^{\prime}, g\right)=\left(f_{0}+f_{1}^{\prime}+f_{2}^{\prime}+f_{3}^{\prime}, g_{1}^{\prime}+g_{2}^{\prime}+g_{3}^{\prime}\right)=\left(\frac{k(k+1)}{H k-1}, \frac{k(k+1)}{(H k-1)(k H+H+1)}\right)$.
With Theorem 5.1.2 it follows that all Σ-pairs from the previous examples are solutions of problem $S F P$. To prove it, we need Remark 5.1 and Lemma 5.3 (compare [Bro00, Cor. 4]).

Remark 5.1. Let $\left(f^{\prime}, g\right)$ be a Σ-pair for f which we get by (27). Then $\operatorname{deg}\left(\operatorname{den}\left(f^{\prime}\right)\right) \leq$ $\operatorname{deg}(\operatorname{den}(f))$. If $m_{i} m_{j} \neq 0$ in (25) for some $i \neq j$, then $\operatorname{deg}\left(\operatorname{den}\left(f^{\prime}\right)\right)<\operatorname{deg}(\operatorname{den}(f))$.

Lemma 5.3. Let $(\mathbb{F}(t), \sigma)$ be a $\Pi \Sigma^{*}$-extension of (\mathbb{F}, σ), let $h \in \mathbb{F}[t]$ be irreducible and suppose that $\frac{\sigma(t)}{t} \notin \mathbb{F}$ or $t \nmid h$. Then there is no $g \in \mathbb{F}(t)$ with $\sigma(g)-g=\frac{c}{h^{r}}$ for $c \in \mathbb{F}[t]^{*}$ and $r>0$.

Proof. Suppose that there is a solution $g=\frac{a}{b} \in \mathbb{F}(t)$. Define $d:=\operatorname{gcd}(b, \sigma(b))$. Then $v h^{r}=\operatorname{lcm}(b, \sigma(b))$ with $v \mid d$; see e.g. [Win96, Thm. 2.3.1]. Let $m \in \mathbb{Z}$ be maximal such that $\sigma^{m}(h) \mid b$. Then $\sigma^{m+1}(h) \nmid d$. Hence $\sigma^{m+1}(h) \nmid v$ and $\sigma^{m+1}(h) \mid \operatorname{lcm}(b, \sigma(b))$. Thus $\sigma^{m+1}(h) \mid h^{r}$, i.e., $m=-1$. Now take m^{\prime} minimal with $\sigma^{m^{\prime}}(h) \mid b$. Then $\sigma^{m^{\prime}}(h) \nmid d$. Hence $\sigma^{m^{\prime}}(h) \nmid v$ and $\sigma^{m^{\prime}}(h) \mid \operatorname{lcm}(b, \sigma(b))$. Thus $\sigma^{m^{\prime}}(h) \mid h^{r}$, i.e., $m^{\prime}=0$; a contradiction.

Proof of Theorem 5.1.2. " \Rightarrow " Let $\left(f^{\prime}, g\right)$ be a Σ-pair of f with $\operatorname{den}\left(f^{\prime}\right)=\prod_{i=1}^{n^{\prime}} \sigma^{i}\left(h^{m_{i}^{\prime}}\right)$ where $m_{i}^{\prime} m_{j}^{\prime} \neq 0$ for some $i \neq j$. By Remark 5.1 there is a Σ-pair (ϕ, γ) for f^{\prime} where $\operatorname{deg}(\operatorname{den}(\phi))<\operatorname{deg}\left(\operatorname{den}\left(f^{\prime}\right)\right)$. Hence $(\phi, g+\gamma)$ is a Σ-pair for f by Lemma 2.1.2. Thus $\operatorname{deg}\left(\operatorname{den}\left(f^{\prime}\right)\right)$ is not minimal.
" $\Leftarrow "$ Let $\left(f^{\prime}, g\right)$ be a Σ-pair for f with $f^{\prime}=\frac{p}{q}$ and $q=\sigma^{i}(h)^{m}$. If $m=0$, then $f^{\prime}=0$, i.e., nothing has to be shown. Let $m>0$, and hence $p \neq 0$, and assume that there is a Σ-pair $\left(\frac{p^{\prime}}{q^{\prime}}, g^{\prime}\right)$ for f where $\operatorname{deg}\left(q^{\prime}\right)$ is minimal and $\operatorname{deg}\left(q^{\prime}\right)<\operatorname{deg}(q)$. By the implication " \Rightarrow " and the minimality of $\operatorname{deg}\left(q^{\prime}\right)$ it follows that $q^{\prime}=u \sigma^{j}(h)^{m^{\prime}}$ for some $u \in \mathbb{F}^{*}, j \in \mathbb{Z}$ and $m^{\prime} \geq 0$. Then by Lemma 2.1.3 there are $a \in \mathbb{F}[t]$ and $\gamma \in \mathbb{F}(t)$ with $\sigma(\gamma)-\gamma+\frac{a}{\sigma^{i}(h)^{m^{\prime}}}=f$. Hence

$$
\begin{equation*}
\sigma(g-\gamma)-(g-\gamma)=\frac{a}{\sigma^{i}(h)^{m^{\prime}}}-\frac{p}{\sigma^{i}(h)^{m}}=\frac{a \sigma^{i}(h)^{m-m^{\prime}}-p}{\sigma^{i}(h)^{m}} \tag{28}
\end{equation*}
$$

where $\sigma^{i}(h) \in \mathbb{F}[t]$ is irreducible. Since $m^{\prime}<m, p \neq 0$ and $\left.\operatorname{gcd}\left(p, \sigma^{i}(h)\right)\right)=1$, the right-hand side of (28) is non-zero; a contradiction to Lemma 5.3. This proves Theorem 5.1.2.

Define the dispersion of $f \in \mathbb{F}[t]^{*}$ by

$$
\operatorname{disp}(f)=\max \left\{m \geq 0 \mid \operatorname{gcd}\left(\sigma^{m}(f), f\right) \neq 1\right\}
$$

By Lemma 5.1.2 (Algorithm 5.1) and Theorem 5.1 we get
Corollary 5.1. Let $(\mathbb{F}(t), \sigma)$ be a $\Pi \Sigma^{*}$-extension of (\mathbb{F}, σ) and $f \in \mathbb{F}(t)_{(r)}$ where t is a Σ^{*} extension or $t \nmid \operatorname{den}(f)$. Let $\left(\frac{p}{q}, g\right) \in \mathbb{F}(t)_{(r)}^{2}$ be a Σ-pair for f. Then the following is equivalent: (1) $\left(\frac{p}{q}, g\right)$ is a solution of problem $R P$.
(2) $q=u \prod_{i} h_{i}^{m_{i}}$ where $u \in \mathbb{F}^{*}$ and where the $h_{i} \in \mathbb{F}[t]$ are irreducible and pairwise σ-prime. (3) $\operatorname{disp}(q)=0$.

Corollary 5.1 is a generalized version of the rational case given in [Abr75] or [Pau95, Prop. 3.3].
Remark 5.2. A solution $\left(\frac{p}{q}, g\right)$ of problem $R P$ with q as in Corollary 5.1.2 is not uniquely determined. More precisely, by splitting $\frac{p}{q}$ in the form $f^{\prime}=\sum_{i} \frac{p_{i}}{h_{i}{ }^{m_{i}}}$ with $p_{i} \in \mathbb{F}[t]$ and $\operatorname{deg}\left(p_{i}\right)<\operatorname{deg}\left(h_{i}\right) m_{i}$ we can apply Lemma 2.1.3 and obtain all other Σ-pairs (ϕ, γ) where $\operatorname{den}(\phi)$ is of the form $\prod_{i} \sigma^{z_{i}} h_{i}^{m_{i}}$ with $z_{i} \in \mathbb{Z}$.

6. Eliminating several top extensions in a sum

As shown in Corollary 3.1 we can eliminate the top extension from the non-summable part, if possible; see Examples 2.3 and 2.4. More generally, we are interested to eliminate several extensions, like for identity (5) or

$$
\sum_{k=1}^{n}\left(\sum_{j=1}^{k}\binom{n}{j}\right)\left(\sum_{j=1}^{k}\binom{n}{j}^{2}\right)=\frac{n+2}{2} \sum_{j=1}^{n}\binom{n}{j} \sum_{j=1}^{n}\binom{n}{j}^{2}-\frac{1}{n} \sum_{k=1}^{n}\left(n^{2}-n k+k^{2}\right)\binom{n}{k}^{3} .
$$

Assume we have given several $\Pi \Sigma^{*}$-extensions $\left(\mathbb{F}\left(t_{1}\right) \ldots\left(t_{e}\right), \sigma\right)$ over \mathbb{F} with $\sigma\left(t_{i}\right)=a_{i} t_{i}+b_{i}$ where $a_{i}, b_{i} \in \mathbb{F}$; in short we say that $\left(\mathbb{F}\left(t_{1}\right) \ldots\left(t_{e}\right), \sigma\right)$ is a $\Pi \Sigma^{*}$-extension over \mathbb{F}. Then we are interested in the following problem.

ET: Eliminate top extensions

Given $f \in \mathbb{F}\left(t_{1}\right) \ldots\left(t_{e}\right)$; find a Σ-pair $\left(f^{\prime}, g\right) \in \mathbb{F}\left(t_{1}\right) \ldots\left(t_{r}\right) \times \mathbb{F}\left(t_{1}\right) \ldots\left(t_{e}\right)$ for f where r is minimal, i.e., eliminate as many extensions in f^{\prime} as possible. In particular, choose $f^{\prime}=0$, if possible.

In particular, we are interested in the following application: Let \mathbb{F} be a $\Pi \Sigma^{*}$-field where all the maximal nested sums and products are the t_{i} 's and all less nested sums and products are in \mathbb{F}. Then solving $E T$ enables one to decide constructively if there is a Σ-pair $\left(f^{\prime}, g\right)$ for f where f^{\prime} is less nested than f.
Example 6.1. (Cont. Example 2.5) Given f from Example 2.5 we compute with Algorithm 3.1 the Σ-pair $\left(f_{2}, g_{2}\right)=\left(\frac{6 H^{(2)}(k+1)^{3}+3 k+4}{3(k+1)^{3}},-\frac{1}{3} H\left(H^{2}-3\left(H^{(2)} k+1\right) H+3 H^{(2)}(2 k+1)\right)\right)$ for f. Since we managed to eliminate the extension H from the non-summable part f_{2}, we apply Algorithm 3.1 to f_{2} and get as result the Σ-pair $\left(f_{1}, g_{1}\right)=\left(-\frac{6 k^{2}+9 k+2}{3(k+1)^{3}}, 2 H^{(2)} k\right)$. Finally, we apply Algorithm 3.1 to f_{1} and get the Σ-pair $\left(-\frac{6 k^{2}+9 k+2}{3(k+1)^{3}}, 0\right)$, i.e., f_{1} cannot be simplified further in the degree (of the numerator or denominator). Combining all the steps by using Lemma 2.1.2 we obtain the Σ-pair $\left(f_{1}, g_{1}+g_{2}\right)=\left(-\frac{6 k^{2}+9 k+2}{3(k+1)^{3}},-\frac{H^{3}}{3}+\left(H^{(2)} k+1\right) H^{2}-\right.$ $\left.\left(2 k H^{(2)}+H^{(2)}\right) H+2 H^{(2)} k\right)$ for f. Finally, by using Lemma 2.1.3 we change the Σ-pair for f to $\left(\sigma^{-1}\left(f^{\prime}\right), \sigma^{-1}\left(f^{\prime}\right)+g\right)$, see also Example 4.5. This result is used in Example 2.5.

As illustrated in the previous example, we can attack problem $E T$ by running Algorithm 3.1 recursively and using Lemma 2.1.2. More precisely, we propose the following algorithm.
Algorithm 6.1. EliminateExtensions $\left(\left(\mathbb{F}\left(t_{1}\right) \ldots\left(t_{e}\right), \sigma\right), f\right)$
Input: A $\Pi \Sigma^{*}$-extension $\left(\mathbb{F}\left(t_{1}\right) \ldots\left(t_{e}\right), \sigma\right)$ over \mathbb{F} with $e \geq 1$ where we can solve problems PLDE and $S E F$ for all extensions $t_{i} . f \in \mathbb{F}\left(t_{1}\right) \ldots\left(t_{e}\right)$.
Output: A solution of problem ET.
(1) If $e=0$, decide constructively, if there is a $g \in \mathbb{F}$ with $\sigma(g)-g=f$. If yes, RETURN $(0, g)$, otherwise RETURN $(f, 0)$.
(2) Decide constructively, if there is a Σ-pair $\left(f^{\prime}, g\right) \in \mathbb{F}\left(t_{1}\right) \ldots\left(t_{e-1}\right) \times \mathbb{F}\left(t_{1}\right) \ldots\left(t_{e}\right)$ for f.
(3) If no, THEN RETURN $\left(f^{\prime}, g\right)$. Otherwise, take such an $\left(f^{\prime}, g\right)$.
(4) Compute $(\phi, \gamma):=$ EliminateExtensions $\left(\left(\mathbb{F}\left(t_{1}\right) \ldots\left(t_{e-1}\right), \sigma\right), f^{\prime}\right)$ and RETURN $(\phi, g+\gamma)$.

In order to prove the correctness of Algorithm 6.1, we need the following Lemma; see [Kar81, Thm. 24] or [Sch01, Prop. 4.1.3].
Lemma 6.1. Let $(\mathbb{F}(t), \sigma)$ be a $\Pi \Sigma^{*}$-extension of (\mathbb{F}, σ). Let $g \in \mathbb{F}(t)$ with $\sigma(g)-g \in \mathbb{F}$. If $\frac{\sigma(t)}{t} \in \mathbb{F}$, then $g \in \mathbb{F}$. Otherwise, $g=c t+w$ for some $c \in \operatorname{const}_{\sigma} \mathbb{F}$ and $w \in \mathbb{F}$.
Theorem 6.1. Let $\left(\mathbb{F}\left(t_{1}\right) \ldots\left(t_{e}\right), \sigma\right)$ be a $\Pi \Sigma^{*}$-extension over $\mathbb{F}(e \geq 1)$ where one can solve problems PLDE and SEF for all extensions t_{i}. Then Algorithm 6.1 solves problem ET.
Proof. If $e=0$, the output is correct. Now suppose that Algorithm 6.1 works correct for $e-1$ extensions with $e>1$. Consider $\mathbb{F}\left(t_{1}\right) \ldots\left(t_{e}\right)$ with $\sigma\left(t_{i}\right)=a_{i} t_{i}+b_{i}$ where $a_{i}, b_{i} \in \mathbb{F}$. Let $(F, G) \in \mathbb{F}\left(t_{1}\right) \ldots\left(t_{r}\right) \times \mathbb{F}\left(t_{1}\right) \ldots\left(t_{e}\right)$ be a Σ-pair for f where r is minimal. If $r=e$, we return the correct result in step (3) by Corollary 3.1. Now suppose that $r<e$. Hence, by Corollary 3.1 we can compute a Σ-pair $\left(f^{\prime}, g\right)$ for f with $f^{\prime} \in \mathbb{F}\left(t_{1}\right) \ldots\left(t_{e-1}\right)$ and $g \in$ $\mathbb{F}\left(t_{1}\right) \ldots\left(t_{e}\right)$. Thus, $\sigma(h)-(h)=f^{\prime}-F$, where $h:=G-g \in \mathbb{F}\left(t_{1}\right) \ldots\left(t_{e}\right)$. Note that $f^{\prime}-F \in$ $\mathbb{F}\left(t_{1}\right) \ldots\left(t_{e-1}\right)$. Now suppose that t_{e} is a Π-extension. By Lemma 6.1, $h \in \mathbb{F}\left(t_{1}\right) \ldots\left(t_{e-1}\right)$. Hence, $(F, h) \in \mathbb{F}\left(t_{1}\right) \ldots\left(t_{r}\right) \times \mathbb{F}\left(t_{1}\right) \ldots\left(t_{e-1}\right)$ is a Σ-pair for f^{\prime}. Otherwise, suppose that t_{e} is a Σ^{*}-extension. By Lemma $6.1, h=c t+w$ for some $w \in \mathbb{F}\left(t_{1}\right) \ldots\left(t_{e-1}\right)$ and $c \in$ const $_{\sigma} \mathbb{F}$.

Hence $\sigma(w)-w+\left(F+c a_{e}\right)=f^{\prime}$, i.e., $\left(F+c a_{e}, w\right) \in \mathbb{F}\left(t_{1}\right) \ldots\left(t_{r}\right) \times \mathbb{F}\left(t_{1}\right) \ldots\left(t_{e-1}\right)$ is a Σ-pair for f^{\prime}. By the induction assumption Algorithm 6.1 computes a Σ-pair $(\phi, \gamma) \in$ $\mathbb{F}\left(t_{1}\right) \ldots\left(t_{r}\right) \times \mathbb{F}\left(t_{1}\right) \ldots\left(t_{e-1}\right)$ for f^{\prime}. By Lemma 2.1.2, $(\phi, \gamma+g)$ is a Σ-pair for f.

Concerning Algorithm 6.1 the following remarks are in place:
(1) Step (2) of Algorithm 6.1 can be accomplished by Algorithm 3.1, i.e., by the function call $\left(f^{\prime}, g\right):=$ RefinedTelescoping $\left(\left(\mathbb{F}\left(t_{1}\right) \ldots\left(t_{e}\right), \sigma\right), f\right)$; see Example 6.1. In particular, if one fails to eliminate the extension t_{e} from f^{\prime}, one obtains a Σ-pair $\left(f^{\prime}, g\right)$ where the degrees in t_{e} are optimal. Hence we can combine problems $R T$ and $E T$.
(2) We can improve the computation in step (2): Since we only have to eliminate the extension t_{e}, if possible, but we do not have to decide, if $f^{\prime}=0$ is possible, we can avoid unnecessary computations in Algorithm 3.1. More precisely, in Sub-algorithm 4.1 we can quit the do-loop when $r=0$; in Sub-algorithm 4.2 we can quit the while-loop when $\operatorname{deg}\left(f^{\prime}\right)=0$.
(3) The proposed algorithm might fail to find a sum extension where the depth is optimal. E.g., starting with the left-hand side of (29) we find the first simplification in

$$
\begin{equation*}
\sum_{j=1}^{n} \sum_{k=1}^{j} \frac{H_{k}}{k^{2}}=n \sum_{k=1}^{n} \frac{H_{k}}{k^{2}}-\sum_{k=1}^{j} \frac{H_{k}(k+1)}{k^{2}}=n \sum_{k=1}^{n} \frac{H_{k}}{k^{2}}-\left(\sum_{k=1}^{n} \frac{H_{k}}{k^{2}}+\frac{1}{2}\left(H_{n}^{2}+H_{n}^{(2)}\right)\right) . \tag{29}
\end{equation*}
$$

But our algorithm fails to find $H_{n}^{(2)}$ in order to simplify $\sum_{k=1}^{j} \frac{H_{k}(k+1)}{k^{2}}$ further. Here we would need in addition the sum $\sum_{k=1}^{j} \frac{H_{k}(k+1)}{k^{2}}$ which we dropped in the reduction; see step (4) in Algorithm 6.1. In [Sch04c, Sch05b] this problem can be handled properly by using a rather complicated machinery.

7. Simplification of Σ^{*}-extensions

By [Kar81] there is the following result concerning the construction of Σ^{*}-extensions.
Theorem 7.1. Let $(\mathbb{F}(t), \sigma)$ be a difference field extension of (\mathbb{F}, σ) with $\sigma(t)=t+f$ where $f \in \mathbb{F}$. Then this is a Σ^{*}-extension iff there is no $g \in \mathbb{F}$ with $\sigma(g)-g=f$.

This result provides a constructive theory to represent sums, like

$$
S(n)=\sum_{k=1}^{n} f(k),
$$

in $\Pi \Sigma^{*}$-fields. More precisely, suppose that $f(k)$ can be written in a $\Pi \Sigma^{*}$-field, say (\mathbb{F}, σ) with $f \in \mathbb{F}$; for typical examples see Section 2. Two cases can occur: (1) One finds a $g \in \mathbb{F}$ with $\sigma(g)-g=f$. Then reconstruct from g a sequence $g(k)$ with $g(k+1)-g(k)=f(k)$ and derive, with some mild extra-conditions, the closed form $S(n)=g(n+1)-g(1)$. In particular, the sum $S(n)$ can be expressed by $t:=\sigma(g)+c \in \mathbb{F}$ for some $c \in \mathbb{K}(c=g(1))$ with

$$
\begin{equation*}
\sigma(t)=t+\sigma(f) ; \tag{30}
\end{equation*}
$$

this reflects the shift behavior $S(n+1)=S(n)+f(n+1)$.
(2) One shows that there is no $g \in \mathbb{F}$ with $\sigma(g)-g=f$. Then by Theorem 7.1 adjoin the sum $S(n)$ formally in form of the Σ^{*}-extension $(\mathbb{F}(t), \sigma)$ with (30).

Our refined telescoping methods enable one to construct refined Σ^{*}-extensions. In general, suppose there is no $g \in \mathbb{F}$ with $\sigma(g)-g=f$ and let $\left(f^{\prime}, g\right)$ be any Σ-pair for f. Then there is no $h \in \mathbb{F}$ with $\sigma(h)-h=f^{\prime}$; otherwise, we would have $\sigma(g+h)-(g+h)=f$ for $g+h \in \mathbb{F}$. Hence, by Theorem 7.1 we can construct the Σ^{*}-extension $(\mathbb{F}(s), \sigma)$ with $\sigma(s)=s+\sigma\left(f^{\prime}\right)$. Moreover, for $T:=s+\sigma(g)+c$ with some $c \in \mathbb{K}$ we have $\sigma(T)=\sigma(s)+\sigma^{2}(g)+c=$ $s+\sigma\left(f^{\prime}\right)+\sigma^{2}(g)+c=s+\sigma(g)+c+\sigma(f)=T+\sigma(f)$, i.e., $\sigma(T)=T+\sigma(f)$. Thus, we can represent $S(n)$ by $T \in \mathbb{F}(s)$.

Remark. Note that the Σ^{*}-extensions $(\mathbb{F}(t), \sigma)$ and $(\mathbb{F}(s), \sigma)$ from above are isomorphic by the difference field isomorphism $\tau: \mathbb{F}(t) \rightarrow \mathbb{F}(s)$ with $\tau(f)=f$ for all $f \in \mathbb{F}$ and $\tau(t)=$ $s+\sigma(g)+d ; d \in \mathbb{K}$ is arbitrary, but fixed.

Summarizing, if we compute the Σ-pair $\left(f^{\prime}, g\right)$ with Algorithms 3.1 or 6.1 we can get better Σ^{*}-extensions to represent the sum $S(n)$.

Example 7.1. (Cont. Example 2.6) Since there is no $g \in \mathbb{Q}(k)$ with $\sigma(g)-g=f$ for $f=$ $\frac{k+1}{k(k+2)}$, we can construct the Σ^{*}-extension $\mathbb{Q}(k)(t)$ with $\sigma(t)=t+\frac{k+2}{(k+1)(k+3)}$ and can represent the sum $S(n)=\sum_{k=1}^{n} \frac{k^{2}+1}{k(k+1)(k+2)}$ by t. Given the Σ-pair $\left(\frac{1}{k}, \frac{2 k+1}{2 k(k+1)}\right)$ from Example 2.6, we can represent the sum $S(n)$ with $T:=H+\frac{2 k+3}{2(k+1)(k+2)}$ in the Σ^{*}-extension $(\mathbb{Q}(k)(H), \sigma)$ with $\sigma(H)=H+\frac{1}{k+1}$. We get the difference field isomorphism $\tau: \mathbb{Q}(k)(t) \rightarrow \mathbb{Q}(k)(H)$ given by $\tau(t)=H+\frac{6 k+2}{2(k+1)(k+2)}-\frac{7}{4}$. This is exactly reflected by the identity (11).

8. Conclusion

We developed algorithms that can express a given sum in terms of a sum $\sum f^{\prime}(k)$ where $f^{\prime}(k)$ is degree-optimal.

Here we restricted so far to the domain of $\Pi \Sigma^{*}$-fields. More generally, one can apply the underlying reductions also to difference rings, see Example 2.4. Here further investigations are necessary, in particular, one needs more general algorithms for problems $P L D E$ and $S E F$; some first steps can be found in [Sch01]. Note that our algorithms can be applied for more general difference fields described in [KS06b, KS06a]

Carrying over Paule's greatest factorial factorization [Pau95] (the discrete analogue of greatest squarefree factorization) to the $\Pi \Sigma^{*}$-case might give further theoretical insight to our algorithmic results. Some steps in this direction can be found in [PR97, BP99].

Following [Pir95] one might refine our algorithms further: given $f(k)$, find $f^{\prime}(k)$ and $g(k)$ with (2) where among all the degree optimal $f^{\prime}(k)$ also $g(k)$ is "optimal"; see Remarks 4.1 and 5.2. Special cases have been considered in [AP02, ALP03] for the hypergeometric case.

We presented a simple algorithm in Section 6 that computes, if possible, a summand $f^{\prime}(k)$ which is less nested than $f(k)$. More general, but also more complicated, algorithms have been proposed in [Sch04c, Sch05b] which find depth-optimal $f^{\prime}(k)$, see e.g. identity (29). Using results from this article might simplify these general algorithms.

References

[Abr71] S. A. Abramov. On the summation of rational functions. Zh. vychisl. mat. Fiz., 11:1071-1074, 1971.
[Abr75] S.A. Abramov. The rational component of the solution of a first-order linear recurrence relation with a rational right-hand side. U.S.S.R. Comput. Maths. Math. Phys., 15:216-221, 1975. Transl. from Zh. vychisl. mat. mat. fiz. 15, pp. 1035-1039, 1975.
[ALP03] S.A. Abramov, H.Q. Le, and M. Petkovsek. Rational canonical forms and efficient representations of hypergeometric terms. In J.R. Sendra, editor, Proc. ISSAC'03, pages 7-14. ACM Press, 2003.
[AP94] S. A. Abramov and M. Petkovšek. D'Alembertian solutions of linear differential and difference equations. In J. von zur Gathen, editor, Proc. ISSAC'94, pages 169-174. ACM Press, Baltimore, 1994.
[AP99] G. E. Andrews and P. Paule. MacMahon's partition analysis IV: Hypergeometric multisums. Sém. Lothar. Combin., B42i:1-24, 1999.
[AP02] S. Abramov and M. Petkovšek. Rational normal forms and minimal decompositions of hypergeometric terms. J. Symbolic Comput., 33(5):521-543, 2002.
[BP99] A. Bauer and M. Petkovšek. Multibasic and mixed hypergeometric Gosper-type algorithms. Journal of Symbolic Computation, 28(4-5):711-736, 1999.
[Bro00] M. Bronstein. On solutions of linear ordinary difference equations in their coefficient field. J. Symbolic Comput., 29(6):841-877, June 2000.
[DPSW05] K. Driver, H. Prodinger, C. Schneider, and A. Weideman. Padé approximations to the logarithm III: Alternative methods and additional results. To appear in Ramanujan Journal, 2005.
[GKP94] R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete Mathematics: a foundation for computer science. Addison-Wesley Publishing Company, Amsterdam, 2nd edition, 1994.
[Gos78] R. W. Gosper. Decision procedures for indefinite hypergeometric summation. Proc. Nat. Acad. Sci. U.S.A., 75:40-42, 1978.
[HS99] P.A. Hendriks and M.F. Singer. Solving difference equations in finite terms. J. Symbolic Comput., 27(3):239-259, 1999
[Kar81] M. Karr. Summation in finite terms. J. ACM, 28:305-350, 1981.
[Koo93] T.H. Koornwinder. On Zeilberger's algorithm and its q-analogue. J. Comp. Appl. Math., 48:91-111, 1993.
[KS06a] M. Kauers and C. Schneider. Indefinite Summation with Unspecified Summands. To appear in Discrete Math., 2006.
[KS06b] Manuel Kauers and Carsten Schneider. Application of unspecified sequences in symbolic summation. In Proceedings of ISSAC'06, 2006.
[Pau95] P. Paule. Greatest factorial factorization and symbolic summation. J. Symbolic Comput., 20(3):235268, 1995.
[Pir95] R. Pirastu. Algorithms for indefinite summation of rational functions in maple. The Maple Technical Newsletter, 2(1):1-12, 1995.
[PR97] P. Paule and A. Riese. A Mathematica q-analogue of Zeilberger's algorithm based on an algebraically motivated aproach to q-hypergeometric telescoping. In M. Ismail and M. Rahman, editors, Special Functions, q-Series and Related Topics, volume 14, pages 179-210. Fields Institute Toronto, AMS, 1997.
[PS95] P. Paule and M. Schorn. A Mathematica version of Zeilberger's algorithm for proving binomial coefficient identities. J. Symbolic Comput., 20(5-6):673-698, 1995.
[PS03] P. Paule and C. Schneider. Computer proofs of a new family of harmonic number identities. Adv. in Appl. Math., 31(2):359-378, 2003.
[Sch01] C. Schneider. Symbolic summation in difference fields. Technical Report 01-17, RISC-Linz, J. Kepler University, November 2001. PhD Thesis.
[Sch04a] C. Schneider. A collection of denominator bounds to solve parameterized linear difference equations in $\Pi \Sigma$-extensions. In D. Petcu, V. Negru, D. Zaharie, and T. Jebelean, editors, Proc. SYNASC04, 6th Internat. Symposium on Symbolic and Numeric Algorithms for Scientific Computation, pages 269-282, Timisoara (Romania), September 2004. Mirton Publishing. ISBN 973-661-441-7.
[Sch04b] C. Schneider. The summation package Sigma: Underlying principles and a rhombus tiling application. Discrete Math. Theor. Comput. Sci., 6(2):365-386, 2004.
[Sch04c] C. Schneider. Symbolic summation with single-nested sum extensions. In J. Gutierrez, editor, Proc. ISSAC'04, pages 282-289. ACM Press, 2004.
[Sch05a] C. Schneider. Degree bounds to find polynomial solutions of parameterized linear difference equations in $\Pi \Sigma$-fields. Appl. Algebra Engrg. Comm. Comput., 16(1):1-32, 2005.
[Sch05b] C. Schneider. Finding telescopers with minimal depth for indefinite nested sum and product expressions. In M. Kauers, editor, Proc. ISSAC'05, pages 285-292. ACM, 2005.
[Sch05c] C. Schneider. Product representations in Пइ-fields. Annals of Combinatorics, 9(1):75-99, 2005.
[Sch05d] C. Schneider. Solving parameterized linear difference equations in terms of indefinite nested sums and products. J. Differ. Equations Appl., 11(9):799-821, 2005.
[Win96] F. Winkler. Polynomial Algorithms in Computer Algebra. Texts and Monographs in Symbolic Computation. Springer, Wien, 1996.
[Zha99] Z. Zhang. A kind of binomial identity. Discrete Math., 196(1-3):291-298, 1999.
Research Institute for Symbolic Computation, J. Kepler University Linz, A-4040 Linz, Austria
E-mail address: Carsten.Schneider@risc.uni-linz.ac.at

[^0]: Supported by the SFB-grant F1305 and the grant P16613-N12 of the Austrian FWF.

[^1]: ${ }^{1} \operatorname{coeff}(f, s)$ denotes the coefficient f_{s} in $\sum_{i} f_{i} t^{i} \in \mathbb{F}[t]$.

[^2]: ${ }^{2}$ If not stated differently, we suppose that $p, q \in \mathbb{F}[t], q \neq 0$, and $\operatorname{gcd}(p, q)=1$, whenever we write $f=\frac{p}{q}$; we define $\operatorname{den}(f)=q($ up to a unit in $\mathbb{F})$.

