
On a Conjectured Inequality for a Sum of

Legendre Polynomials

Stefan Gerhold∗

sgerhold@fam.tuwien.ac.at
Christian Doppler Laboratory for Portfolio Risk Management

Vienna University of Technology

Manuel Kauers∗

mkauers@risc.uni-linz.ac.at
Research Institute for Symbolic Computation (RISC)

Johannes Kepler University
Altenbergerstr. 69, 4040 Linz, Austria

Joachim Schöberl∗
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1 Introduction

When working on a new convergence proof for a certain higher order finite
element scheme, J. Schöberl was led to conjecture that the inequality

n
∑

j=0

(4j + 1)(2n − 2j + 1)P2j(0)P2j(x) ≥ 0 (1)

holds for −1 ≤ x ≤ 1 and n ≥ 0, where Pk(x) denotes the k-th Legendre
polynomial. In this note we show that the inequality holds in certain neigh-
borhoods (whose size decreases with n) of −1, 0, and 1, and give some asymp-
totic/numerical evidence concerning its validity on the whole interval.
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Foundation FWF under SFB F013 grant number F1305 and under grant number P16613-N12.
J. Schöberl was supported by the Austrian Science Foundation FWF under SFB F013 grant
number F1306.
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Let us mention two standard techniques for proving inequalities of this kind
that do not work here (at least not directly). First, there is the Dirichlet-Mehler
formula [1]

Pn(cos θ) =
2

π

∫ π

θ

sin(n + 1/2)φ

(2 cos θ − 2 cosφ)1/2
dφ,

which can be used to prove Fejér’s inequality
∑n

j=0 Pj(x) ≥ 0. Namely, after
exchanging summation and integration the resulting sum can be done in closed
form and is obviously positive. This approach does not work for our sum, since
it does not lead to a positive integrand.

Second, Gasper [4] has shown that there is a non-negative function κ(x, y, t)
such that

Pn(x)Pn(y) =

∫ 1

−1

κ(x, y, t)Pn(t)dt.

Therefore, if the sum in (1) with the factor P2j(0) removed was non-negative
(it is not), then it would follow that the sum itself is non-negative (even with
P2j(y) instead of P2j(0)).

In the following section we outline the background where the conjectured
inequality (1) popped up. In Section 3 we show that the inequality (1) holds
for x = 0 and for x = ±1. Then, by continuity, the inequality has to hold
if x is sufficiently close to these points. Precise statements of this kind follow
from results about the behaviour of the Legendre polynomials near x = 0 and
x = ±1. In Section 4 we derive a linear recurrence equation for the sum in (1)
by symbolic summation. This recurrence, while interesting in its own right, is
the basis for the investigations in Section 5. From the recurrence we compute
a differential equation that is satisfied by the generating function of our sum.
Unfortunately, it does not seem to admit of a closed form solution. The Fuchs-
Frobenius theory about singularities of differential equations allows to extract
some information on the asymptotics of the generating function and the sum
itself. We show that there is a function of x that is a lower envelope for our
sum as n tends to infinity. However, we do not know yet whether this envelope
is positive.

2 Motivation

We want to define a family of functions fp which act as point evaluation func-
tionals on polynomials, i.e.,

∫ 1

−1

fp(x)v(x) dx = v(0) ∀ polynomials v up to order p. (2)

As p increases, the functions fp converge to the δ point evaluation distribution.
We want to find functions fp whose Lebesgue norms satisfy

‖fp‖L1
≤ C

and
‖fp‖L∞

≤ Cp,

where C is a constant independent of p. In addition, we want the functions
fp to be polynomials themself. If we restrict the order of fp to p, then the
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function is uniquely defined by (2). We call this candidate fp
p . If we expand it

in Legendre-polynomials, i.e.,

fp
p (x) =

p
∑

i=0

αiPi(x),

the coefficients evaluate to

αi =
Pi(0)

‖Pi‖2
L2(−1,1)

=
2i + 1

2
Pi(0).

But, unfortunately, this simple function does not seem to fulfill uniform bounds
in the L1-norm. This is indicated by numerical computations.

An approach similar to the de la Vallée-Poussin sums for trigonometric func-
tions, see [2], page 273 is to take the sliding averages

fp :=
1

p

2p−1
∑

k=p

fp
p (3)

This is a polynomial of order 2p − 1, and it satisfies (2) for polynomials up to
order p. An alternative notation is

fp =
1

p

2p−1
∑

k=0

fp
p − 1

p

p−1
∑

k=0

fp
p . (4)

By defining

Sp :=
1

p

p−1
∑

k=0

fp
p ,

we can write
fp := 2S2p − Sp.

We will prove that the L1-norms of the polynomials Sp are uniformely bounded
by a constant C. Then the triangle inequality allows to bound the L1 norms of
fp by 3C.

First, observe that choosing v = 1 in (2) implies that
∫ 1

−1

Sp(x) dx = 1

If we can show that Sp ≥ 0 on the whole interval [−1, 1], then we can conclude
that

∫ 1

−1

|Sp(x)| dx =

∫ 1

−1

Sp(x) dx = 1.

Reordering the sums in Sp leads to

Sp =
1

p

p−1
∑

k=0

k
∑

i=0

2i + 1

2
Pi(0)Pi(x)

=
1

2p

p−1
∑

i=0

p−1
∑

k=i

2i + 1

2
Pi(0)Pi(x)

=
1

2p

p−1
∑

i=0

(p − 1 − i)(2i + 1)Pi(0)Pi(x).
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By noting that Pi(0) = 0 for i odd, it is now easy to see that Sp ≥ 0 is
equivalent to (1).

3 The Special Cases x = 0,−1, 1

Let fn = fn(x) denote the sum in (1). Figure 1 illustrates the oscillatory
behaviour of fn(x). It is clear that fn(x) = fn(−x), since P2j(x) = P2j(−x).
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Figure 1: The function f25(x)

We will frequently make use of the value

P2j(0) =
(−1)j

4j

(

2j

j

)

∼ (−1)j

√
πj

of the Legendre polynomials at x = 0. At x = 0, the inequality holds trivially,
since we are summing positive terms. For x close to zero, the summands are
still positive. Indeed, if x = cos θj denotes the smallest positive root of P2j(x),
then θj ≤ jπ/(2j + 1) [9, Theorem 6.21.3]. Hence

P2j(cos θ) 6= 0 for
jπ

2j + 1
≤ θ ≤ π

2
.

This shows that (−1)jP2j(cos θ) > 0 in this range.

Proposition 1. The inequality (1) holds for |θ − π/2| < π/(4n + 2), where

x = cos θ.

We proceed to investigate the behaviour of fn(x) near x = 1. Write p(n, j) :=
(4j +1)(2n−2j+1). A straightforward application of Zeilberger’s algorithm [8]
shows that

n
∑

j=0

(p(n, j) − 1)P2j(0) = 0, n ≥ 0.

Thus, since P2j(1) = 1,

lim
n→∞

fn(1) =

∞
∑

j=0

(

−1

4

)j (

2j

j

)

=
1√

1 − 4z

∣

∣

∣

∣

z=−1/4

=
1√
2
,
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and fn(1) ≥ 1
2 for all n ≥ 0. The latter observation will be used in the proof

of the following result, where we show that positivity of fn(x) at x = 1 can be
extended to the left by an asymptotic property of the Legendre polynomials.

Proposition 2. The inequality (1) holds for 0 ≤ θ ≤ n−5/4, where x = cos θ.

Proof. Let us assume, more generally, that 0 ≤ θ ≤ cn−α for some positive
constants c and α. By an estimate due to Gatteschi [9], we have, provided that
0 ≤ θ ≤ π/(4n),

P2n(cos θ) = (θ/ sin θ)1/2J0((2n + 1
2 )θ) + e3

=: (1 + e1)(1 − e2) + e3,

where
|e3| < 9

100θ2.

From the alternating series for sin and the Bessel function J0 it is easy to derive
the bounds

0 ≤ e1 ≤ 1
10θ2 and 0 ≤ e2 ≤ 1

4 (2n + 1
2 )2θ2.

Upon putting

M := max
( c2

10n2α
+

9c2

100n2α
,

c2

4n2α
(2n + 1

2 )2 +
9c2

100n2α
+

c4

40n4α
(2n + 1

2 )2
)

,

it is therefore clear that

fn(cos θ) = fn(1) · (1 + e1 − e2 + e3 − e1e2)

is positive for n ≥ n0 if n0 is such that both cn−α ≤ π/(4n) and M < 1 hold for
n ≥ n0. The assertion of the proposition follows by setting c = 1 and α = 5

4 .

4 Linear Recurrence Equation

The sum fn(x) satisfies a linear recurrence relation (w.r.t. n), which can be
computed by the SumCracker package [6]. Applying the LinearRecurrence

command of that package to the representation

fn(x) = 2n

n
∑

j=0

(4j + 1)P2j(0)P2j(x) +

n
∑

j=0

(4j + 1)(1 − 2j)P2j(0)P2j(x),

the package delivers the recurrence equation

− (2n + 3)2(4n + 11)
(

16x2n2 − 16n2 + 88x2n − 88n + 117x2 − 118
)

fn(x)

+ p(n, x)fn+1(x)

+
(

48x2n2 − 16n2 + 216x2n − 72n + 243x2 − 90 − p(n, x)
)

fn+2(x)

4(4n + 7)(n + 3)2
(

16x2n2 − 16n2 + 56x2n − 56n + 45x2 − 46
)

fn+3(x) = 0,
(5)
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where

p(n, x) =
(

−1024x4 + 1792x2 − 768
)

n5 +
(

−11520x4 + 20160x2 − 8640
)

n4

−
(

50560x4 − 88592x2 + 38016
)

n3 −
(

108000x4 − 189780x2 + 81656
)

n2

+
(

−112036x4 + 197880x2 − 85536
)

n − 45045x4 + 80244x2 − 34956.

Alternatively, a recurrence equation for fn can be obtained by the MultiSum

package [10], but this leads in the present case to a recurrence of order 4 with
even uglier polynomials as coefficients.

5 Asymptotics via the Generating Function

Let F (z) :=
∑

n≥0 fnzn denote the generating function of fn (we frequently
suppress the parameter x). Since the absolute value of the Legendre polynomi-
als is at most one in the unit interval, the function F (z) is analytic in |z| < 1 (for
all x ∈ [−1, 1]). We will determine the singularities of F (z) and its asymptotic
behaviour near them, from which we can deduce asymptotic information on fn.
From the recurrence (5) we can compute a fifth order linear ordinary differen-
tial equation with polynomial coefficients for F (z), by means of C. Mallinger’s
GeneratingFunctions package [7]. The singularities of the equation are the
roots of its leading coefficient. From now on we assume that x /∈ {−1, 0, 1}.
Then the singularities of the equation are z = 1, ρ, ρ̄, where

ρ = ρ(x) := 1 − 2x2 + 2 i|x|
√

1 − x2.

These three numbers, which lie on the unit circle, are candidates for singularities
of F (z). We continue our investigations by appealing to the Fuchs-Frobenius
theory [5]. Consider first z = 1. There the indicial equation has the solutions
−1, 0, 1, 2, 3, hence F (z) is of the form

F (z) =
K

1 − z
log

1

1 − z
+

A

1 − z
+ L log

1

1 − z
+ O((1 − z) log

1

1 − z
) (6)

as z → 1, for some complex coefficients K, A, L. As we will see below, the
explicit representation of F (z) allows to show that limz→1(1 − z)F (z) exists,
which implies that the coefficient of (1 − z)−1 log(1 − z)−1 in (6) must vanish.

The other two singularities ρ, ρ̄ can be analyzed completely analogously (the
roots of the indicial polynomials are the same). Summing up, there are complex
numbers A = A(x), B = B(x), C = C(x) s.t.

F (z) =
A

1 − z
+

B

ρ − z
+

C

ρ̄ − z
+ g(z), |z| < 1,

where the function g(z) is analytic inside the unit circle, has no singularities on
the circle except 1, ρ, ρ̄, and is of at most logarithmic growth at these points:

g(z) = O(log
1

z0 − z
), z → z0, z0 ∈ {1, ρ, ρ̄}.

Letting z tend to one in the reals, we find that A is real. The binomial theorem
and Flajolet and Odlyzko’s singularity analysis [3] yield

fn = A + Bρ−n−1 + B̄ρ̄−n−1 + O(
log n

n
). (7)

6



Here we have already used the fact that C = B̄ (otherwise fn could not be real).
Our sequence fn thus equals

fn = A + 2|B| sin(2nπθ + ϕ) + O(
log n

n
)

for some real numbers θ = θ(x), ϕ = ϕ(x). Thus, the functions A(x) − 2|B(x)|
and A(x)+2|B(x)| are, asymptotically, a lower and an upper envelope for fn(x),
respectively (cf. Figure 2). They can be determined by Abel’s limit theorem:

0.2 0.4 0.6 0.8
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8
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Figure 2: The function f25(x) and approximations of the two envelopes A(x) ±
2|B(x)|

(ρ − 1)(ρ̄ − 1)A = lim
z→1

(1 − z)(ρ − z)(ρ̄ − z)F (z) (8)

= lim
z→1

(1 − z)(1 + (4x2 − 2)z + z2)F (z)

= lim
z→1

(

∑

n≥0

anzn + q(z, x)
)

=
∑

n≥0

an + q(1, x), (9)

where q(z, x) is the polynomial

q(z, x) := 1 + 1
4 (5 + x2)z + 1

64 (17 + 22x2 − 15x4)z2,

and the sums inside the coefficient an cancel:

an = an(x) :=fn+3 + (4x2 − 3)fn+2 + (3 − 4x2)fn+1 − fn

=UnP2n(0)
(

Vn(x)P2n(x) + Wn(x)P2n+1(x)
)

,

where

Un :=
(2n + 1)

64(n + 1)2(n + 2)2(n + 3)2
,

Vn(x) := (2n + 1)
(

(8n2 + 36n + 45) + 2(24n3 + 134n2 + 252n + 153)x2

− (4n + 5)(4n + 7)(4n + 9)x4
)

,

Wn(x) := (2n + 1)2(8n2 + 36n + 45)x − 2(4n + 5)(32n3 + 160n2 + 256n + 117)x3

+ (4n + 3)(4n + 5)(4n + 7)(4n + 9)x5.
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Since an = O(n−3/2) for all x, the sum in (9) is convergent. Note that Abel’s
limit theorem would not be applicable without the factor (ρ − z)(ρ̄ − z) in (8),
as the resulting sum would not converge at z = 1. Since (ρ − 1)(ρ̄ − 1) = 4x2,
we arrive at

A(x) =
1

4x2





∑

n≥0

an(x) + 1
64 (161 + 38x2 − 15x4)



 . (10)

Similarly, we obtain

|B(x)| =
1

8x2
√

1 − x2

∣

∣

∣

∣

∣

∣

∑

n≥0

an(x)ρ(x)n + q(ρ(x), x)

∣

∣

∣

∣

∣

∣

. (11)

We have thus found two sequences of explicitly given functions that converge
to A and |B|, respectively. The series

∑

n≥3 an(x) converges absolutely and
uniformly in [−1, 1], hence A(x) and |B(x)| are continuous in ]0, 1[. The limit
of A(x) at one can be evaluated by Mathematica, after exchanging limit and
summation:

lim
x→1−

A(x) =
1

4





∑

n≥0

an(1) + q(1, 1)



 =
1√
2
.

Observe that this equals limn→∞ fn(1). According to numerical evidence, B(x)
seems to tend to 0 as x → 1.

The behaviour of A(x) at x = 0 is

A(x) ∼ 2

πx2
as x → 0,

which follows from
∑

n≥0

an(0) + q(1, 0) =
8

π
.

This was again obtained with Mathematica. Using limx→0 ρ(x) = 1, the analo-
gous calculation for B yields

|B(x)| ∼ 1

πx2
as x → 0.

Hence the upper envelope A + 2|B| is unbounded near zero. As for the lower
envelope A − 2|B|, we so far only know that it is o(1/x2). Numerical evidence
suggests that it is in fact continuous at zero. One difficulty in obtaining the lower
order terms is that we do not know whether the termwise differentiated series
∑

dan(x)/dx converges. We summarize our results in the following theorem.
By symmetry, it suffices to formulate it for positive x.

Theorem 3. There are real functions A(x), θ(x), and ϕ(x), and a complex

function B(x), all defined on ]0, 1[, such that for all x ∈ ]0, 1[

fn = A + 2|B| sin(2nπθ + ϕ) + O(
log n

n
), n → ∞.

In particular,

A − 2|B| ≤ fn + O(
log n

n
) ≤ A + 2|B|.
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Formulas (10) and (11) give series of functions that converge to A and B,

respectively. The upper envelope A + 2|B| is asymptotically equal to 4/(πx2) as

x → 0.

6 Outlook

If we could show that the lower envelope A(x) − 2|B(x)| is larger than some
positive constant for all x ∈ ]0, 1[, then it would follow that for all x ∈ ]0, 1[
we have fn(x) > 0 for large n. This could serve as an achievable first goal. A
natural way to proceed is to truncate the sums in (10) and (11) at some N ,
say N = 20. Without taking the cancellation of the dominant terms of A and
−2|B| near zero into account, bounds for the tails of A and |B| are easily derived.
(However, these bounds get bad as x approaches zero or one.) Then it remains
to show that the truncated version of A − 2|B| is large enough so that the tail
cannot make A − 2|B| negative. This will probably work for x ∈ [0.1, 0.9], say,
but in order to establish the positivity of A − 2|B| for all x ∈ ]0, 1[ we need
more information on the asymptotics of A and |B| at zero and one, including
effective error estimates.

But we should actually try to prove the stronger assertion that there is n0

such that fn(x) > 0 for n ≥ n0 and −1 ≤ x ≤ 1. With our approach, this would
hinge on an effective estimate for the error term in (7). If we can find such n0

and it is not too large, the values n ≤ n0 can be easily checked by computer
algebra, of course.

Finally we mention a completely different way to tackle such problems. A
method that has been used to prove non-trivial inequalities of this kind before [1]
is to apply transformations to the sum that reveal its positivity, for instance by
expressing it as a sum of squares of special functions. This should certainly be
tried on this example, too, both on fn(x) directly and on the lower envelope
A(x) − 2|B(x)|.
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