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Abstract. We present algorithms which split a rational expression in terms of indefinite
nested sums and products into a summable part which can be summed by telescoping and
into a non-summable part which is degree-optimal with respect to one of the most nested
sums or products. If possible, our algorithms find a non-summable part where all these most
nested sums and products are eliminated.

1. Introduction

Indefinite summation can be described by the following telescoping problem: Given f where
f belongs to some domain of sequences E, find g ∈ E such that

f(k) = g(k + 1) − g(k). (1)

Then given such a solution g, we get the closed form evaluation

b
∑

k=a

f(k) = g(b+ 1) − g(a),

i.e., the sum
∑b

k=a f(k) can be simplified in terms of the sequences given in E. E.g., there
are algorithms for the rational case, see [Abr71], for hypergeometric terms, see [Gos78, PS95],
for q-hypergeometric terms, see [Koo93, PR97], or more generally, for ΠΣ∗-terms, see [Kar81,
Sch04b]. Here arbitrarily nested indefinite sums and products are represented in the difference
field setting of ΠΣ∗-fields. Typical examples of such sums and products are d’Alembertian
solutions [AP94, Sch01], a subclass of Liouvillian solutions [HS99] of linear recurrences.

We consider the following refined problem: Given f ∈ E, find (f ′, g) ∈ E2 such that

f(k) = g(k + 1) − g(k) + f ′(k) (2)

where f ′ is as “small” as possible. Since we consider f ′ = 0 as the “smallest” possible choice,
f ′ is also called the non-summable part. Then given such a solution (f ′, g), we obtain

b
∑

k=a

f(k) = g(b+ 1) − g(a) +

b
∑

k=a

f ′(k),

i.e., the sum
∑b

k=a f(k) can be simplified in terms of the sequences given in E and by the sum
∑b

k=a f
′(k). In a nutshell, one tries to solve the classical telescoping problem in E (f ′ = 0),

and if this is not possible, tries to keep the non-summable part f ′(k) as small as possible.
For the rational case this refined telescoping approach has been considered in [Abr75]; here

the minimality of f ′ is defined by the degree of the denominator polynomial. Theoretical
inside and different algorithms have been derived in [Pau95].

For the ΠΣ∗-field case the following variation has been considered in [Sch04c, Sch05b]: find
a summand f ′(k) where the depth of the nested sums and products is optimal.

Based on the algorithmic theory given in [Kar81] we shall develop a framework which
combines both versions: choose one of the most nested sums or products in f(k) and find
f ′(k) such that the degrees of its polynomial and fractional part are optimal w.r.t. to the

Supported by the SFB-grant F1305 and the grant P16613-N12 of the Austrian FWF.
1



2 CARSTEN SCHNEIDER

selected sum or product. Applying this strategy recursively, we can eliminate, if possible, all
such most nested sums and products in f ′(k). Typical examples are

n
∑

k=2

−kH5
k
+H4

k
−kHk+2

Hk−kH2
k

= (n+ 1)H3
n − (2n+ 1)

(

3
2H

2
n − 3Hn + 3

2

)

+ 1
Hn

+
n
∑

k=2

k2+Hk

k2Hk
, (3)

n
∑

k=0

(

k
∑

i=0

(

x

i

)

)2

= (x− n)

(

x

n

) n
∑

i=0

(

x

i

)

−
x− 2n− 2

2

(

n
∑

i=0

(

x

i

)

)2

−
x

2

n
∑

k=0

(

x

k

)2

, (4)

n−1
∑

k=1

H2
kH

(2)
k = −H3

n

3 +
(

nH(2)
n + 1

)

H2
n + (2n + 1)

(

H(2)
n −H(2)

n Hn

)

− 2Hn + 1
3H

(3)
n (5)

where Hk =
∑k

j=1 1/j denote the harmonic numbers and H
(r)
k =

∑k
j=1 1/jr, r > 1, are its

generalized versions. In (3) we simplify the sum on the left-hand side by finding f ′(k) = k2+Hk

k2Hk

where the degrees w.r.t Hk are optimal. Moreover, in (4), which is a generalized version

from [AP99, Page 9], we compute f ′(k) =
(

n
k

)2
which is free of

∑k
i=0

(

n
i

)

. In (5) we simplify

the sum on the left-hand side by finding f ′(k) = 1
k3 which is free of Hk and H

(2)
k .

The algorithms under consideration are illustrated by various concrete examples; some of
them pop up in [Zha99, PS03, Sch04b, DPSW05]. All these ideas are implemented in the
summation package Sigma [Sch04b].

The general structure is as follows. In Section 2 we formulate the refined telescoping prob-
lem RT in difference fields and supplement it by examples. In Section 3 we split problem RT
in the two subproblems PP and RP which we solve in Sections 4 and 5. Using these results, we
get an algorithm which can eliminate, if possible, all the extensions which are most nested, see
Section 6. In Section 7 we show how problem (2) is related to the theory of ΠΣ∗-extensions.

2. The problem in ΠΣ∗-extensions

We describe the domain of sequences E in problem (2) by difference fields, i.e., by a
field E and a field automorphism σ : E → E; in short we write (E, σ). All fields in this
paper are understood as having characteristic 0. The constant field of (E, σ) is defined by
K := {c ∈ E |σ(c) = c}. It is easy to see that K is a subfield of E; this implies that Q ⊆ K.
Then problem (2) can be formulated as follows. Given f ∈ E, find (f ′, g) ∈ E2 such that

σ(g) − g + f ′ = f (6)

where f ′ is as simple as possible. We call (f ′, g) ∈ E a Σ-pair for f if it fulfills (6).

Subsequently, we restrict to difference fields which can be obtained by certain difference
field extensions called ΠΣ∗-extensions. A difference field (E, σ) is called a difference field
extension of (F, σ′), if F is a sub-field of E and σ|F = σ′ (since σ and σ′ agree on F, we do
not distinguish them anymore). A difference field extension (E, σ) of (F, σ) is called a ΠΣ∗-
extension, if E = F(t) is a rational function field extension, the field automorphism σ : F → F
is extended to σ : F(t) → F(t) by σ(t) = a t or σ(t) = t+ a for some a ∈ F∗, and the constant
field remains unchanged, i.e., constσF(t) = constσF = K. If σ(t) = a t, we call the extension
also a Π-extension; if σ(t) = t+ a, we call it a Σ∗-extension.

Remark 2.1. Note that there are decision procedures which enable one to test if a given ex-
tension is a ΠΣ∗-extension. For Σ∗-extensions we refer to Section 7. For general Π-extensions
we refer to [Kar81]. Here we mention only that a hypergeometric term, like

(

n
k

)

or k!, can be

always represented by a Π-extension; only objects like (−1)k cannot be handled, see [Sch05c].

For such a ΠΣ∗-extension (F(t), σ) of (F, σ) we are interested in the following problem:
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RT: Refined Telescoping with optimal degree

Given f ∈ F(t); find a Σ-pair (f ′, g) for f where among the possible f ′ with

f ′ = p+
q

d
where p, q, d ∈ F[t], and deg(q) < deg(d) (7)

the degree of d and the degree of p are minimal; we set deg(0) = −∞.

Remark. (1) The constraint that deg(p) is minimal does not restrict the constraint that
deg(d) is minimal and vice versa. For further explanations we refer to Section 3.
(2) In [Sch05c] we consider the analogue problem for products: given f ∈ F(t), find (f ′, g) ∈

F(t)2 with σ(g)
g
f ′ = f where the degrees of the numerator and denominator of f ′ are minimal.

In this article we develop algorithms for problem RT where F is a ΠΣ∗-field. This means
that we start with the constant field K and adjoin step by step either a Π- or a Σ∗-extension
ti on top. Following [Kar81] we call such a tower of ΠΣ∗-extensions K(t1) . . . (te) a ΠΣ∗-field.
Usually, one chooses for t in RT a sum or product which is most nested.

We illustrate problem RT by various concrete examples. In Examples 2.1–2.5 we focus on
the problem to obtain non-summable parts where the degree of p is reduced. In Examples 2.6–
2.9 we compute non-summable parts where the degree of d reduced. In Example 2.10 (see
identity (5)) we compute a non-summable part where the degrees in p and d are optimal.

Example 2.1. Consider the rational case, i.e., take the difference field (K(k), σ) with σ(k) =
k+1 and constσK(k) = K; note that this is a Σ∗-extension of (K(k), σ). Then for any f ∈ K[k]
we can compute a g ∈ K[k] with σ(g) − g = f ; see e.g. [GKP94, (6.10),(6.11),(2.45)]. For
the q-rational case we have the same result: Take the constant field K(q) with a parameter
q and consider the ΠΣ∗-extension (K(q)(P ), σ) with σ(P ) = q P . Then we can find for any
f ∈ K(q)[P ] a g ∈ K(q)[P ] with σ(g) − g = f ; note that (0, P i/(q − 1)) is a Σ-pair for P i.

Example 2.2. Given
∑n

k=1H
4
k , we derive the identity

n
∑

k=1

H4
k = H2

n

(

(n+ 1)H2
n − 2(2n + 1)Hn + 12n

)

+

n
∑

k=1

12k2
−8k−1−2kHk(12k2

−6k−1)
k3 (8)

as follows. Take the difference field (Q(k), σ) with σ(k) = k + 1, and extend it with the
Σ∗-extension (Q(k)(H), σ) where σ(H) = H + 1

k+1 . Note that the shift of Hk in k is

reflected by the automorphism σ acting on H. Then we compute the Σ-pair (f ′, g) =

(
12k2

−8k−1−2kH(12k2
−6k−1)

k3 ,
(Hk−1)2((H2

−4H+12)k2
−8k−1)

k3 ) for f = H4; for further details see

Example 4.2. This delivers (2) with f(k) = H4
k , f ′(k) =

12k2
−8k−1−2kHk(12k2

−6k−1)
k3 and

g(k) =
(Hkk−1)2((H2

k
−4Hk+12)k2

−8k−1)
k3 . Summing (2) over k gives (8). Note that

∑n
k=1 f

′(k) =

12
∑n

k=1
Hk

k
+2
∑n

k=1
Hk

k2 −24
∑n

k=1Hk+12Hn−8H
(2)
n −H

(3)
n . With the identities

∑n
k=1Hk =

Hn(n+ 1)−n and
∑n

k=1
Hk

k
= H2

n +H
(2)
n , which we can also find with our machinery, we get

n
∑

k=1

H4
k = (n+ 1)H4

n − (2n+ 1)
(

2H3
n − 6H2

n + 12Hn

)

+ 24n −H(3)
n − 2H(2)

n + 2
n
∑

k=1

Hk

k2
. (9)

Example 2.3. Given
∑n

k=1H
3
k , we take (Q(k)(H), σ) from Example 2.2 and compute the

Σ-pair (f ′, g) =
(

− 12k2
−6k−1
2k2 ,

(Hk−1)(2H2k2
−6Hk2+12k2

−Hk−6k−1)
2k2

)

for H3; see Example 4.6.

Summing the result over k and using
∑n

k=1 −
12k2

−6k−1
2k2 = 1

2(−12n + 6Hn +H
(2)
n ) gives

n
∑

k=1

H3
k =

1

2

(

2(n+ 1)H3
n − 3(2n + 1)H2

n + 6(2n + 1)Hn − 12n+H(2)
n

)

. (10)
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Example 2.4. We find (4), a generalization given in [AP99, Page 9], as follows. Take the
difference field (Q(x)(k), σ) with constant field Q(x) and σ(k) = k + 1 and extend it with
the Π-extension (Q(x)(k)(B), σ) with σ(B) = x−k

k+1B. Afterwards, extend it with the Σ∗-

extension (Q(x)(k)(B)(S), σ) with σ(S) = S + σ(B); note that the shift of
(

x
k

)

and
∑k

i=0

(

x
i

)

in k is reflected by the automorphism σ acting on B and S. Then we compute the Σ-pair

(f ′, g) = (−x
2B

2,−1
2 (B − S)(xB + (2k − x)S)) for f = S2. This gives f ′(k) = −x

2

(

x
k

)2
and

g(k) = −1
2(
(

x
k

)

−
∑k

i=0

(

x
i

)

)(x
(

x
k

)

+ (2k − x)
∑k

i=0

(

x
i

)

) for (2). Summing (2) over k gives (4).
With the same mechanism we find the identities

n
∑

k=0

(−1)k
(

k
∑

j=0

(

x
j

)

)2
= (−1)n

(

2(x− n)
(

x
n

)

n
∑

j=0

(

x
j

)

+ x
(

n
∑

j=0

(

x
j

)

)2)

−

n
∑

k=0

(x− 2k)
(

x
k

)2
(−1)k,

n
∑

k=1

p(k)

(1 − 3k)2(2 − 3k)2(1 − 2k)2k2

k
∑

j=1

108j3
−153j2+68j−10

j(2j−1)(3j−2)(3j−1) = 2
(

n
∑

j=1

108j3
−153j2+68j−10

j(2j−1)(3j−2)(3j−1)

)2
+

−

n
∑

k=1

289656k7
−842886k6+1001583k5

−622368k4+213418k3
−38207k2+2720k+20

k2(2k−1)2(3k−2)2(3k−1)2

where p(k) =
(

− 289656k7 + 819558k6 − 935487k5 + 546174k4 − 167482k3 + 22839k2 +

4
(

1944k6 − 5670k5 + 6759k4 − 4221k3 + 1460k2 − 266k + 20
)

k − 220
)

. The first identity is

a generalization given in [Zha99]. Note that in this identity (−1)k occurs which cannot be
expressed in ΠΣ∗-extensions; see Remark 2.1 – nevertheless the machinery under consideration
can be adapted for this case, see Section 8. The second identity has been used in [DPSW05].

Example 2.5. For (5) we take (Q(k)(H(2))(H), σ) with σ(k) = k+1, σ(H(2)) = H(2)+ 1
(k+1)2

and σ(H) = H+ 1
k+1 , and compute the Σ-pair (−6k2

−3k−1
3k3 ,−H3

3 +(H(2)k+1)H2 −H(2)(2k+

1)H + 6H(2)k4
−6k2+3k+1
3k3 ) for f = H2H(2); see Example 6.1. This gives (5).

Example 2.6. In [Sch04b, Page 381] we needed the simplification
n
∑

k=1

k + 1

k(k + 2)
= −

n(3n+ 5)

4(n+ 1)(n + 2)
+

n
∑

k=1

1

k
. (11)

Given (Q(k), σ) with σ(k) = k + 1 , we can use any of the algorithms from [Abr75, Pau95]
to compute the Σ-pair (f ′, g) = ( 1

k
, 2k+1

2k(k+1)) for f = k+1
k(k+2) ; in Example 5.5 we will apply our

generalized method. Then summing (2) over k yields (11).

Example 2.7. In order to find the identity
∑n

j=0 jHj

(

n
j

)

= −1
2 +2n−1(1+nHn −n

∑n
j=1

1
j2j

in [PS03, Page 370] we needed the identity
n
∑

k=2

1

k(k − 1)2k
= −

1

n2n+1
+

1

4
−

1

2

n
∑

k=2

1

k2k
. (12)

Extend (Q(k), σ) with the Π-extension (Q(k)(P ), σ) where σ(P ) = 2P , and compute the
Σ-pair (− 1

2kP
, −1

(k−1)P ) for 1
(k−1)kP

; see Example 5.6. This produces (2) with f(k) = 1
(k−1)kP

,

f ′(k) = − 1
2k2k and g(k) = −1

(k−1)2k . Summing (2) over k gives (12).

Example 2.8. We find the right-hand side of

n
∑

k=1

k!
(

k2 + k + k!
(

k(k + 1)2 + k!
(

k(k + 1)2 +
(

2k2 − 1
)

k! − 3
)

− 2
)

+ 1
)

+ 1

(k!)3(k! + 1)((k + 1)k! + 1)

=
3(n+ 1)(n!)3 + (3 − 2n)(n!)2 − 2(n + 2)n! − 2

2(n!)2((n + 1)n! + 1)
+

n
∑

k=1

k(k!)3 + k! + 1

(k!)3(k! + 1)
(13)
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as follows. Take the Π-extension (Q(k)(F ), σ) with σ(F ) = (k + 1)F and represent the

summand with f =
F(k2+k+F(k(k+1)2+F(k(k+1)2+F(2k2

−1)−3)−2)+1)+1

F 3(F+1)(kF+F+1)
. Then we compute the

Σ-pair (f ′, g) = {kF 3+F+1
F 3(F+1)

,−kF 2
−F 2+k2F+kF+k2

F 2(F+1)
} for f ; the details can be found in Exam-

ples 5.1, 5.2, 5.3, 5.4, and 5.8. Reinterpreting (f ′, g) in terms of k! gives the closed form (13).

Example 2.9. Starting with the left-hand side of

n
∑

k=2

(k + 1)
(

k(k + 1)2(k + 2)H3
k + k

(

3k2 + 8k + 5
)

H2
k − (k + 2)Hk − k − 2

)

Hk

(

k(k + 1)2(k + 2)H3
k + 2 (k3 + 2k2 − 1)H2

k − (k2 + 5k + 5)Hk − 2k − 3
)

=
−6(n+ 1)(n + 2)H2

n − 6(2n + 3)Hn + 11(n + 1)(n + 2)

11Hn (2n + (n + 1)(n+ 2)Hn + 3)
+

n
∑

k=2

k(k + 1)

kHk − 1
(14)

we take the difference field (Q(k)(H), σ) from Example 2.2 and compute the Σ-pair (f ′, g) =

(k(k+1)
Hk−1 ,

k(k+1)
(Hk−1)(kH+H+1) ) for f =

(k+1)(k(k+1)2(k+2)H3+k(3k2+8k+5)H2
−(k+2)H−k−2)

H(k(k+1)2(k+2)H3+2(k3+2k2
−1)H2

−(k2+5k+5)H−2k−3)
; see Ex-

ample 5.9. This gives the right hand side of (14).

Example 2.10. We derive identity (3) as follows. Take (Q(k)(H), σ) from Example 2.2 and

compute the Σ-pair (f ′, g) =
(

− 12Hk2
−2k2

−6Hk−H
2Hk2 , kH3 − 3

2 (2k+ 1)H2 + 6kH + 3
k

+ k
Hk−1 +

1
2k2 − 6

)

for f = −kH5+H4
−kH+2

H−H2k
; see Example 3.1. This produces (3).

The following simple facts are heavily used throughout this article.

Lemma 2.1. Let (F, σ) be a difference field.

(1) If (f ′i , gi) ∈ F2 are Σ-pairs for fi ∈ F, (f ′0 + f ′1, g0 + g1) is a Σ-pair for f0 + f2.
(2) If (f ′, g) ∈ F2 is a Σ-pair for f and (φ, γ) ∈ F2 is a Σ-pair for f ′, (φ, γ + g) is one for f .

(3) Let i ∈ Z and f ∈ F. Then (f, g) is a Σ-pair for σi(f) where g =
∑i−1

j=0 σ
j(f) if i ≥ 0,

and g = −
∑

−i−1
j=0 σj+i(f) if i < 0.

Proof. (1) and (2) are obvious. Take f, f ′, g from (3). If i ≥ 0, σ(g) − g =
∑i

j=1 σ
j(h) −

∑i−1
j=0 σ

j(h) = σi(h)− h. If i < 0, σ(g)− g =
∑

−i−1
j=0 σj+i(f)−

∑

−i
j=1 σ

j+i(f) = σi(f)− f . �

3. Problem reduction

Subsequently, let (F(t), σ) be a ΠΣ∗-extension of (F, σ), K = constσF, and f ∈ F(t). By
polynomial division we get f = f0 + f1 with f0 ∈ F[t] and f1 ∈ F(t)(r) where

F(t)(r) := {
a

b
| a, b ∈ F[t] and deg(a) < deg(b)}.

In short we write f = f0 + f1 ∈ F[t]⊕ F(t)(r) and say that f0 is the polynomial part and f1 is

the fractional part. The following lemma tells us how we can continue.

Lemma 3.1. Let (F(t), σ) be a ΠΣ∗-extension of (F, σ). Let f, f ′, g ∈ F(t) and write f =
f0 + f1 ∈ F[t] ⊕ F(t)(r), f

′ = f ′0 + f ′1 ∈ F[t] ⊕ F(t)(r) and g = g0 + g1 ∈ F[t] ⊕ F(t)(r). Then

(f ′, g) is a Σ-pair for f iff (f ′0, g0) is a Σ-pair for f0 and (f ′1, g1) is a Σ-pair for f1.

Proof. For the direction from right to left follows by Lemma 2.1.1. Suppose that (f ′, g) is a Σ-
pair for f . Then

[

σ(g0)−g0+f
′

0−f0

]

+
[

σ(g1)−g1+f
′

1−f1

]

= 0. Since σ(g0)−g0+f
′

0−f0 ∈ F[t],
σ(g1)−g1+f ′1−f1 ∈ F(t)(r) and F(t) = F[t]⊕F(t)(r) is a direct sum (F[t],F(t)(r) are considered

as subspaces of F(t) over F), we have σ(gi) − gi + f ′i − fi = 0 for i ∈ {0, 1}. �
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This motivates us to consider the following problems separately.

PP: Polynomial Problem

Given f ∈ F[t]; find from all the Σ-pairs (f ′, g) ∈ F[t]2 for f a pair where deg(f ′) is minimal.

RP: Rational Problem

Given f ∈ F(t)(r); find from all the Σ-pairs (f ′, g) ∈ F(t)
2
(r) for f a pair where the degree of the

denominator of f ′ is minimal.

This explains, why we can impose simultaneously optimal degrees of p and d in problem RT.

Example 3.1. (Cont. Example 2.10) Given f from Example 2.10 we compute the polynomial
part f0 = H3 and the fractional part f1 = Hk−2

H(Hk−1) with f = f0 +f1. Denote with (f ′0, g0) the

computed Σ-pair from Example 2.3. Next, we compute a solution of problem RP, namely the
Σ-pair (f ′1, g1) = ( 1

H
, k

kH−1) for f1, see Example 5.7 (as byproduct we get
∑n

k=2
kHk−2

Hk(kHk−1) =
1

Hn
− 1 +

∑n
k=2

1
Hk

). Combining the Σ-pairs, see Lemma 2.1.1, we get the Σ-pair (f ′, g) =

(f0 + f1, g0 + g1) for f which we used in Example 2.10.

Based on the previous considerations we propose the following algorithm.

Algorithm 3.1. RefinedTelescoping((F(t), σ), f)

Input: A ΠΣ∗-extension (F(t), σ) of (F, σ) and algorithms for PP and RP; f ∈ F[t].
Output: A solution of problem RT.
(1) Split f = f0 + f1 with f0 ∈ F[t] and f1 ∈ F(t)(r) by polynomial division.

(2) Let (f ′

0, g0) ∈ F[t]2 be a solution of problem PP for f0.

(3) Let (f ′

1, g1) ∈ F(t)
2
(r) be a solution of problem RP for f1.

(4) RETURN (f ′

0 + f1, g0 + g1).

In Sections 4 and 5 we will solve problems PP and RP under the assumption that the two
subproblems PLDE and SEF can be solved. Namely, we suppose that we can deal with

Problem PLDE: Solving First order-Parameter Linear Difference Equations

Given a1, a2 ∈ F∗ and f, φ ∈ F; find g ∈ F and c ∈ K with a1 σ(g) + a2 g = f + c φ.

Moreover, we must be able to factorize a polynomial f ∈ F[t] into its irreducible factors.
Furthermore, we must be able to solve problem SEF; here we need the following definition:
we say that f, g ∈ F[t]∗ are σ-prime, in short, h⊥σf , if gcd(h, σk(f)) = 1 for all k ∈ Z.

Problem SEF: Separate Equivalent Factors

Given q ∈ F[t]∗ and an irreducible h ∈ F[t]; find mi ≥ 0 and c ∈ F[t] with

q = c
∏

i

σi(hmi), c⊥σh. (15)

The following remarks are in place: If f ∈ F[t]∗ is irreducible and m ∈ Z, then σm(f) ∈ F[t]
is irreducible. Hence, on the set of all irreducible polynomials from F[t] we get an equivalence
relation f ∼ g (the shift-equivalence) iff f 6 ⊥σg. Thus, solving problem SEF means to
separate the irreducible polynomials in q into the factors which are all shift-equivalent with
h, i.e.,

∏

i σ
i(hmi), and into the factors which are not shift-equivalent to h, i.e., c. Expanding

this refined factorization on c, i.e., collecting it into shift-equivalent classes, gives Karr’s
σ-factorization introduced in [Kar81].

Summarizing, we will obtain the following results.

Corollary 3.1. Let (F(t), σ) be a ΠΣ∗-extension of (F, σ) where one can solve problems PLDE
and SEF; let f ∈ F[t]. Then Algorithm 3.1 is applicable and the output (f ′, g) is a solution
of RT. Moreover, we have: (1) If there is a Σ-pair (φ′, γ) ∈ F × F(t) for f , then f ′ ∈ F.
(2) If there is a γ ∈ F(t) with σ(γ) − γ = f , then f ′ = 0.
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To this end, we emphasize that there are algorithms for problems PLDE and SEF if F is a
ΠΣ∗-field. For problem PLDE see [Kar81, Section 3]; a simplified version is given in [Sch05d,
Thm. 4.7] which uses results from [Bro00, Sch04a, Sch05a]. For problem SEF see [Kar81,
Thm. 9]. Hence Algorithm 3.1 can be applied for any ΠΣ∗-field (F(t), σ).

4. The Polynomial Problem

We reduce problem PP to problem PLDE. Here we consider two cases.

4.1. The Π-extension case. The solution of problem PP is immediate with Lemma 4.1; the
proof follows by coefficient comparison.

Lemma 4.1. Let (F(t), σ) be a Π-extension of (F, σ) with σ(t) = α t, and suppose that
f, f ′, g ∈ F[t] with f =

∑n
i=0 fit

i, f ′ =
∑n

i=0 f
′

it
i, and g =

∑n
i=0 git

i ∈ F[t]. Then (f ′, g) is a
Σ-pair for f iff (f ′it

i, git
i) are Σ-pairs for fit

i for all 0 ≤ i ≤ n.

Start with the Σ-pair (f ′, g) given by f ′ := f and g := 0. Then we can eliminate a monomial
fit

r 6= 0 in f ′ iff there is a gr ∈ F with σ(grt
r) − grt

r = frt
r or equivalently if

αrσ(gr) − gr = fr. (16)

Consequently, if we find such a solution gr with (16), we can adapt the Σ-pair (f ′, g) with
f ′ := f − frt

r and g := g + grt
r. In this way we can eliminate all terms of highest degree in

f ′ and get a Σ-pair (f ′, g) where deg(f ′) is minimal. Summarizing, we get

Algorithm 4.1. OptimalPolyΠExtension((F(t), σ), f)

Input: A Π-extension (F(t), σ) of (F, σ) and f =
∑

i fit
i ∈ F[t]; an algorithm for problem PLDE.

Output: A solution of problem PP.
(1) Set g := 0, f ′ := f , r := deg(f). DO

(2) If fr 6= 0 and if there is no gr with (16), STOP and RETURN (f ′, g).

(3) Otherwise, take such a gr and set g := g + grt
r and f ′ := f − frt

r. Set r := r − 1.

(4) UNTIL r = −1.

(5) RETURN (f ′, g).

Remark. If one continues the DO-loop although one fails to find a gr one removes all possible
terms in f . In this case the number of non-zero terms in f ′ is minimal.

Example 4.1. Take (Q(k)(F ), σ) from Example 2.8 and let f =
(

F 3 + (kH + 1)(kH +

2H + 1)F 2 + (k2 + k + 1)F
)

. The subproblems are (k + 1)iσ(gi) − gi = fi with f0 = 0,

f1 =
(

k2 + k + 1
)

, f2 = (kH + 1) (kH + 2H + 1), and f3 = 1. The solutions are g2 = H2,

g1 = k, and g0 = 0; there is no such g3 ∈ Q(k)(H). Hence (f ′, g) = (F 3,H2F 2 + kF ) is a
Σ-pair for f which solves PP and is optimal w.r.t. the number of terms in F .

4.2. The Σ∗-extension case. We solve problem PP by refining Karr’s algorithm. First we
bound the degree of the possible solutions; see also [Sch05a, Cor. 6].

Lemma 4.2. [Kar81, Cor. 1] Let (F(t), σ) be a ΠΣ∗-extension of (F, σ) and f ∈ F[t]∗. If
there is a g ∈ F[t] with σ(g) − g = f , then deg(g) ≤ deg(f) + 1.

Then we try to compute step by step the coefficients of the polynomial solution g =
∑b

k=0 git
i

with b := deg(f) + 1. If this fails, i.e., if there does not exist a telescoping solution, we can
extract a solution of problem PP. The following example illustrates these ideas.

Example 4.2. (Cont. Example 2.2) Take the ΠΣ∗-field (Q(k)(H), σ) with σ(k) = k+ 1 and
σ(H) = H + 1

k+1 . We look for a g ∈ Q(k)[H] such that

σ(g) − g = H4; (17)
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for convenience we set f4 := H4. Since deg(g) ≤ 5 by Lemma 4.2, we can set up the solution

as g =
∑5

i=0 giH
i with gi ∈ Q(k). By plugging in g into (17) we get by coefficient comparison

the constraint σ(g5) − g5 = 0 for the leading coefficient g5. It follows that g5 := c4 ∈ Q for a
constant c4 which is not determined yet. Using this information it remains to look for c4 ∈ Q
and

∑4
i=0 giH

i such that

σ(

4
∑

i=0

giH
i) −

4
∑

i=0

giH
i = f4 − c4 ψ4

where ψ4 := σ(H5) − H5, i.e., ψ4 = 1+5(1+k)H+10(1+k)2H2+10(1+k)3H3+5(1+k)4H4

(1+k)5
. Coefficient

comparison gives the constraint σ(g4) − g4 = 1 + c4
−5
k+1 for g4. The only possible solution is

c4 = 0 and g4 = k + c3 for a new parameter c3 ∈ Q. Thus, we have to find gi ∈ Q(k) and
c3 ∈ Q with

σ(

3
∑

i=0

giH
i) −

3
∑

i=0

giH
i = f3 − c3ψ3

where f3 := f4 − c4 ψ4 − (σ(kH3) − kH3) = −1+4(1+k)H+6(1+k)2H2+4(1+k)3H3

(1+k)3
and ψ3 :=

σ(H3) − H3 = 1+4(1+k)H+6(1+k)2H2+4(1+k)3H3

(1+k)4
. Coefficient comparison gives the constraint

σ(g3)−g3 = −4+c3
−4
k+1 . The only possible solution for g3 ∈ Q(k) and c3 ∈ Q is g3 = −4k+c2

with a new parameter c2 ∈ Q and c3 = 0. Therefore, it remains to look for gi ∈ Q(k) and
c2 ∈ Q such that

σ(
2
∑

i=0

giH
i) −

2
∑

i=0

giH
i = f2 − c2ψ2

where f2 := f3 − c3 ψ3 − (σ(−4kH3) + 4kH3) = 3+4k+4(2+5k+3k2)H+6(1+k)2(1+2k)H2

(1+k)3
and ψ2 :=

σ(H3) − H3 = 1+3(1+k)H+3(1+k)2H2

(1+k)3
. We obtain the constraint σ(g2) − g2 = 61+2k

k+1 + c2
−3
k+1 .

The solution is g2 = 12k + c1 with c1 ∈ Q and c2 = −2. To this end, we have to look for
gi ∈ Q(k) and c1 ∈ Q such that

σ(

1
∑

i=0

giH
i) −

1
∑

i=0

giH
i = f1 − c1ψ1

where f1 = f2 − c2 ψ2 − (σ(12kH2) − 12kH2) = −7−20k−12k2+(−10−46k−60k2
−24k3)H

(1+k)3
and ψ1 =

σ(H2) −H2 = 1+2(1+k)H

(1+k)2
. This time we obtain the constraint σ(g1) − g1 = −2(5+18k+12k2)

(1+k)3
+

c1
−2

(1+k)2
which does not have any solution for g1 ∈ Q(k) and c1 ∈ Q. Here Karr’s algorithm

stops with the answer: there is no g ∈ Q(k)[H] with (17). Note that there is the following

sub-result. Define γr :=
∑5

i=r giH
i for 1 ≤ r ≤ 4 by the given gr ∈ Q(k). Then

σ(γr) − γr = f − fr,

i.e., (fr, γr) is a Σ-pair for f . As it turns out (f1, γ1) solves problem PP for H4.

In general, let (F(t), σ) be a Σ∗-extension of (F, σ) with σ(t) = t + β and K := constσF.
Then we can solve problem PP for f ∈ F[t] with s := deg(f) in the following way.
We start with the trivial Σ-pair (f ′, g) with f ′ := f and g := 0. Given (f ′, g), we check
if f ′ has already the minimal degree; this will be possible by Lemma 4.3.1. If yes, we are
done. If no, Lemma 4.3.2 explains how we can construct a Σ-pair (φ′, γ) ∈ F[t]2 for f
with deg(φ) < deg(f ′). Applying this degree reduction at most s times we find a Σ-pair
(φ′, γ) ∈ F[t]2 where deg(φ′) is minimal.
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Lemma 4.3. Let (F(t), σ) be a Σ∗-extension of (F, σ) and K := constσF(t). Let (f ′, g) ∈ F[t]2

be a Σ-pair for f ∈ F[t] with s := deg(f ′) and define ψ := σ(ts+1) − ts+1. Then:

(1) If there are no w ∈ F and c ∈ K with1

σ(w) − w = coeff(f ′, s) − c coeff(ψ, s), (18)

then (f ′, g) is a Σ-pair for f where deg(f ′) is minimal.
(2) If there are w ∈ F and c ∈ K with (18), then we get the Σ-pair (φ, γ) for f with

φ := σ(w ts) − w ts + cψ − f ′, γ := g + c ts+1 +w ts (19)

where deg(ψ) < deg(f ′).

Proof. (1) Suppose there is a Σ-pair (φ, γ) ∈ F[t] with deg(φ) < s. Then σ(g− γ)− (g− γ) =
f ′ − φ with deg(f ′ − φ) = s. By Lemma 4.2 it follows that deg(g− γ) ≤ s+ 1. Consequently,
g − γ = c ts+1 +wts + v with c ∈ K, w ∈ F and v ∈ F[t] with deg(v) < s. Therefore

σ(w ts + v) − (w ts + v) = f ′ − φ− cψ.

Note that deg(ψ) ≤ s (we even have equality by Lemma 4.2). By coefficient comparison of
the leading coefficient we get (18).
(2) Conversely, suppose there are such w ∈ F and c ∈ K with (18). Then take γ := g +
c ts+1 + w ts. We have φ := f − (σ(γ) − γ) = f ′ − (σ(w ts) − w ts) − cψ with deg(φ) ≤ s.
By (18), deg(φ) < s. By construction (φ, γ) is a Σ-pair for f . �

Corollary 4.1. Let (F(t), σ) be a Σ∗-extension of (F, σ) and K := constσF(t). Let (f ′, g) ∈
F[t]2 be a Σ-pair for f ∈ F[t] with s := deg(f ′) and define ψ := σ(ts+1) − ts+1. Then (f ′, g)
is a solution of problem PP iff there are no w ∈ F and c ∈ K with (18).

Summarizing, we reduce problem PP to problem PLDE as follows.

Algorithm 4.2. OptimalPolyΣExtension((F(t), σ), f)

Input: A Σ∗-extension (F(t), σ) of (F, σ) with K := constσF, f ∈ F[t]; an algorithm for problem PLDE.
Output: A solution of problem PP.
(1) Set (f ′, g) := (f, 0).

(2) WHILE f ′ 6= 0 DO

(3) Define s := deg(f) and set ψ := σ(ts+1) − ts+1. Decide if there are w ∈ F and c ∈ K with (18).

(4) IF not, STOP and RETURN (f ′, g).

(5) Otherwise, take such a w and c, and define (φ, γ) as in (19). Set (f ′, g) := (φ, γ).

(6) OD

(7) RETURN (f ′, g)

Example 4.3. (Cont. Example 3.1) With Algorithm 4.2 we compute for f = H3 the Σ-

pairs (H3, 0),
(

− 3k2H2+6kH2+3H2+3kH+3H+1
(k+1)2

,H3k
)

,
(

6Hk2+9Hk+3k+3H+2
(k+1)2

, (H − 3)H2k
)

and
(

− 12k2+18k+5
2(k+1)2

, 1
2H(2kH2 − 6kH − 3H + 12k)

)

. Since there are no g ∈ Q(k) and c ∈ Q with

σ(g) − g = −12k2+18k+5
2(k+1)2

+ c
k+1 , the last Σ-pair solves problem PP by Corollary 4.1.

Example 4.4. (Cont. Example 4.2) The computed Σ-pairs (fr, γr) for H4 from Example 4.2
are the (f ′, g) in each iteration step. By Corollary 4.1 the output (f1, γ1) is a solution of PP.

Remark 4.1. Let (φ, γ) be a Σ-pair for f with s := deg(φ) minimal. The following remarks
are in place. (1) The coefficients of the monomials ti with i > s + 1 in γ are uniquely
determined. Namely, take any other Σ-pair (φ′, γ′) ∈ F[t]2 for f with deg(φ′) = s. Then
σ(γ−γ′)−(γ−γ′) = φ′−φ, and therefore by Lemma 4.3 it follows that γ−γ′ ≤ deg(φ′−φ)+1 ≤
s+ 1. Hence all coefficients of the monomials ti with i > s+ 1 in γ and γ′ must be equal.

1coeff(f, s) denotes the coefficient fs in
∑

i
fit

i ∈ F[t].
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(2) From Remark 4.1.1 we get the following additional consequence. If (φ′, γ′) ∈ F[t]2 is a
Σ-pair for f with deg(φ′) = s, then there is a w ∈ F[t] with deg(w) ≤ s+ 1 such that

σ(w) −w + φ′ = φ. (20)

Hence for all degree optimal φ, φ′ we have (20) for some w ∈ F[t] with deg(w) ≤ s+ 1.

E.g., with Lemma 2.1.3 in combination with Lemma 2.1.2 we can get a rather simple
transformation: we can shift the non-summable part in positive or negative direction.

Example 4.5. (Cont. Example 4.4) Take for f = H4 the already computed Σ-pair (f ′, g) =

(−12k2+20k+2H(12k3+30k2+23k+5)+7
(k+1)3 ,H2

(

kH2 − 2(2k + 1)H + 12k
)

). By Lemma 2.1.3 we get

the Σ-pair (f ′, f ′) for σ(f ′). Hence (σ−1(f ′), σ−1(f ′)) is a Σ-pair for f ′. With Lemma 2.1.1
we get the Σ-pair (σ−1(f ′), σ−1(f ′) + g) for H4 which we used in Example 2.2.

Example 4.6. (Cont. Example 4.3) Let (f ′, g) = (−12k2+18k+5
2(k+1)2

, 1
2H(2kH2 − 6kH − 3H +

12k)) be the Σ-pair for H3 from Example 4.3. Like in Example 4.5 we get the Σ-pair
(σ−1(f ′), σ−1(f ′) + g) for H3 which we used in Example 3.1.

5. The Rational Problem

Under the assumption that we can solve SEF and PLDE we reduce problem RP to prob-
lem SFP given below. The corresponding algorithms generalize the results in [Abr75, Pau95].

To accomplish this task, we proceed as follows. Write2 f = p
q
∈ F(t)(r)\{0} and let h ∈ F[t]

be an irreducible factor of q. Then solve SEF and compute mi ≥ 0 and c ∈ F[t]∗ with (15);
note that not all mi are zero.

Example 5.1. (Cont. Example 2.8) Given f = p
q

from Example 2.8 with q = F 3(F +1)(kF +

F + 1), we choose h = F and get q = F 3 c with c = (F + 1)(kF + F + 1) and c⊥σF .

Since c and
∏

i σ
i(hmi) are σ-prime, in particular co-prime, we can compute by the extended

Euclidean algorithm, see [Win96, Corollary, p. 53], polynomials a, b, c ∈ F[t] such that

f =
p

∏

i σ
i(hmi)c

=
a

∏

i σ
i(hmi)

+
b

c

where a
∏

i σi(hmi )
, b

c
∈ F(t)(r).

Example 5.2. (Cont. Example 5.1) We get f = f0 + f1 with f0 := kF 2
−F 2+k2F−F+1

F 3 and

f1 = b
c

:= k(Fk+1)
(F+1)(kF+F+1) .

Given this representation of f the following lemma tells us how to proceed.

Lemma 5.1. Let (F(t), σ) be a ΠΣ∗-extension of (F, σ), let f, f ′, g ∈ F(t)(r), and let h ∈ F[t]∗

be irreducible. Write f = f0 + f1, f
′ = f ′0 + f ′1 and g = g0 + g1 with fi, f

′

i , gi ∈ F(t)(r) and

f0 =
a

∏

i σ
i(hmi)

, f1 =
b

c
for some a, b, c ∈ F[t] with h⊥σc, mi ≥ 0, (21)

f ′0 =
a′

∏

i σ
i(hm′

i)
f ′1 =

b′

c′
for some a′, b′, c′ ∈ F[t] with h⊥σc

′, m′

i ≥ 0, (22)

g0 =
α

∏

i σ
i(hµi)

g1 =
β

γ
for some α, β, γ ∈ F[t] with h⊥σγ, µi ≥ 0. (23)

2If not stated differently, we suppose that p, q ∈ F[t], q 6= 0, and gcd(p, q) = 1, whenever we write f = p

q
;

we define den(f) = q (up to a unit in F).
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(i) Then (f ′, g) is a Σ-pair for f iff (f ′i , gi) are Σ-pairs for fi with i ∈ {0, 1}.
(ii) Let (f ′, g) be a Σ-pair for f , and (f ′i , gi) be Σ-pairs for fi with i ∈ {0, 1} where the fi, f

′

i

and gi are as above. Then (f ′, g) is a solution of problem RP for f iff (f ′1, g1) is a solution

of problem RP for f1 and deg(den(f ′0)) is minimal w.r.t. all Σ-pairs in F(t)2(r) where the

denominators are of the form
∏

i σ
i(hνi) for some νi ≥ 0 (see problem SFP).

Proof. (i) The direction from left to right follows by Lemma 2.1.1. Now suppose that (f ′, g) is
a Σ-pair for f . Then 0 = σ(g)−g+f ′−f =

[

σ(g0)−g0+f ′0−f0

]

+
[

σ(g1)−g1+f ′1−f1] = h0+h1

with hi := σ(gi) − gi + f ′i − fi. We have h0 = A
∏

i σi(hνi)
and h1 = B

C
for some νi ≥ 0, and

A,B,C ∈ F[t] with h⊥σC. Suppose that h0, h1 6= 0. Since h0 = −h1, C = u
∏

i σ
i(hνi) with

u ∈ F∗ and deg(C) > 0. A contradiction that h⊥σC. Hence h0 = 0 = h1, and therefore
(f ′i , gi) are Σ-pairs for fi with i ∈ {0, 1}.
(ii) Suppose that deg(den(f ′i)) is not minimal for some i ∈ {0, 1} as stated in the lemma.
Let j ∈ {0, 1} \ {i} and take ψ, γ ∈ F(t)(r) such that σ(γ) − γ + ψ = fi and deg(den(ψ)) <

deg(den(f ′i)). Then (ψ + f ′j, γ + gj) is a Σ-pair for f by Lemma 2.1.1. We have

deg(den(ψ+f ′j)) ≤ deg(den(ψ))+deg(den(f ′j)) < deg(den(f ′0))+deg(den(f ′1)) = deg(den(f ′)).

Conversely, suppose that deg(den(f0)) and deg(den(f1)) are minimal as stated in the lemma,

but (f ′, g) does not solve RP. Take a Σ-pair (ψ, γ) ∈ F(t)2(r) for f with deg(den(ψ)) <

deg(den(f ′)). By (i) there are ψ = ψ0 + ψ1 and γ = γ0 + γ1 such that (ψi, γi) are Σ-pairs for
fi with i ∈ {0, 1} and where we can write ψ0 = A

∏

i σi(hνi )
and ψ1 = B

C
for some νi ≥ 0, and

A,B,C ∈ F[t] with h⊥σC. Then it follows that

deg(den(ψ0)) + deg(den(ψ1)) = deg(den(ψ)) < deg(den(f ′)) = deg(den(f0)) + deg(den(f1)),

a contradiction to deg(den(f ′i)) ≤ deg(den(ψi)) for i = 0, 1. �

This gives the following reduction. Write f in the representation f = f0 + f1 with (21), see
above. Then find a Σ-pair (f ′0, g0) for f0 where the degree of the denominator of f ′0 is minimal.
More precisely, solve problem SFP for f0.

SFP: Simple Fractional Part

Given f = a
∏

i
σi(hmi ) ∈ F(t)(r) \ {0} for some a ∈ F[t] and h ∈ F[t] irreducible (not all mi are zero);

find f ′ = a′

∏

i
σi(hm′

i )
∈ F(t)(r) and g = α

∏

i σi(hµi ) ∈ F(t)(r) for some a′, α ∈ F[t] and mi, µi ∈≥ 0

with (6) where the degree of
∏

i σ
i(hm′

i) is optimal w.r.t. all Σ-pairs in F(t)
2
(r) where the denominators

are of the form
∏

i σ
i(hνi) for some νi ≥ 0.

Then continue to solve problem RP for f1; note that the degree of the denominator of f1

is reduced by deg(h)
∑

imi > 0. If f1 = 0, take the Σ-pair (0, 0). Otherwise, apply the same
reduction strategy to f1 ∈ F(t)(r) \ {0} as sketched above (for a new irreducible polynomial

h ∈ F[t] in the denominator of f1). This finally gives the solution (f ′1, g1) of problem RP for
f1. By Lemma 5.1 we get the solution (f ′0 + f ′1, g0 + g1) of problem RP for f .

Example 5.3. (Cont. Example 5.2) We solve problem SFP for f0 and get the Σ-pair (f ′0, g0) =

( 1
F 3 ,−

k2

F 2 −
k
F

); see Example 5.4. As byproduct we get
∑n

k=0

(k−1)k!2+(k2
−1)k!−1

(k!)3
= 2n!2−n!−1

n!2
+

∑n
k=1

1
k! . Next we solve problem RP for f1. As result we get the Σ-pair (f ′1, g1) = ( 1

F+1 ,
k

F+1)

for f1; see Example 5.8. This results in
∑n

k=1
k(k!k+1)

(k!+1)(kk!+k!+1) = −(n+1)n!+1
2((n+1)n!+1) +

∑n
k=1

k
1+k! .

Combining the results we get the solution (f ′, g) = (f ′0 + f ′1, g0 + g1) of problem RP for f .

Summarizing, we can reduce problem SEF to problem SFP as follows.
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Algorithm 5.1. ReduceFractionalPart((F(t), σ), f)

Input: A ΠΣ∗-extension (F(t), σ) of (F, σ) and f ∈ F(t)(r); algorithms for problems SFP, SEF.
Output: A solution of problem RP.
(1) Set g := 0 and f ′ := f . WHILE f 6= 0 DO

(2) Let f = p

q
. Take an irreducible factor h ∈ F[t]∗ of q and represent q in the form (15).

(3) By the extended Euclidean algorithm write f = f0 + f1 in the form (21).

(4) Compute a Σ-pair (f ′

0, g0) for f0 which is a solution of problem SFP.

(5) Set f := f − f0, f
′ := f ′ + f ′

0 and g := g + g0.

(6) OD

(7) RETURN (f ′, g)

To this end, we show how we can solve problem SFP. Here the following property is essential.

Lemma 5.2. Let (F(t), σ) be a ΠΣ∗-extension of (F, σ) and h ∈ F[t]∗ be irreducible. Suppose

that σ(t)
t

/∈ F or h
t
∈ F. Then gcd(σk(h), σl(h)) = 1 for all integers k, l with k 6= l.

Proof. Assume gcd(σk(h), σl(h)) 6= 1. Since σk(h), σl(h) ∈ F[t] are irreducible, σk(h)
σl(h)

∈ F.

Hence σk−l(h)
h

∈ F. By [Kar81, Thm. 4] (compare [Bro00, Cor. 1,2] or [Sch01, Thm. 2.2.4]) it

follows that σ(t)
t

∈ F and h/t ∈ F. �

Since Lemma 5.2 cannot be applied if h = t and σ(t)
t

∈ F, we do a case distinction.

5.1. A special case. Let (F(t), σ) be a Π-extension of (F, σ) with σ(t) = α t, let h = t, and
let f = a

∏n
i=1 σi(hmi )

6= 0 as in problem SFP. Then for some u ∈ F∗, n > 0 and t ∤ a we have

f =
au

tn
, 0 ≤ deg(a) < n.

Hence we can write f =
∑n

i=1 fi
1
ti

for some fi ∈ F, i.e., f ∈ F[1
t
]. Similarly, the f ′, g ∈ F(t)(r)

in problem SFP are also elements from F[1
t
]. Thus, problem SFP boils down to find a Σ-pair

(f ′, g) ∈ F[1
t
]2 for f ∈ F[1

t
] where in f ′ =

∑n′

i=0 f
′

i
1
ti

the degree n′ is minimal.

Now observe that the difference field (F(1
t
), σ) with σ(1

t
) = 1

α
1
t

is a Π-extension of (F, σ).

This is a direct consequence of [Kar81, Thm. 2]; see also [Sch05c, Prop. 4.4]. Hence in (F(1
t
), σ)

problem SFP is nothing else than problem PP handled in Subsection 4.1. In a nutshell, we
can apply Algorithm 4.1 with the function call OptimalPolyΠExtension((F(1

t
), σ), f).

Example 5.4. (Cont. Example 5.3) Given f =
(k−1)(F )2+(k2

−1)F−1

F 3 = 1
F 3 + k2

−1
F 2 + k−1

F
=

∑3
i=1 fi

1
F i we have to solve the problems 1

(k+1)iσ(gi) − gi = fi with f3 = 1, f2 = k2 − 1 and

f1 = k − 1. We get the solutions g2 = −k2, g1 = −k; there is no solution g3 ∈ Q(k). Hence

we obtain (f ′, g) = ( 1
F 3 ,

−k2

F 2 + −k
F

) for problem SFP.

5.2. The remaining cases. The solution of problem SFP can be summarized in

Theorem 5.1. Let (F(t), σ) be a ΠΣ∗-extension of (F, σ) and let h ∈ F[t] be irreducible with

h 6= t or σ(t)
t

/∈ F. Let f ∈ F(t)(r) \ {0} with den(f) =
∏

i σ
i(hmi) for some mi ≥ 0. Then:

(1) A Σ-pair (f ′, g) ∈ F(t)2(r) of f can be computed where the denominator of f ′ has the form

uσi(h)m for some u ∈ F∗, i ∈ Z and m ≥ 0. (24)

(2) A Σ-pair (f ′, g) ∈ F(t)2(r) of f solves SFP iff the denominator of f ′ is of the form (24).
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In the remaining part of the subsection we prove the theorem. Let (F(t), σ) be a ΠΣ∗-

extension of (F, σ) where either σ(t)
t

/∈ F (a Σ∗-extension) or h 6= t. Moreover, consider
f = a

∏n
i=1 σi(hmi )

with mi ≥ 0 as in problem SFP.

Proof of Theorem 5.1.1. By Lemma 5.2 all the σi(hmi) with mi 6= 0 are pairwise
coprime. Thus, we can invoke the extended Euclidean algorithm and compute polynomials
si ∈ F[t] with

f =
a

∏n
i=1 σ

i(hmi)
=

n
∑

i=0

si

σi(hmi)
(25)

where deg(si) < deg(h)mi. Equivalently, we can write

f =
∑

i

σi(fi)

with fi := σ−i(si)
hmi

. Then by Lemma 2.1.3 we can compute gi ∈ F(t)(r) with

σi(fi) = σ(gi) − gi + fi. (26)

Therefore, with (25), (26) and Lemma 2.1.1 we get a Σ-pair (f ′, g) for f defined by

f ′ :=
n
∑

i=0

σ−i(si)

hmi
and g :=

n
∑

i=0

gi with gi =

{

∑i−1
j=0 σ

j(σ−i(si)
hmi

) if i ≥ 0

−
∑

−i−1
j=0 σj+i(σ−i(si)

hmi
) if i < 0;

(27)

f ′ and g are of the required form given in problem SFP. This proves Theorem 5.1.1. �

Example 5.5. (Cont. Example 2.6) Write f = 1+k
k(k+2) = 1

2k
+ 1

2(k+1) . We apply Lemma 2.1.3

and get 1
2(k+1) = 1

2k
+ σ(g) − g with g = 1

2k
+ 1

2(k+1) = 2k+1
2k(k+1) . Hence we obtain f =

1
2k

+ 1
2k

+ σ(g) − g, and therefore ( 1
k
, 2k+1

2k(k+1) ) is a Σ-pair for f .

Example 5.6. (Cont. Example 2.7) Write f = 1
k(k−1)P = 1

(k−1)P − 1
kP

. By 1
(k−1)P =

σ( 1
(k−1)P ) + σ(g) − g with g = −1

(k−1)P we get the Σ-pair (− 1
2kP

, −1
(k−1)P ) for f .

Example 5.7. (Cont. Example 3.1) Write f = Hk−2
H(Hk−1) = 2

H
+ −1

σ−1(H)
. We have −1

σ−1(H)
=

−1
H

+ σ(g) − g with g = 1
σ1(H)

= k
kH−1 . Thus we get the Σ-pair (f ′, g) = ( 1

H
, k

kH−1) for f .

Example 5.8. (Cont. Example 5.3) Write f = k(Fk+1)
(F+1)(kF+F+1) = k(Fk+1)

(F+1)σ(F+1) = k−1
F+1 + 1

σ(F+1) .

Then σ( 1
F+1) = σ(g)− (g)+ 1

F+1 with g = 1
F+1 . Hence (f ′, g) = ( 1

F+1 ,
k

F+1) is a Σ-pair for f .

Example 5.9. (Cont. Example 2.9) Take f from Example 2.9 and split it in the form

f =
k(k + 1)2

(2k + 1)h
+

(k + 1)2(k + 2)

(2k + 3)σ(h)
+
k(k + 1)(k + 2)

(2k + 1)σ2(h)
−

(k + 1)(k + 2)(k + 3)

(2k + 3)σ3(h)
= f0+f1+f2+f3.

Then by Lemma 2.1.3 we obtain (f ′i , gi) with f ′i = fi + σ(gi) − gi where

(f ′1, g1) = (k2(k+1)
(2k+1)h ,

k2(k+1)
(2k+1)(Hk−1) , (f ′2, g2) = ( (k−2)(k−1)k

(2k−3)h ,
(k−1)k(−2k+3+H(4k2

−8k+2))
H(Hk−1)(4k2

−8k+3) )

(f ′3, g3) = (−(k−2)(k−1)k
(2k−3)h ,

−k(−4k3+8k2
−k−3−4H(4k3

−6k2
−k+2)+H2(12k5

−12k4
−21k3+12k2+7k−2))

H(8k3
−12k2

−2k+3)(k(k+1)H2
−H−1)

).

This gives the Σ-pair (f ′, g) = (f0 + f ′1 + f ′2 + f ′3, g
′

1 + g′2 + g′3) = (k(k+1)
Hk−1 ,

k(k+1)
(Hk−1)(kH+H+1) ).

With Theorem 5.1.2 it follows that all Σ-pairs from the previous examples are solutions of
problem SFP. To prove it, we need Remark 5.1 and Lemma 5.3 (compare [Bro00, Cor. 4]).

Remark 5.1. Let (f ′, g) be a Σ-pair for f which we get by (27). Then deg(den(f ′)) ≤
deg(den(f)). If mimj 6= 0 in (25) for some i 6= j, then deg(den(f ′)) < deg(den(f)).
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Lemma 5.3. Let (F(t), σ) be a ΠΣ∗-extension of (F, σ), let h ∈ F[t] be irreducible and suppose

that σ(t)
t

/∈ F or t ∤ h. Then there is no g ∈ F(t) with σ(g) − g = c
hr for c ∈ F[t]∗ and r > 0.

Proof. Suppose that there is a solution g = a
b

∈ F(t). Define d := gcd(b, σ(b)). Then
v hr = lcm(b, σ(b)) with v | d; see e.g. [Win96, Thm. 2.3.1]. Let m ∈ Z be maximal such
that σm(h) | b. Then σm+1(h) ∤ d. Hence σm+1(h) ∤ v and σm+1(h) | lcm(b, σ(b)). Thus

σm+1(h) | hr, i.e., m = −1. Now take m′ minimal with σm′

(h) | b. Then σm′

(h) ∤ d. Hence

σm′

(h) ∤ v and σm′

(h) | lcm(b, σ(b)). Thus σm′

(h) | hr, i.e., m′ = 0; a contradiction. �

Proof of Theorem 5.1.2. “⇒” Let (f ′, g) be a Σ-pair of f with den(f ′) =
∏n′

i=1 σ
i(hm′

i)
where m′

im
′

j 6= 0 for some i 6= j. By Remark 5.1 there is a Σ-pair (φ, γ) for f ′ where

deg(den(φ)) < deg(den(f ′)). Hence (φ, g + γ) is a Σ-pair for f by Lemma 2.1.2. Thus
deg(den(f ′)) is not minimal.
“⇐” Let (f ′, g) be a Σ-pair for f with f ′ = p

q
and q = σi(h)m. If m = 0, then f ′ = 0, i.e.,

nothing has to be shown. Let m > 0, and hence p 6= 0, and assume that there is a Σ-pair

(p′

q′
, g′) for f where deg(q′) is minimal and deg(q′) < deg(q). By the implication “⇒” and the

minimality of deg(q′) it follows that q′ = uσj(h)m
′

for some u ∈ F∗, j ∈ Z and m′ ≥ 0. Then
by Lemma 2.1.3 there are a ∈ F[t] and γ ∈ F(t) with σ(γ) − γ + a

σi(h)m′ = f . Hence

σ(g − γ) − (g − γ) =
a

σi(h)m
′
−

p

σi(h)m
=
aσi(h)m−m′

− p

σi(h)m
(28)

where σi(h) ∈ F[t] is irreducible. Since m′ < m, p 6= 0 and gcd(p, σi(h))) = 1, the right-hand
side of (28) is non-zero; a contradiction to Lemma 5.3. This proves Theorem 5.1.2. �

Define the dispersion of f ∈ F[t]∗ by

disp(f) = max {m ≥ 0 | gcd(σm(f), f) 6= 1}.

By Lemma 5.1.2 (Algorithm 5.1) and Theorem 5.1 we get

Corollary 5.1. Let (F(t), σ) be a ΠΣ∗-extension of (F, σ) and f ∈ F(t)(r) where t is a Σ∗-

extension or t ∤ den(f). Let (p
q
, g) ∈ F(t)2(r) be a Σ-pair for f . Then the following is equivalent:

(1) (p
q
, g) is a solution of problem RP.

(2) q = u
∏

i h
mi

i where u ∈ F∗ and where the hi ∈ F[t] are irreducible and pairwise σ-prime.
(3) disp(q) = 0.

Corollary 5.1 is a generalized version of the rational case given in [Abr75] or [Pau95, Prop. 3.3].

Remark 5.2. A solution (p
q
, g) of problem RP with q as in Corollary 5.1.2 is not uniquely

determined. More precisely, by splitting p
q

in the form f ′ =
∑

i
pi

hi
mi with pi ∈ F[t] and

deg(pi) < deg(hi)mi we can apply Lemma 2.1.3 and obtain all other Σ-pairs (φ, γ) where
den(φ) is of the form

∏

i σ
zihmi

i with zi ∈ Z.

6. Eliminating several top extensions in a sum

As shown in Corollary 3.1 we can eliminate the top extension from the non-summable part,
if possible; see Examples 2.3 and 2.4. More generally, we are interested to eliminate several
extensions, like for identity (5) or

n
∑

k=1

(

k
∑

j=1

(

n

j

)

)(

k
∑

j=1

(

n

j

)2
)

=
n+ 2

2

n
∑

j=1

(

n

j

) n
∑

j=1

(

n

j

)2

−
1

n

n
∑

k=1

(n2 − nk + k2)

(

n

k

)3

.
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Assume we have given several ΠΣ∗-extensions (F(t1) . . . (te), σ) over F with σ(ti) = ai ti + bi
where ai, bi ∈ F; in short we say that (F(t1) . . . (te), σ) is a ΠΣ∗-extension over F. Then we
are interested in the following problem.

ET: Eliminate top extensions

Given f ∈ F(t1) . . . (te); find a Σ-pair (f ′, g) ∈ F(t1) . . . (tr) × F(t1) . . . (te) for f where r is minimal,
i.e., eliminate as many extensions in f ′ as possible. In particular, choose f ′ = 0, if possible.

In particular, we are interested in the following application: Let F be a ΠΣ∗-field where
all the maximal nested sums and products are the ti’s and all less nested sums and products
are in F. Then solving ET enables one to decide constructively if there is a Σ-pair (f ′, g) for
f where f ′ is less nested than f .

Example 6.1. (Cont. Example 2.5) Given f from Example 2.5 we compute with Algo-

rithm 3.1 the Σ-pair (f2, g2) =
(6H(2)(k+1)3+3k+4

3(k+1)3 ,−1
3H(H2−3(H(2)k+1)H +3H(2)(2k+1))

)

for f . Since we managed to eliminate the extension H from the non-summable part f2, we

apply Algorithm 3.1 to f2 and get as result the Σ-pair (f1, g1) =
(

− 6k2+9k+2
3(k+1)3 , 2H(2)k

)

. Fi-

nally, we apply Algorithm 3.1 to f1 and get the Σ-pair
(

− 6k2+9k+2
3(k+1)3 , 0

)

, i.e., f1 cannot be

simplified further in the degree (of the numerator or denominator). Combining all the steps

by using Lemma 2.1.2 we obtain the Σ-pair (f1, g1+g2) = (−6k2+9k+2
3(k+1)3

,−H3

3 +(H(2)k+1)H2−

(2kH(2) +H(2))H + 2H(2)k) for f . Finally, by using Lemma 2.1.3 we change the Σ-pair for
f to (σ−1(f ′), σ−1(f ′) + g), see also Example 4.5. This result is used in Example 2.5.

As illustrated in the previous example, we can attack problem ET by running Algorithm 3.1
recursively and using Lemma 2.1.2. More precisely, we propose the following algorithm.

Algorithm 6.1. EliminateExtensions((F(t1) . . . (te), σ), f)

Input: A ΠΣ∗-extension (F(t1) . . . (te), σ) over F with e ≥ 1 where we can solve problems PLDE
and SEF for all extensions ti. f ∈ F(t1) . . . (te).
Output: A solution of problem ET.
(1) If e = 0, decide constructively, if there is a g ∈ F with σ(g) − g = f . If yes, RETURN (0, g),

otherwise RETURN (f, 0).

(2) Decide constructively, if there is a Σ-pair (f ′, g) ∈ F(t1) . . . (te−1) × F(t1) . . . (te) for f .

(3) If no, THEN RETURN (f ′, g). Otherwise, take such an (f ′, g).

(4) Compute (φ, γ) :=EliminateExtensions((F(t1) . . . (te−1), σ), f ′) and RETURN (φ, g + γ).

In order to prove the correctness of Algorithm 6.1, we need the following Lemma; see [Kar81,
Thm. 24] or [Sch01, Prop. 4.1.3].

Lemma 6.1. Let (F(t), σ) be a ΠΣ∗-extension of (F, σ). Let g ∈ F(t) with σ(g) − g ∈ F. If
σ(t)

t
∈ F, then g ∈ F. Otherwise, g = c t+ w for some c ∈ constσF and w ∈ F.

Theorem 6.1. Let (F(t1) . . . (te), σ) be a ΠΣ∗-extension over F (e ≥ 1) where one can solve
problems PLDE and SEF for all extensions ti. Then Algorithm 6.1 solves problem ET.

Proof. If e = 0, the output is correct. Now suppose that Algorithm 6.1 works correct for
e − 1 extensions with e > 1. Consider F(t1) . . . (te) with σ(ti) = aiti + bi where ai, bi ∈ F.
Let (F,G) ∈ F(t1) . . . (tr) × F(t1) . . . (te) be a Σ-pair for f where r is minimal. If r = e,
we return the correct result in step (3) by Corollary 3.1. Now suppose that r < e. Hence,
by Corollary 3.1 we can compute a Σ-pair (f ′, g) for f with f ′ ∈ F(t1) . . . (te−1) and g ∈
F(t1) . . . (te). Thus, σ(h)− (h) = f ′−F, where h := G− g ∈ F(t1) . . . (te). Note that f ′−F ∈
F(t1) . . . (te−1). Now suppose that te is a Π-extension. By Lemma 6.1, h ∈ F(t1) . . . (te−1).
Hence, (F, h) ∈ F(t1) . . . (tr) × F(t1) . . . (te−1) is a Σ-pair for f ′. Otherwise, suppose that te
is a Σ∗-extension. By Lemma 6.1, h = c t+ w for some w ∈ F(t1) . . . (te−1) and c ∈ constσF.
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Hence σ(w) − w + (F + c ae) = f ′, i.e., (F + c ae, w) ∈ F(t1) . . . (tr) × F(t1) . . . (te−1) is
a Σ-pair for f ′. By the induction assumption Algorithm 6.1 computes a Σ-pair (φ, γ) ∈
F(t1) . . . (tr) × F(t1) . . . (te−1) for f ′. By Lemma 2.1.2, (φ, γ + g) is a Σ-pair for f . �

Concerning Algorithm 6.1 the following remarks are in place:

(1) Step (2) of Algorithm 6.1 can be accomplished by Algorithm 3.1, i.e., by the function call
(f ′, g) :=RefinedTelescoping((F(t1) . . . (te), σ), f); see Example 6.1. In particular, if one
fails to eliminate the extension te from f ′, one obtains a Σ-pair (f ′, g) where the degrees in
te are optimal. Hence we can combine problems RT and ET.

(2) We can improve the computation in step (2): Since we only have to eliminate the exten-
sion te, if possible, but we do not have to decide, if f ′ = 0 is possible, we can avoid unneces-
sary computations in Algorithm 3.1. More precisely, in Sub-algorithm 4.1 we can quit the
do-loop when r = 0; in Sub-algorithm 4.2 we can quit the while-loop when deg(f ′) = 0.

(3) The proposed algorithm might fail to find a sum extension where the depth is optimal.
E.g., starting with the left-hand side of (29) we find the first simplification in

n
∑

j=1

j
∑

k=1

Hk

k2
= n

n
∑

k=1

Hk

k2
−

j
∑

k=1

Hk(k + 1)

k2
= n

n
∑

k=1

Hk

k2
−
(

n
∑

k=1

Hk

k2
+

1

2

(

H2
n +H(2)

n

)

)

. (29)

But our algorithm fails to find H
(2)
n in order to simplify

∑j
k=1

Hk(k+1)
k2 further. Here we

would need in addition the sum
∑j

k=1
Hk(k+1)

k2 which we dropped in the reduction; see
step (4) in Algorithm 6.1. In [Sch04c, Sch05b] this problem can be handled properly by
using a rather complicated machinery.

7. Simplification of Σ∗-extensions

By [Kar81] there is the following result concerning the construction of Σ∗-extensions.

Theorem 7.1. Let (F(t), σ) be a difference field extension of (F, σ) with σ(t) = t+ f where
f ∈ F. Then this is a Σ∗-extension iff there is no g ∈ F with σ(g) − g = f .

This result provides a constructive theory to represent sums, like

S(n) =
n
∑

k=1

f(k),

in ΠΣ∗-fields. More precisely, suppose that f(k) can be written in a ΠΣ∗-field, say (F, σ) with
f ∈ F; for typical examples see Section 2. Two cases can occur: (1) One finds a g ∈ F with
σ(g)−g = f . Then reconstruct from g a sequence g(k) with g(k+1)−g(k) = f(k) and derive,
with some mild extra-conditions, the closed form S(n) = g(n + 1) − g(1). In particular, the
sum S(n) can be expressed by t := σ(g) + c ∈ F for some c ∈ K (c = g(1)) with

σ(t) = t+ σ(f); (30)

this reflects the shift behavior S(n+ 1) = S(n) + f(n+ 1).
(2) One shows that there is no g ∈ F with σ(g) − g = f . Then by Theorem 7.1 adjoin the
sum S(n) formally in form of the Σ∗-extension (F(t), σ) with (30).

Our refined telescoping methods enable one to construct refined Σ∗-extensions. In general,
suppose there is no g ∈ F with σ(g)− g = f and let (f ′, g) be any Σ-pair for f . Then there is
no h ∈ F with σ(h) − h = f ′; otherwise, we would have σ(g + h)− (g + h) = f for g + h ∈ F.
Hence, by Theorem 7.1 we can construct the Σ∗-extension (F(s), σ) with σ(s) = s + σ(f ′).
Moreover, for T := s + σ(g) + c with some c ∈ K we have σ(T ) = σ(s) + σ2(g) + c =
s+ σ(f ′) + σ2(g) + c = s+ σ(g) + c+ σ(f) = T + σ(f), i.e., σ(T ) = T + σ(f). Thus, we can
represent S(n) by T ∈ F(s).
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Remark. Note that the Σ∗-extensions (F(t), σ) and (F(s), σ) from above are isomorphic
by the difference field isomorphism τ : F(t) → F(s) with τ(f) = f for all f ∈ F and τ(t) =
s+ σ(g) + d; d ∈ K is arbitrary, but fixed.

Summarizing, if we compute the Σ-pair (f ′, g) with Algorithms 3.1 or 6.1 we can get better
Σ∗-extensions to represent the sum S(n).

Example 7.1. (Cont. Example 2.6) Since there is no g ∈ Q(k) with σ(g) − g = f for f =
k+1

k(k+2) , we can construct the Σ∗-extension Q(k)(t) with σ(t) = t+ k+2
(k+1)(k+3) and can represent

the sum S(n) =
∑n

k=1
k2+1

k(k+1)(k+2) by t. Given the Σ-pair ( 1
k
, 2k+1

2k(k+1)) from Example 2.6, we

can represent the sum S(n) with T := H + 2k+3
2(k+1)(k+2) in the Σ∗-extension (Q(k)(H), σ) with

σ(H) = H + 1
k+1 . We get the difference field isomorphism τ : Q(k)(t) → Q(k)(H) given by

τ(t) = H + 6k+2
2(k+1)(k+2) −

7
4 . This is exactly reflected by the identity (11).

8. Conclusion

We developed algorithms that can express a given sum in terms of a sum
∑

f ′(k) where
f ′(k) is degree-optimal.

Here we restricted so far to the domain of ΠΣ∗-fields. More generally, one can apply the
underlying reductions also to difference rings, see Example 2.4. Here further investigations
are necessary, in particular, one needs more general algorithms for problems PLDE and SEF;
some first steps can be found in [Sch01]. Note that our algorithms can be applied for more
general difference fields described in [KS06b, KS06a]

Carrying over Paule’s greatest factorial factorization [Pau95] (the discrete analogue of
greatest squarefree factorization) to the ΠΣ∗-case might give further theoretical insight to
our algorithmic results. Some steps in this direction can be found in [PR97, BP99].

Following [Pir95] one might refine our algorithms further: given f(k), find f ′(k) and g(k)
with (2) where among all the degree optimal f ′(k) also g(k) is “optimal”; see Remarks 4.1
and 5.2. Special cases have been considered in [AP02, ALP03] for the hypergeometric case.

We presented a simple algorithm in Section 6 that computes, if possible, a summand f ′(k)
which is less nested than f(k). More general, but also more complicated, algorithms have been
proposed in [Sch04c, Sch05b] which find depth-optimal f ′(k), see e.g. identity (29). Using
results from this article might simplify these general algorithms.
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