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Abstract

There are basically two approaches to solve optimal design problems with a partial
differential equation, usually called the state equation, as a constraint. The usual pro-
cedure is to eliminate the state variables and the state equation and only optimize in
the design space. Another possibility is to keep the state equation and to treat it as a
constraint throughout the optimization progress. This formulation is called simultaneous
or one-shot optimization. Then, in order to satisfy the optimality conditions, large scale
indefinite linear systems (KKT-systems) have to be solved. This is the drawback, or bet-
ter the challenge, of this alternative approach. If it is possible to construct an optimal
solver to this KKT-systems, we can benefit from the expected speed-up of the one-shot
formulation.

In this work we consider a multigrid based solver to such a KKT-system, resulting
from stress constrained topology optimization. As a proper smoothing procedure we use
a multiplicative Schwarz-type smoother. Here, in each iteration step of the smoother,
several small local saddle-point problems are solved. The numerical test examples show
the typical multigrid convergence behaviour, i.e. asymptotic constant number of iterations
and convergence rates.

Keywords: KKT-system, Multigrid methods, Schwarz-type smoother.
AMS Subject Classification: 49M15, 49K20, 65F10, 65M55, 65N55.

1 Introduction

In this work we will consider a topology optimization problem with local stress constraints as
a starting point for a derivation of a KKT-system. Treating topology optimization problems
with local stress constraints usually results in a large scale optimization problem with a large
number of constraints, e.g. two local stress constraints per finite element after discretization.
Moreover, the design domain (i.e. the feasible set defined by the constraints) may be noncon-
vex (even nonconnected) and contain degenerated appendices with lower measure. (Global)
optima are very likely to be located in this lower dimensional regions (cf. Rozvany [14]),
where constraint qualifications are lacking. In literature, this effect is often called the sin-
gularity problem. To overcome this difficulty we consider a reformulation of the given stress
constraints, similar to Stolpe and Svanberg [17], which results in an even higher number
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of constraints and unknowns. Over the last two decades interior-point methods turned out to
be efficient optimization methods for solving large-scale nonlinear optimization problems (cf.
Subsection 2.1). Most of the computing time is actually spent in the solution of linear sys-
tems arising from the linearization of the primal-dual optimality equations. These optimality
conditions lead to large scale KKT-systems, like

(

A BT

B 0

)(

△x

△y

)

=

(

f

g

)

(1)

For this system we have to ensure that A is positive definite on the null space of the matrix
B. It might also happen that BT does not have full rank, as a consequence the system matrix
in (1) is singular. Thus, it might be necessary to modify the matrix in the following way to
sustain regularity:

(

A + δ1I BT

B −δ2I

)(

△x

△y

)

=

(

f

g

)

,

with some small δ1, δ2 ≥ 0 (see also Section 5).
Multigrid methods certainly belong to the most efficient methods for solving large-scale

systems, arising from discretized systems of partial differential equations of elliptic type.
While the construction of such methods for symmetric and positive definite systems is quite
standard, this is not the case for saddle point problems like (1). A successful construction of
a solver with optimal complexity for linear systems like (1) would yield a significant speedup
for an interior-point method, because these systems have to be solved in each iteration of an
interior-point method. One of the most important ingredients of an efficient multigrid method
is an appropriate smoother, i.e. a simple iterative smoothing procedure (cf. Subsection 2.2).
In this chapter we consider a multiplicative Schwarz-type iteration method as a smoother
in a multigrid method. Each iteration step of such a multiplicative Schwarz-type smoother
consists of the solution of several small local saddle point problems, i.e. small local version of
the problem (1).

In the next section we will give a brief introduction to interior-point methods, multigrid
methods, and the stress constrained topology optimization problem, which optimality condi-
tions we are going to solve. In the following section, we will deduce a saddle point problem
from the primal-dual optimality conditions for the optimization problem presented in the
previous chapter. More information about the used kind of smoother will be given in Section
4. Finally, in Section 5 we will present some numerical experiments from the application of a
multigrid method with the mentioned smoother to the derived saddle point problem.

2 Basics

2.1 Interior–Point Methods

In the last two decades interior–point algorithms have evolved to efficient methods for large
scale nonlinear programming since their revival in 1984. For a survey see e.g. the related
chapters in Nocedal and Wright [13] and Wright [20] and the references therein.

The rediscovery of interior–point methods is rooted in the desire to find algorithms with a
better complexity than the simplex method for linear programming by Dantzig in 1947. Since
then, the simplex method dominated the field of linear programming, although its worst-case
complexity is exponential in the size of the problem dimension. After Karmakar’s announce-
ment in 1984 of the projective algorithm, a polynomial-time method for linear programs,
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interior–point methods have been subject of intense research. In principle there are two ways
to motivate these methods nowadays, namely minimizing a barrier function or perturbing the
optimality conditions.

For a short introduction we consider the following general optimization problem:

J(x) → min
x∈Rn

subject to ci(x) = 0, i ∈ E ,

ci(x) ≤ 0, i ∈ I.

(2)

where all appearing functions should be sufficiently differentiable. For the sake of simplified
notation we will denote cI(x) as (ci(x))i∈I and cE (x) as (ci(x))i∈E . This problem is then
modified such that the restricting inequality constraints are treated implicitly by adding
them to the objective functional using some barrier term. The predominant barrier function
is the logarithmic barrier function and so the new barrier objective Jµ(x) := J(x) + Bµ(x) is
now the sum of the original one and a logarithmic interior part:

J(x) − µ
∑

i∈I

ln
(

− ci(x)
)

→ min
x∈Rn

subject to cE (x) = 0,

(3)

where µ > 0 is called the barrier parameter. A major characteristic of these methods is that
all inequality constraints are (have to be) satisfied strictly, which leads to the nomenclature
interior-point methods. Minimization of (3) for a decreasing sequence of the barrier parameter
µ → 0 will result (under appropriate assumptions) in a sequence of minimizers xµ → x0 = x

converging to the minimizer x of the original problem (2). The sequence xµ also defines a
path to x, which is either called the central path or the barrier trajectory. The central path is
a path of strictly feasible points that satisfy the perturbed complementarity conditions, see
below. It is the essential idea of most interior–point methods to follow this path numerically
more or less exactly.

Using the following notation we state the first order necessary optimality conditions for (3):
CI(x) = diag(ci(x), i ∈ I), λE the vector of Lagrange multipliers for the equality constraints
and e a vector of ones in the appropriate dimension:

∇J(x) + µ∇cI(x)T CI(x)−1e + ∇cE (x)TλE = 0,

cE (x) = 0.
(4)

Usually Newton’s method is used to solve (4) and to find minimizers x. Unfortunately, the
poor-scaling of the objective Jµ(x) becomes worse as µ → 0. The extreme behavior of the
barrier function close to the boundary of the feasible set translates to ill-conditioning in the
barrier Hessian ∇2

xBµ(x). As a consequence the quadratic Taylor series approximation, on
which Newton-like methods are based, does not reflect the behavior of the original function
except in a small neighbourhood of x. This fact was one of the major motivations for the
downfall of barrier methods before 1984, since it may cause poor numerical performance of
unconstrained optimization methods (E = ∅). Fortunately Newton’s method (in a carefully
implemented algorithm, see Forsgren, Gill, and Wright [7]) can be made insensitive to
this poor scaling.

The true reason for the inefficiency of classical barrier methods is another. Unfortunately,
it is often not possible to take a full Newton step, because this step would move the current
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iterate out of the feasible region, especially when the current iterate is very close to a minimizer
of Bµ(x) with a fixed µ. Suppose the current iterate is the minimizer xµ of (3) with a fixed µ
and the barrier parameter µ is now reduced to µ̂ with µ > µ̂. If the ratio µ/µ̂ exceeds a certain
factor and the next Newton step is computed with respect to the new barrier parameter µ̂, a
full Newton step will move the iterate to a significant infeasible point.

There are several remedies to overcome these poor steps that occur after a reduction of
the barrier parameter, but the best one is to use primal-dual interior methods. In primal-dual
methods we treat the primal variables and the dual variables (the Lagrangian multipliers
of the problem) independently. In this spirit we now create an independent variable λI of
multipliers for the inequality constraints from the relation λI = −µCI(x)−1e. Furthermore,
if we consider λ = (λI ,λE) and c(x) = (cI(x), cE (x)), we can rewrite (4) as a system in the
primal variables x and the dual variables λ:

∇J(x) + ∇c(x)Tλ = 0, (5a)

CI(x)λI + µe = 0, (5b)

cE (x) = 0. (5c)

The second equation (5b) can be interpreted as the perturbed complementarity condition for
the inequality constraints in the KKT conditions for (2). The success of primal–dual methods
is now partly due to their effectiveness at following the central path, especially in steps where
the barrier parameter is reduced.

The left-hand-side of (5) defines a function Fµ(x,λ). Instead of minimizing (3) for µ → 0,
we look for solutions of Fµ(x,λ) = 0 for µ → 0. For a fixed µ (5) can be solved, e.g., using a
modified Newton-type method such that x and λI fulfill the inequality constraints cI(x) ≤ 0
and λI ≥ 0 strictly. The Newton direction (△x,△λ) of such a method is defined as the
solution of ∇Fµ(x,λ)(△x,△λ) = −Fµ(x,λ):





∇2H −∇cT
I ∇cT

E

ΛI∇cI CI 0

∇cE 0 0









△x

△λI

△λE



 = −





∇J + ∇cTλ

CIλI + µe

cE



 , (6)

where ΛI = diag(λi, i ∈ I), H(x,λ) denotes the Hessian of the Lagrangian of (2) and all
arguments in (6) are omitted.

An efficient solver for systems like (6) are important for an efficient performance of an
interior-point method, since they have to be solved in each iteration step of the optimization
method.

2.2 The Multigrid Method

The multigrid method provides an optimal order algorithm for solving linear systems arising
from finite element discretizations, as well as other discretization techniques applied to certain
classes of PDEs. The number of iterations of standard iteration methods are increasing as
h → 0 if no proper preconditioning is applied. When using multigrid methods we get numbers
of iterations that are asymptotically independent from the mesh parameter h. In other words
the convergence speed does not deteriorate when the discretization is refined, whereas clas-
sical iterative methods slow down for decreasing mesh size. A fundamental attribute of the
multigrid method is that it is working on a hierarchy of meshes and related discretizations of
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a boundary value problem. We recommend e.g. the books Bramble [3] and Hackbusch [9]
for detailed introduction.

The multigrid method has two main features: smoothing on a fine grid and error correction
on a coarser grid. The starting point for this idea is the observation that classical iteration
methods have smoothing properties, i.e. they remove the high oscillating parts of the error
very quick. The smooth part of the error can be represented and corrected well on coarser
grids. Hence, combining these two approaches makes the multigrid method are of the most
efficient solvers. For a short introduction let us consider a hierarchy of l meshes (e.g. like in

Figure 1: A hierarchy of 3 meshes: T0 ⊂ T1 ⊂ T2.

Figure 1)
T0 ⊂ T1 ⊂ . . . ⊂ Tl,

with corresponding finite element spaces V0 ⊂ . . . ⊂ Vl, mesh sizes h0 ≥ . . . ≥ hl, and number
of unknowns n0 ≤ . . . ≤ nl. One of the ingredients of a successful multigrid method are the
intergrid transfer operators:

Definition 1 (Intergrid Operators). The coarse-to-fine operator

I l
l−1 : Vl−1 → Vl

is called the (prolongation) operator and the the fine-to-coarse operator

I l−1
l : Vl → Vl−1

is called the (restriction) operator.

Remark 1. If we have a sequence V0 ⊂ . . . ⊂ Vl of spaces, the prolongation operator I l
l−1

can be taken to be the natural injection. In other words, I l
l−1v = v, ∀ v ∈ Vl−1. Then the

restriction operator is defined to be the adjoint of I l
l−1 with respect to (·, ·)l−1 and (·, ·)l inner

products. In other words, (I l−1
l w, v)l−1 = (w,I l

l−1v)l = (w, v)l, ∀v ∈ Vl−1, w ∈ Vl.

A proper choice of the intergrid operators influences the convergence speed considerably,
and may even be necessary for convergence.

In addition to the intergrid operators we need an iteration method (smoother) for the
smoothing iterations on the fine grids. For instance we choose the smoothing operator S to
realize the Jacobi-relaxation with a damping parameter τ > 0 (cf. Algorithm 3):

u 7−→ Su = u− τ(Ku − f).

Since it reduces the high frequency error components the smoothing operator S is an essential
part in multigrid methods. Typically, a proper smoother for a problem takes the special
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Algorithm 1 Two grid method

Choose a relative error bound ε > 0.
Choose a number ν1 of pre-smoothing and a number ν2 of post-smoothing steps.

Initialize start value u
(0,0)
h .

k = 0;

while not converged do

/* Pre-smoothing: */

u
(k,1)
h = Sν1u

(k,0)
h ;

/* Coarse grid correction: */
/* Defect calculation: */

dk
h = fh − Khu

(k,1)
h ;

/* Restriction onto coarse grid: */
dk

H = IH
h dk

h;
/* Solve coarse grid system: */
KHwk

H = dk
H ;

/* Prolongation onto the fine grid: */
wk

h = Ih
Hwk

H ;
/* Add coarse grid correction: */

u
(k,2)
h = u

(k,1)
h + wk

h;
/* Post-smoothing: */

u
(k+1,0)
h = Sν2u

(k,2)
h ;

k = k + 1;
end while

structure of the system matrix into account. Beside the point Jacobi smoother also the point
Gauß-Seidel (cf. Algorithm 4), the block Jacobi and block Gauß-Seidel smoother are suitable
for a large class of finite element discretized problems. In Section 4 we will discuss a local
patch smoother for an specific application case. Beside the smoothing operation we also need
a coarse grid correction. Let us assume that we have the corresponding system matrices
K0, . . . ,Kl and load vectors f0, . . . , fl for each level at hand. These can either be generated
by assembling on each level or can be constructed by Galerkin’s method, i.e.

Kl−1 = Il−1
l KlI

l
l−1.

After these preliminaries we are ready to state a two level method, as in Algorithm 1, where
we assume that l = 1 and we use the following notation h0 = 2h1 = H, I1

0 = Ih
H , and I0

1 = IH
h

for better readability. The parameters ν1 and ν2 control the number of smoothing iterations.
For benign problems like the Poisson equation it usually does not pay off to use more than
two smoothing steps. In the case of more complex problems, such as saddle point problems,
it can be necessary to use more smoothing iterations.

The restricted system on the coarse grid is by far easier to solve than the one on the finer
grid. When switching to a mesh from mesh size h to 2h by uniform refinement, the number
of unknowns decreases about to a quarter. But still, the complexity of solving the coarse grid
system may be regarded to high. The idea to advance from a two grid method to a multigrid
method is now to repeat this procedure recursively. That is to coarsen the grid until the
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coarsest grid yields a sufficiently small system, that is easy to solve. The linear system on
the coarsest grid is usually solved directly, e.g. by some Cholesky factorization. So, instead of
solving the coarse grid system, one or two multigrid steps are performed, resulting in a V-cycle
or a W-cycle. The patterns in Fig. 2 will explain the naming, where ◦ denotes smoothing,
• marks the solution of the system on the coarsest grid, ց and ր stand for restriction and
interpolation between the grids, respectively. In the early days the common choice was a

2

3

1

0

Figure 2: V-cycle and W-cycle on a hierarchy of 4 grids.

W-cycle to ensure that the error is not increasing too much when cycling between several
grids. But most of the problems are so benign, that a V-cycle is more efficient. The following
Algorithm 2 sketches the operations of the kth multigrid iteration on level i with 1 ≤ i ≤ l.
For sake of readability we drop the iteration index k.

2.3 A Topology Optimization Problem with Local Stress constraints

In structural optimization there are two design - constraint combinations of particular impor-
tance, namely the maximization of material stiffness (minimizing the compliance) at given
mass and the minimization of mass while keeping a certain stiffness. The first combination,
also known as the minimal compliance problem, seems to be mathematically well understood
and various successful numerical techniques to solve the problem have been proposed (see e.g.
Bendsøe and Sigmund [1] and Stainko [16]). The treatment of the second problem is by
far less understood and until now there seems to be no approach that is capable of computing
reliable (global) optimal designs within reasonable computational effort. The main source of
difficulties in this problem is the lack of constraint qualifications for the set of feasible designs,
defined by the local stress constraints.

The approach we briefly introduce here is described in more details in Burger and

Stainko [5]. Let Ωmat = {x ∈ Ω | ρ(x) = 1} ⊂ Ω ⊂ R
d (d = 2, 3), denote the optimal

design, which is of course initially unknown. Furthermore, let Γt0 ⊂ Γt describe the part of
the boundary Γt where the traction forces are zero, i.e. t = 0. Then, the stress constrained
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Algorithm 2 One multigrid method iteration MGM(Ki,ui, fi, i)

Let µ describe the number of MGM calls per level i.
Let ν1 and ν2 denote the number of pre- and post-smoothing steps.
Initialize start value u0

i = ui;

if i == 0 then

Solve the coarsest grid system, i.e. u0 = K−1
0 f0;

return;
else

/* Pre-smoothing: */
u1

i = Sν1u0
i ;

/* Coarse grid correction: */
/* Defect calculation: */
di = fi − Kiu

1
i ;

/* Restriction onto coarse grid: */
di−1 = Ii−1

i di;
/* Recursively call MGM for coarse grid approximation: */
wi−1 = 0;
for j = 1, . . . , µ do

MGM(Ki−1,wi−1,di−1, i − 1);
end for

/* Prolongation onto the fine grid: */
wi = Ii

i−1wi−1;
/* Add coarse grid correction: */
u2

i = u1
i + wi;

/* Post-smoothing: */
u3

i = Sν2u2
i ;

end if

Ω
Γt

Γu

b

Figure 3: The reference domain and applied forces in a minimal mass problem.

topology optimization problem that we are going to investigate states as follows:

J(ρ) =

∫

Ω
ρ(x) dx → min

ρ,u
(7a)

subject to divσ = 0, in Ωmat, (7b)

σ − Cε(u) = 0, in Ω, (7c)

u = 0, on Γu, (7d)

σ · n = t, on Γt, (7e)

σ · n = 0, on
(

∂Ωmat \ Γt

)

∪ Γt0 , (7f)

ρ(x) ∈ {0, 1}, a.e. in Ω, (7g)

Φmin ≤ Φ
(

σ(x)
)

≤ Φmax, a.e. in Ωmat, (7h)

umin ≤ u(x) ≤ umax, a.e. in Ω. (7i)
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Thus, in a first formulation, the objective functional (7a) only consists of a mass term. Note
that we only optimize with respect to the design ρ and the displacements u, because the
stresses σ can be eliminated using the stress-strain relation (7c). But for sake of better
readability we will keep the stresses in the formulation. The constraints (7b) - (7f) describe
the elasticity equations with corresponding boundary conditions (all to be interpreted in a
weak sense), where we again neglect body forces for the sake of simplicity. In an ideal case,
the material density ρ only attains two values, 1 for material and 0 for void, see the 0-1
constraint (7g). Moreover, the vectors umin and umax in the bound constraint (7i) are lower
and upper bounds for the displacements u. In the bound constraints (7h), Φ denotes a proper
stress criterion. For Φ(σ) = σ we have that σmin ≤ σ ≤ σmax and we shall call this criterion
total stress. For sake of simplicity we will only treat here the case of total stresses, but, e.g.,
von Mises stresses can be handled in the same way.

Starting point of our analysis is a reformulation of the equality constraints describing
the elastic equilibrium and the local inequality constraints for the stresses into a system
of linear inequality constraints as recently proposed by Stolpe and Svanberg [17]. A
remaining difficulty is that the arising problem also involves 0-1 constraints in addition to the
linear inequalities. Instead of solving mixed linear programming problems we propose to use
a phase–field relaxation of the reformulated problem. Due to the well-known ill-posedness
of topology optimization problems we might add a perimeter penalization to the objective
functional. The phase–field relaxation consists in using a material interpolation function
η(ρ) = ρ, and additionally, a Cahn-Hilliard type penalization functional (see Cahn and

Hilliard [6]) is used to approximate the perimeter. Up to the knowledge of the author, the
phase–field method was first introduced by Bourdin and Chambolle [2] to the field of
topology optimization.

For the reformulation of the set of constraints we introduce a β > 0, such that

β
∣

∣σij(x)
∣

∣ ≤ 1, a.e. in Ω, i, j = 1, . . . , d,

and an additional variable s, such that s(x) = σ(x) if ρ(x) = 1 and s(x) = 0 if ρ(x) = 0, i.e.
s = ρσ. Then the equivalent reformulation of the set of constraints looks like:

divs = 0, in Ω, (8a)

σ − Cε(u) = 0, in Ω, (8b)

u = 0, on Γu, (8c)

s · n = t, on Γt, (8d)

s · n = 0, on Γt0 , (8e)

−(1 − ρ)1 ≤ β(σ − s) ≤ (1 − ρ)1, in Ω, (8f)

ρ(x) ∈ {0, 1}, a.e. in Ω, (8g)

ρ(x)σmin ≤ s(x) ≤ ρ(x)σmax, a.e. in Ω, (8h)

umin ≤ u(x) ≤ umax, a.e. in Ω. (8i)

All the constraints in (8) are linear with respect to the vector of unknowns (ρ,u,σ, s),
except for ρ(x) ∈ {0, 1} almost everywhere in Ω. We now replace the 0-1 constraint ρ(x) ∈
{0, 1} by the following continuous version ρ(x) ∈ [0, 1]. Moreover, we approximate a perimeter
term by the Cahn-Hilliard term and add it to the objective:

Jǫ(ρ) = γ

∫

Ω
ρ(x) dx +

ǫ

2

∫

Ω

∣

∣∇ρ(x)
∣

∣

2
dx +

1

ǫ

∫

Ω
W
(

ρ(x)
)

dx. (9)
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The term
∫

Ω W (ρ(x) dx favorites those designs which take values close to 0 or 1 (phase
separation), while the term

∫

Ω |∇ρ(x)|2 dx penalizes the spatial inhomogeneity of ρ. The
theorem of Modica and Mortola tells that the minimizers of (9) converge to the minimizers
of
∫

Ω ρ(x) dx in the sense of Γ-convergence (see Modica and Mortola [12]). The resulting
relaxed parameter dependent problem is now given by the objective functional (9) and by
the constraints (8), where (8g) is replaced by 0 ≤ ρ(x) ≤ 1. The problem is now solved for
a decreasing sequence of the parameter ε → 0. For the relaxed problem it is now possible to
show the existence of solutions in the corresponding set of feasible designs.

After a standard finite element discretization we end up with a large scale optimization
problem, that now fulfills constraint qualifications, cf. Burger and Stainko [5]. We solved
the discrete optimization problems using Ipopt, which is a free available optimization code
realizing a primal-dual interior-point optimization method (see Wächter et al [19]).

Figure 4: Optimal designs of the 4 level ǫ-continuation with ǫ0 = 0.1, ǫ1 = 0.05, ǫ2 = 0.025, and
ǫ3 = 0.0125, respectively.

3 The Optimality System

In this section we will derive an optimality system for the optimization of the objective
(9) subject to the constraints (8) from the previous Subsection 2.3. The derivation can be
performed for both stress criteria, total stress and conservative von Mises stress, but we
restrict ourselves to the case of total stress for the sake of simplicity. As a starting point we
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reconsider the following optimization problem:

Jǫ(ρ) → min
ρ,u,s

(10a)

div s = 0, in Ω, (10b)

σ − Cε(u) = 0, in Ω, (10c)

u = 0, on Γu, (10d)

s · n = t, on Γt, (10e)

s · n = 0, on Γt0 , (10f)

ρ = 1, on Γt, (10g)

−(1 − ρ)1 ≤ β(σ − s) ≤ (1 − ρ)1, in Ω, (10h)

0 ≤ ρ(x) ≤ 1, a.e. in Ω, (10i)

ρ(x)σmin ≤ s(x) ≤ ρ(x)σmax, a.e. in Ω, (10j)

umin ≤ u(x) ≤ umax, a.e. in Ω. (10k)

with

Jǫ(ρ) = γ

∫

Ω
ρ(x) dx +

ǫ

2

∫

Ω

∣

∣∇ρ(x)
∣

∣

2
dx +

1

ǫ

∫

Ω
ρ(x)

(

1 − ρ(x)
)

dx,

and the function space setting

(ρ,u, s) ∈
(

H1(Ω) ∩ L∞(Ω)
)

×
(

H1
(

Ω; R2
)

∩ L∞

(

Ω; R2
))

× L∞

(

Ω; R2×2
)

.

We mention that the conditions (10b), (10e), and (10f) have to be understood in a week sense,
namely as

∫

Ω
s : ε(v) dx =

∫

Γt

v · t da, ∀ v ∈ H1
Γt

,

with H1
Γt

:= {v ∈ H1(Ω; R2) | v = 0 on Γt}. Because we aim at an interior-point optimization
method to solve this problems, we will perform the derivation in a primal-dual interior-
point framework. Especially, we consider a primal-dual barrier method to solve nonlinear
optimization problems of the form

f(x) → min
x∈Rn

subject to c(x) = 0,

xmin ≤ x ≤ xmax,

see, e.g. Wächter and Biegler [19]. Problems with inequality constraints, like (10), can be
reformulated in the above form by introducing slack variables. Thus, we rewrite the inequality
constraints (10h) and (10i) as equalities with the additional functions zi ∈ L2(Ω; R2×2),
i = 1, . . . , 4. Furthermore, to ease the representation of the problem, we omit the boundary
conditions (10d) - (10g), and rely on their proper incorporation in the FE-discretization. As
an additional simplification we eliminate σ using the identity (10c). Consequently, we end
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up with the following optimization problem:

Jǫ(ρ) → min
ρ,u,s,z

(11a)

div s(x) = 0, in Ω, (11b)

−
(

1 − ρ(x)
)

1− β
(

Cε
(

u(x)
)

− s(x)
)

+ z1(x) = 0, in Ω, (11c)

−
(

1 − ρ(x)
)

1 + β
(

Cε
(

u(x)
)

− s(x)
)

+ z2(x) = 0, in Ω, (11d)

ρ(x)σmin − s(x) + z3(x) = 0, in Ω, (11e)

s(x) − ρ(x)σmax + z4(x) = 0, in Ω, (11f)

0 ≤ ρ(x) ≤ 1, a.e. in Ω, (11g)

umin ≤ u(x) ≤ umax, a.e. in Ω, (11h)

zi(x) ≥ 0, a.e. in Ω, i = 1, . . . , 4. (11i)

Interior-point methods propose to add the bound constraints to the objective functional and
treat them implicitly by using a barrier function. With a barrier parameter µ > 0 this leads
to the barrier objective functional

Jǫ,µ(ρ) = Jǫ(ρ) − µ

(∫

Ω
ln
(

ρ(x)
)

+ ln
(

1 − ρ(x)
)

dx +

+

∫

Ω
ln
(

u(x) − umin
)

+ ln
(

umax − u(x)
)

dx +

∫

Ω
ln
(

z(x)
)

dx

)

,

where we write lnu instead of ln u1 + ln u2 for u ∈ R
2 and ln z instead of

∑2
i,j=1 ln zij for

z ∈ R
2×2 for simplicity. The corresponding barrier problem is given by

Jǫ,µ(ρ) → min
ρ,u,s,z

div s(x) = 0, in Ω,

−
(

1 − ρ(x)
)

1− β
(

Cε
(

u(x)
)

− s(x)
)

+ z1(x) = 0, in Ω,

−
(

1 − ρ(x)
)

1 + β
(

Cε
(

u(x)
)

− s(x)
)

+ z2(x) = 0, in Ω,

ρ(x)σmin − s(x) + z3(x) = 0, in Ω,

s(x) − ρ(x)σmin + z4(x) = 0, in Ω,

(12)

In order to formulate the first order necessary conditions for (12), we consider the Lagrangian
for the above problem. For this sake we introduce Lagrange multipliers λ0 ∈ H1

0 (Ω; R2) :=
{v ∈ H1(Ω; R2) | v = 0 on ∂Ω}, λ1, . . . ,λ4 ∈ L2(Ω; R2×2) and state

L(ρ,u, s, z,λ) = Jǫ,µ(ρ) − 〈s, ε(λ0)〉 +
〈

− (1 − ρ)1− β
(

Cε(u) − s
)

+ z1,λ1

〉

+

+
〈

− (1 − ρ)1 + β
(

Cε(u) − s
)

+ z2,λ2

〉

+

+
〈

ρσmin − s + z3,λ3

〉

+
〈

s− ρσmax + z4,λ4

〉

,

(13)
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with the notation λ = (λ0, . . . ,λ4) and z = (z1, . . . , z4). The optimality conditions then look
as:

∇ρL = γ + ǫ∆ρ +
1

ǫ
(1 − 2ρ) −

µ

ρ
+

µ

1 − ρ
+ 1 : λ1 +

+ 1 : λ2 + σmin : λ3 − σ
max : λ4 = 0, (14a)

∇uL = −
µ

u− umin
+

µ

umax − u
+ βC divλ1 − βC divλ2 = 0, (14b)

∇sL = − ε(λ0) + βλ1 − βλ2 − λ3 + λ4 = 0, (14c)

∇zi
L = −

µ

zi
+ λi = 0, (14d)

∇λ0
L = div s = 0, (14e)

∇λ1
L = − (1 − ρ)1 − β

(

Cε(u) − s
)

+ z1 = 0, (14f)

∇λ2
L = − (1 − ρ)1 + β

(

Cε(u) − s
)

+ z2 = 0, (14g)

∇λ3
L = ρσmin − s + z3 = 0, (14h)

∇λ4
L = s− ρσmax + z4 = 0. (14i)

In (14b) and (14d) (and further on) the fractions are meant by components. Moreover, we
use the identity

∫

Ω
divσ · v dx = −

∫

Ω
σ : ε(v) dx

for v ∈ H1
0 (Ω) for the derivation of (14) and for the statement of the Lagrangian (13).

Moreover, the equality (14b) again has to be understood in a weak sense. In the spirit of
primal-dual interior point methods we now introduce new independent variables νi that act
as multipliers for the bound constraints (11g) - (11i). In particular we choose ν1, ν2 ∈ H1(Ω),
ν3,ν4 ∈ H1(Ω; R2), and νi ∈ L2(Ω; R2×2) for i = 5, . . . , 8, such that

ν1 =
µ

ρ
, ν2 =

µ

1 − ρ
, ν3 =

µ

u− umin
, ν4 =

µ

umax − u
,

ν5 =
µ

z1
, ν6 =

µ

z2
, ν7 =

µ

z3
, ν8 =

µ

z4
.

(15)
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Using the definition (15) of the dual variables, the optimality conditions (14) turn into the
following system in the primal variables ρ, u, s, z, and the dual variables λ and ν:

γ + ǫ∆ρ +
1

ǫ
(1 − 2ρ) − ν1 + ν2 + 1 : λ1 + 1 : λ2 + σmin : λ3 − σ

max : λ4 = 0, (16a)

−ν3 + ν4 + βC divλ1 − βC divλ2 = 0, (16b)

−ε(λ0) + βλ1 − βλ2 − λ3 + λ4 = 0, (16c)

−ν5 + λ1 = −ν6 + λ2 = −ν7 + λ3 = −ν8 + λ4 = 0, (16d)

div s = 0, (16e)

−
(

1 − ρ
)

1− β
(

Cε(u) − s
)

+ z1 = 0, (16f)

−
(

1 − ρ
)

1 + β
(

Cε(u) − s
)

+ z2 = 0, (16g)

ρσmin − s + z3 = 0, (16h)

s− ρσmax + z4 = 0, (16i)

−ρ +
µ

ν1
= 0, (16j)

ρ − 1 +
µ

ν2
= 0, (16k)

−
(

u− umin
)

+
µ

ν3
= 0, (16l)

−
(

umax − u
)

+
µ

ν4
= 0, (16m)

−z1 +
µ

ν5
= −z2 +

µ

ν6
= −z3 +

µ

ν7
= −z4 +

µ

ν8
= 0, (16n)

where the form of the equalities (16j) - (16n) is motivated to get a symmetric system matrix
after discretization.

In the following we consider the discretization of the primal-dual equations (16). In order
to construct a finite element approximation we assume that Ω =

⋃n
i=1 τ i is partitioned into

a proper triangulation T = {τi | i = 1, . . . , n} with n triangles τi. We shall use two different
finite elements for the primal and dual variables. For the density ρ, the components of the
displacements u, the dual variables ν1, ν2, and the components of the dual variables ν3, ν4,
we use the discrete H1-subspace of linear elements

V h :=
{

ṽ ∈ C(Ω);
∣

∣ ṽ|τi
∈ P1(τi), i = 1, . . . , n}.

For the components of the Lagrangian multiplier λ0 we use the discrete H1
0 -subspace V h

0 of
linear elements with zero boundary conditions. The components of the stress s, the slack
variables z, the dual variables ν5, . . . ν8, and of the Lagrange multipliers λ1, . . . ,λ4 are ap-
proximated by the L∞-subspace of constant elements

Qh :=
{

q̃ ∈ L∞(Ω)
∣

∣ q̃|τi
∈ P0(τi), i = 1, . . . , n

}

.

As in the previous chapters, Pk(τi) represents the space of polynomials of maximal degree
k over the triangle τi. Using these finite element approximations we discretize the system
(16) by a standard finite element approach, i.e. we consider the weak formulations of the
equations (16a) - (16n) and perform a partial integration for the divergence terms in the
equations (16b) and (16e). Taking into account the Hilbert spaces V = H1(Ω), V0 = H1

0 (Ω),
VΓu = H1

Γu
(Ω), and Q = L2(Ω) and having the application of a Newton type method in mind,
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we can write the weak linearized formulation of (16) in the following way: Find updates
ρ, ν1, ν2 ∈ V , u,ν3,ν4 ∈ V 2

Γu
, λ0 ∈ V 2

0 , and s, z1, . . . , z4,λ1, . . . ,λ4,ν5, . . . ,ν8 ∈ Q2×2 for the

current values of ρ,u, s, z,λ, ν1, ν2,ν3, . . . ,ν8, respectively, such that

−ǫ(∇ρ,∇v)0 −
2

ǫ
(ρ, v)0 − (ν1, v)0 + (ν2, v)0 + (1 : λ1, v)0 +

+ (1 : λ2, v)0 + (σmin : λ3, v)0 + (σmax : λ4, v)0 = −
(

γ +
1

ǫ

)

(1, v)0,

−(ν3,φ)0 + (ν4,φ)0 − β
(

Cλ1, ε(φ)
)

0
+ β

(

Cλ2, ε(φ)
)

0
= 0,

−
(

ε(λ0),q
)

0
+ β(λ1,q)0 − β(λ2,q)0 − (λ3,q)0 + (λ4,q)0 = 0,

−(ν5,q)0 + (λ1,q)0 = −(ν6,q)0 + (λ2,q)0 =

−(ν7,q)0 + (λ3,q)0 = −(ν8,q)0 + (λ4,q)0 = 0,

−
(

s, ε(ψ)
)

0
=

∫

Γt

t · ψ dx,

(ρ1,q)0 − β
(

Cε(u),q
)

0
+ β(s,q)0 + (z1,q)0 = (1,q)0,

(ρ1,q)0 + β
(

Cε(u),q
)

0
− β(s,q)0 + (z2,q)0 = (1,q)0,

(ρσmin,q)0 − (s,q)0 + (z3,q)0 = 0,

(s,q)0 − (ρσmax,q)0 + (z4,q)0 = 0,

−(ρ, v)0 +
µ

ν1
(ν1, v)0 = 0,

(ρ, v)0 +
µ

ν2
(ν2, v)0 = (1, v)0,

−(u,φ)0 +
µ

ν3
(ν3,φ)0 = −(umin,φ)0,

(u,φ)0 +
µ

ν4
(ν4,φ)0 = (umax,φ)0,

−(z1,q)0 +
µ

ν5
(ν5,q)0 = −(z2,q)0 +

µ

ν6
(ν6,q)0 =

= −(z3,q)0 +
µ

ν7
(ν7,q)0 = −(z4,q)0 +

µ

ν8
(ν8,q)0 = 0,

where the above equalities shall hold for all test functions v ∈ V , φ ∈ V 2
0 , ψ ∈ V 2

Γu
, and

q ∈ Q2×2. Let the vectors △ρh, △uh, and so on, contain the coefficients of the finite element
functions ρ̃ ∈ V h and ũ ∈ (V h

Γu
)2, and so on, respectively. We add the symbol △ to emphasis

that we consider the updates of current iterates in a Newton type iteration method. Moreover,
we use the symmetries in the occurring variables s, λ1, . . . ,λ4, z1, . . . , z4, and ν5, . . . ,ν8 (e.g.
sij = sji) to reduce the number of unknowns. The discretized problem can now be written
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as:

−ǫK△ρh −
2

ǫ
M△ρh − M△νh

1 + M△νh
2 + ÑT△λh

1 +

+ ÑT△λh
2 + ÑTΣmin△λh

3 − ÑTΣmax△λh
4 = −

(

γ +
1

ǫ

)

eh
V h , (17a)

−M2△ν
h
3 + M2△ν

h
4 − βDT Ch△λh

1 + βDTCh△λh
2 = 0, (17b)

−D△λh
0 + βN△λh

1 − βN△λh
2 − N△λh

3 + N△λh
4 = 0, (17c)

−N△νh
5 + N△λh

1 = −N△νh
6 + N△λh

2 =

= −N△νh
7 + N△λh

3 = −N△νh
8 + N△λh

4 = 0, (17d)

−DT△sh = th, (17e)

Ñ△ρh − βChD△uh + βN△sh + N△zh
1 = eh

(Qh)3 , (17f)

Ñ△ρh + βChD△uh − βN△sh + N△zh
2 = eh

(Qh)3 , (17g)

ΣminÑ△ρh − N△sh + N△zh
3 = 0, (17h)

−ΣmaxÑ△ρh + N△sh + N△zh
4 = 0, (17i)

−M△ρh + µMν1
△νh

1 = 0, (17j)

M△ρh + µMν2
△νh

2 = eh
V h , (17k)

−M2△uh + µMν3
△ν3 = −M2u

minh
, (17l)

M2△uh + µMν4
△ν4 = M2u

maxh, (17m)

−N△zh
1 + µNν5

△νh
5 = −N△zh

2 + µNν6
△νh

6 =

−N△zh
3 + µNν7

△νh
7 = −N△zh

4 + µNν8
△νh

8 = 0. (17n)

In (17a), K is a stiffness matrix arising from the finite element discretization of the Laplacian
in V h and M is a mass matrix for the identity in V h. Furthermore, Ñ is mixed mass matrix
between the spaces V h and (Qh)3. eh

V h and eh
(Qh)3

are vectors representing the coefficients of

the constant function 1 with respect to the spaces V h and (Qh)3, respectively. Σmin and Σmax

are diagonal matrices representing the corresponding entries of σmin and σmax, respectively.
In (17b), M2 is a mass matrix for the identity in V h

Γu
×V h

Γu
and Ch is the discrete analogon of

elasticity tensor C. Moreover, DT is the representation of the divergence operator (restricted
to symmetric stress tensors). The mass matrix N in (17c) represents the mass matrix for
the identity in (Qh)3. In the discretized partial differential equation (17e) th is a discrete
representation of the traction forces. Moreover, in the equations (17j) - (17m) the matrices
Mν1

, . . . ,Mν4
, and the matrices Nν5

, . . . ,Nν8
, in (17n) are weighted mass matrices with the

weights ν1, . . . ,ν8, respectively.
The linear system (17) can be written in a compact representation as

K△x = fh, (18)

with
△x =

(

△ρh,△uh,△sh,△zh
1 , . . . ,△zh

4 ,△λh
0 , . . . ,△λh

4 ,△νh
1 , . . . ,△νh

8

)
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and

fh =

(

−
(

γ +
1

ǫ

)

eh
V h ,0,0,0,0,0,0, th , eh

(Qh)3 , e
h
(Qh)3 ,0,0,0,

eh
V h ,−M2u

minh
,M2u

maxh,0,0,0,0

)

.

The coefficient matrix K in (18) contains the matrices in (17) as block matrices and turns
out to be large (even too large to be printed on one page). In order to reduce the size of the
system to a more reasonable one, we reduce the system (but we keep the notation K for the
system matrix and fh for the right-hand side after each of the following eliminations) using
the following eliminations of the dual variables:

△νh
1 =

1

µ
M−1

ν1
M△ρh, △νh

2 = −
1

µ
M−1

ν2
M△ρh +

1

µ
M−1

ν2
eh

V h ,

△νh
3 =

1

µ
M−1

ν3
M2△uh −

1

µ
M−1

ν3
M2u

minh
,

△νh
4 = −

1

µ
M−1

ν4
M2△uh +

1

µ
M−1

ν4
M2u

maxh,

△νh
5 =

1

µ
N−1

ν5
N△zh

1 , △νh
6 =

1

µ
N−1

ν6
N△zh

2 ,

△νh
7 =

1

µ
N−1

ν7
N△zh

3 , △νh
8 =

1

µ
N−1

ν8
N△zh

4 .

(19)

This first elimination yields a smaller linear system like

K△x = fh, (20)

with
△x =

(

△ρh,△uh,△sh,△zh
1 , . . . ,△zh

4 ,△λh
0 , . . . ,△λh

4

)

and

fh =

(

−
(

γ +
1

ǫ

)

eh
V h −

1

µ
MM−1

ν2
eh

V h ,−
1

µ
M2

(

M−1
ν3

uminh
+ M−1

ν4
umaxh

)

,

0,0,0,0,0, th, eh
(Qh)3 , e

h
(Qh)3 ,0,0

)

.

The system matrix K of (20) is given by

K =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

Kρρ 0 0 0 0 0 0 0 Ñ
T

Ñ
T

Ñ
T
Σ

min
−Ñ

T
Σ

max

0 Kuu 0 0 0 0 0 0 −βD
T
C

h βD
T
C

h
0 0

0 0 0 0 0 0 0 −D βN −βN −N N

0 0 0 Kz1z1
0 0 0 0 N 0 0 0

0 0 0 0 Kz2z2
0 0 0 0 N 0 0

0 0 0 0 0 Kz3z3
0 0 0 0 N 0

0 0 0 0 0 0 Kz4z4
0 0 0 0 N

0 0 −D
T

0 0 0 0 0 0 0 0 0

Ñ −βC
h
D βN N 0 0 0 0 0 0 0 0

Ñ βC
h
D −βN 0 N 0 0 0 0 0 0 0

Σ
min

Ñ 0 −N 0 0 N 0 0 0 0 0 0

−Σ
max

Ñ 0 N 0 0 0 N 0 0 0 0 0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

,

with

Kρρ = − ǫK −
2

ǫ
M −

1

µ
M
(

M−1
ν1

+ M−1
ν2

)

M,

Kuu = −
1

µ
M2

(

M−1
ν3

+ M−1
ν4

)

M2,

Kzizi
= −

1

µ
NN−1

νi
N, i = 1, . . . , 4.
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We further eliminate we eliminate the slack variables △zh
i , for i = 1, . . . , 4, using (20):

△zh
i = µN−1Nνi

△λh
i , i = 1, . . . , 4. (21)

to we come up with the following system

K



























△ρh

△uh

△sh

△λh
0

△λh
1

△λh
2

△λh
3

△λh
4



























=





























−
(

γ + 1
ǫ

)

eh
V h − 1

µ
MM−1

ν2
eh

V h

− 1
µ
M2

(

M−1
ν3

uminh
+ M−1

ν4
umaxh

)

0

th

eh
(Qh)3

eh
(Qh)3

0

0





























(22)

with the coefficient matrix

K =



























Kρρ 0 0 0 ÑT ÑT ÑTΣmin −ÑTΣmax

0 Kuu 0 0 −βDTCh βDT Ch 0 0

0 0 0 −D βN −βN −N N

0 0 −DT 0 0 0 0 0

Ñ −βChD βN 0 µNν5
0 0 0

Ñ βChD −βN 0 0 µNν6
0 0

ΣminÑ 0 −N 0 0 0 µNν7
0

−ΣmaxÑ 0 N 0 0 0 0 µNν8



























.

As a last reduction we eliminate the updates concerning the Lagrange multipliers λ1, . . .λ4,
from the linear system (22) using

△λh
1 =

1

µ
N−1

ν5
eh

(Qh)3 −
1

µ
N−1

ν5
Ñ△ρh +

β

µ
N−1

ν5
ChD△uh −

β

µ
N−1

ν5
N△sh,

△λh
2 =

1

µ
N−1

ν6
eh

(Qh)3 −
1

µ
N−1

ν6
Ñ△ρh −

β

µ
N−1

ν6
ChD△uh +

β

µ
N−1

ν6
N△sh,

△λh
3 = −

1

µ
ΣminN−1

ν7
Ñ△ρh +

1

µ
N−1

ν7
N△sh,

△λh
4 =

1

µ
ΣmaxN−1

ν8
Ñ△ρh −

1

µ
N−1

ν8
N△sh.

(23)

This elimination finally results in the symmetric saddle point problem








Kρρ Kρu Kρs 0

K
T
ρu Kuu Kus 0

K
T
ρs K

T
us Kss DT

0 0 D 0

















△ρh

△uh

△sh

△λh
0









= fh, (24)

with

fh =













−
(

γ + 1
ǫ

)

eh
V h − 1

µ
MM−1

ν2
eh

V h − 1
µ
ÑT
(

N−1
ν5

+ N−1
ν6

)

eh
(Qh)3

− 1
µ
M2

(

M−1
ν3

uminh
+ M−1

ν4
umaxh

)

− β
µ
ChD

(

N−1
ν5

− N−1
ν6

)

eh
(Qh)3

−β
µ
N3

(

N−1
ν5

− N−1
ν6

)

eh
(Qh)3

0
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and the final block matrices

Kρρ = − ǫK −
2

ǫ
M−

1

µ
M
(

M−1
ν1

+ M−1
ν2

)

M −

−
1

µ
ÑT
(

N−1
ν5

+ N−1
ν6

+ Σmin2
N−1

ν7
+ Σmax2N−1

ν8

)

Ñ,

Kuu = −
1

µ
M2

(

M−1
ν3

+ M−1
ν4

)

M2 −
β2

µ
DTCh2(

N−1
ν5

+ N−1
ν6

)

D,

Kss = −
1

µ
N
(

β2N−1
ν5

+ β2N−1
ν6

+ N−1
ν7

+ N−1
ν8

)

N,

Kρu =
β

µ
ÑT
(

N−1
ν5

− N−1
ν6

)

ChDT ,

Kρs =
1

µ
ÑT
(

βN−1
ν6

− βN−1
ν5

+ ΣminN−1
ν7

+ ΣmaxN−1
ν8

)

N,

Kus =
β2

µ
ChDT

(

N−1
ν5

+ N−1
ν6

)

N.

(25)

The linear system (24) yields a solution in the variables △ρh,△uh,△sh,△λh
0 . Using this

solution, the other variables are determined by the substitutions (23), (21), and finally (23).

4 A Multigrid KKT Solver

In this section we consider (additive and multiplicative) Schwarz-type iteration methods as
smoothers in a multigrid method for saddle point problems. Each iteration step of such a
Schwarz-type smoother consists of the solution of several small local saddle point problems in
a Jacobi- or Gauss-Seidel-type manner. The computational domain is therefore divided into
overlapping cells, also called patches. One iteration step of a Schwarz-type smoother consists
now of solving a local saddle point problem for each patch. This is done in a Jacobi- or
Gauß-Seidel-type manner and thus, called additive or multiplicative Schwarz-type smoother.

To begin with, we state the two most basic iterative methods for a linear system

Ku = f ,

which are used as smoothing methods, namely the Jacobi- and the Gauss-Seidel iterations,
being the origins of the additive and multiplicative Schwarz methods, respectively. In Algo-
rithm 3 we present the Jacobi iteration. The algorithm is simple, but with the disadvantage
of slow convergence (note the analogy to the Richardson iteration). We state the Jacobi iter-
ation without any consideration about convergence, but refer e.g. to Jung and Langer [10].
One criterion for the convergence of the damped Jacobi iteration is the symmetry and pos-
itive definiteness of the system matrix K. A similar method to the Jacobi iteration is the
Gauss-Seidel method. In difference to the Jacobi iteration we use for the computation of
the i-th component uk

i the already updated components uk
j , for j = 1, . . . , i − 1, in iteration

k. The Gauß-Seidel method is presented in Algorithm 4. Again, the Gauss-Seidel iteration
converges if the system matrix K is symmetric and positive definite. For more information
we refer again e.g. to Jung and Langer [10] or to Hackbusch [8]. Both iteration methods
(Jacobi iterations after under-relaxation, damped Jacobi) have smoothing properties in the
sense that they reduce the high frequency part of the error components and are cheap to
apply.
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Algorithm 3 Damped Jacobi iteration

Choose a damping parameter τ , 0 < τ < 2
λmax(diag(K)−1K)

.

Choose a relative error bound ε > 0.
Initialize start value u0 ∈ R

n.
k = 0;

while not converged do

for i = 1, . . . , n do

uk+1
i = (1 − τ)uk

i +
τ

Kii

(

fi −
n
∑

j=1
j 6=i

Kiju
k
j

)

;

end for

k = k + 1;
end while

Algorithm 4 Gauß-Seidel iteration

Choose a relative error bound ε > 0.
Initialize start value u0 ∈ R

n.
k = 0;

while not converged do

uk+1
1 =

1

K11

(

f1 −
n
∑

j=2

K1ju
k
j

)

;

for i = 2, . . . , n − 1 do

uk+1
i =

1

Kii

(

fi −
i−1
∑

j=1

Kiju
k+1
j −

n
∑

j=i+1

Kiju
k
j

)

;

end for

uk+1
n =

1

Knn

(

fn −
n−1
∑

j=1

Knju
k
j

)

;

k = k + 1;
end while

Note, that the Gauß-Seidel iteration depends on the ordering of the unknowns and that
the Jacobi iteration is independent of the ordering of the unknowns, see e.g. Hackbusch [9].
In order to get a symmetric multigrid operator the post smoothing has to be arranged in a
backward fashion for the Gauß-Seidel-type iteration. Moreover, the same number of pre- and
post-smoothing steps has to be used.

The above definitions of the iteration methods would lead to pointwise methods. Below
we shall define smoothing operators in terms of subspace decompositions, which will lead to a
blockwise iteration method. These procedures are related to overlapping domain decomposi-
tion algorithms and to the classical Schwarz method. They are generalizations of Jacobi and
Gauß-Seidel iteration procedures.

We start to introduce the Schwarz-type smoothers in an abstract framework of mixed
variational problems (cf. Brezzi and Fortin [4]). For this sake let V and Q be Hilbert
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spaces and let a(·, ·) : V × V → R, b(·, ·) : V × Q → R, and c(·, ·) : Q × Q → R be continuous
bilinear forms. Furthermore, let f(·) : V → R and g(·) : Q → R be continuous linear
functionals. Then we can formulate the following mixed variational problem: Find u ∈ V and
p ∈ Q such that

a(u, v) + b(v, p) = f(v), ∀ v ∈ V,

b(u, q) − c(p, q) = g(q), ∀ q ∈ Q.
(26)

Following on the framework of multigrid methods we would introduce now a hierarchy of
finite element spaces V0 ⊂ . . . ⊂ Vl ⊂ V , Q0 ⊂ . . . ⊂ Ql ⊂ Q on a corresponding hierarchy
of increasingly finer meshes and so on. But since the smoothing procedure involves only one
level of the sequence of spaces, we will omit these notations and fix one level i, 0 < i < l. For
simplification of notation we will also drop the subindex k when denoting spaces, matrices
and so on. Following a standard finite element discretization let the vectors v ∈ R

n and
q ∈ R

n contain the coefficients of the corresponding finite element functions with respect
to some bases of V and Q. Moreover, we introduce the matrix representation of the mixed
variational problem (26):

(

A BT

B −C

)(

u

p

)

=

(

f

g

)

. (27)

For our specific problem (24) it turns out that the the above block matrices are given by

A =





Kρρ Kρu Kρs

K
T
ρu Kuu Kus

K
T
ρs K

T
us Kss



 , B =
(

0,0,D
)

, and C = 0.

In the sequel we will again abbreviate the system matrix with K, i.e.

K =

(

A BT

B −C

)

.

As a consequence from the properties from the bilinear forms, we assume that A is a symmetric
positive semi-definite n × n matrix, C is a symmetric positive semi-definite m × m matrix,
that B is a m × n matrix, and that K is regular.

We shall start with a decomposition of the spaces

V =
l
∑

i=1

V i and Q =
l
∑

i=1

Qi.

Before we define the additive and multiplicative smoother we have to introduce linear opera-
tors for each subspace to set up the local sub-problems:

PV i : R
ni → R

n and PQi
: R

mi → R
m, for i = 1, . . . , l, (28)

with ni, mi denoting the dimensions of the local subspaces Vi and Qi, respectively. The
matrices PV i and PQi

denote prolongation operators with the associated restriction operators
PV

T
i and PQ

T
i
, respectively. Furthermore, let the operators (28) satisfy the conditions

l
∑

i=1

PV iPV
T
i = I and

l
∑

i=1

PQi
PQ

T
i

is regular. (29)

21



With these preliminaries we can now define two Schwarz-type smoothers assuming that uk

and pk are some approximations for the exact solutions u and p of (27).
The first one will be called an additive Schwarz smoother and is defined by

uk+1 = uk +
l
∑

i=1

PV ivi, pk+1 = pk +
l
∑

i=1

PQi
qi,

with vi and qi, i = 1, . . . , l, solving the local saddle point problem

(

Âi BT
i

Bi BiÂ
−1
i BT

i − Ŝi

)(

vi

qi

)

=

(

PV
T
i

(

f − Auk − BTpk
)

PQ
T
i

(

g − Buk + Cpk
)

)

,

where Ŝi = 1
τ
(Ci + BiÂ

−1
i BT

i ), with some damping parameter τ > 0. Thus, the actual
residuum is restricted to the smaller spaces. Then the local saddle point problems are solved
for all patches, and the solutions are finally prolongated back onto the whole space. This
Jacobi-type process can be seen as an additive Schwarz method and the corresponding smooth-
ing operator SA can be written as

SA

(

uk

pk

)

=

(

uk

pk

)

+

l
∑

i=1

PiK̂
−1
i PT

i

((

f

g

)

− K

(

uk

pk

))

,

where we used the abbreviations

K̂i =

(

Âi BT
i

Bi BiÂ
−1
i BT

i − Ŝi

)

and Pi =

(

PV i 0

0 PQi

)

.

Moreover, we define the multiplicative Schwarz smoother based on the above subspace
decomposition as the following procedure: Set w0 = 0 and r0 = 0 and compute

(

wi

ri

)

=

(

wi−1

ri−1

)

+ PiK̂
−1
i PT

i

((

f

g

)

− K

(

wi−1

ri−1

))

, for i = 1, . . . , l, (30)

where we set τ = 1, i.e. the local saddle point problems resemble the global saddle point
problem in shape. Finally we define the multiplicative smoother as

SM

(

uk

pk

)

=

(

uk

pk

)

+

(

wl

rl

)

. (31)

So far we did not pose any conditions on the local matrices Âi, Bi, and Ci. For the
additive case we can state the following theorem, under which assumptions it is possible to
interpret the additive Schwarz iteration as a symmetric inexact Uzawa method. Then, the
smoothing property, an important part of a convergence proof for multigrid methods, can be
shown (cf. Schöberl and Zulehner [15]).

Theorem 1. Assume that (29) is satisfied, the matrices Âi and Ŝi are symmetric and positive
definite, and there is a symmetric positive definite n × n matrix Â such that

PV iÂ = ÂiPV
T
i , for i = 1, . . . , l.
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Furthermore, assume that the matrices Bi satisfy the condition

PQ
T
i
B = BiPQ

T
i
, for i = 1, . . . , l.

Then we have
uk+1 = uk + vk and pk+1 = pk + qk, (32)

where vk and qk satisfy the equation

(

Â BT

B BÂ−1BT − Ŝ

)(

vk

qk

)

=

(

f

g

)

− K

(

uk

pk

)

(33)

and

Ŝ =

(

l
∑

i=1

PQi
Ŝ−1

i PQ
T
i

)−1

.

Proof. See Schöberl and Zulehner [15].

Up to the knowledge of the author, there is no theory available for the multiplicative
Schwarz-type smoother. We refer to Schöberl and Zulehner [15] for a theoretical analysis
for the convergence and smoothing properties of the additive smoother. But in practice, the
multiplicative version turns out to much more efficient than the additive iteration scheme.
So, we realized our numerical test examples with the multiplicative Schwarz-type smoother,
as presented in the next section. The verification of the assumptions of Theorem 1 for our
particular case, as well as numerical experiments for the additive version, are still missing
and will be part of future research.

5 Numerical experiments

In this chapter we only investigate the numerical behaviour of the multiplicative Schwarz
smoother applied to our specific linear system (24). The behaviour of the overall interior-
point method was already investigated in Burger and Stainko [5].

For the numerical results we choose Ω = (0, 1) × (0, 1) and decompose it into a regular
triangulation T k

h = {τi | i = 1, . . . , nk} for each level k of a hierarchy of l nested meshes with
3 ≤ k ≤ l. That means that level k = 3 is the coarsest grid where the corresponding linear
system is solved exactly. For each level k we assemble the block matrices that finally build
up the saddle point system (24). For convenience we state the system matrix again:

Kk =









Kρρ Kρu Kρs 0

K
T
ρu Kuu Kus 0

K
T
ρs K

T
us Kss DT

0 0 D 0









, (34)

with the block matrices (25). In order to test the multiplicative patch smoother (30) - (31) we
solved the saddle point system (24) on a hierarchy with an increasing number of meshes. We
set fk = 0 and used randomly chosen starting values for △x0

k for the exact solutions △xk. For
constructing the local subproblems we decomposed the grid T k

h into mk overlapping patches,
where mk denotes the number of nodes on level k. Each patch consists of the at most 6
surrounding triangles for each node. As mentioned in the previous section, we approximated
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Figure 5: Patch of a local saddle point problem.

the density ρ, the displacements u, and the Lagrangian multiplier λ0 with linear elements
and the stresses s with constant elements. The corresponding subspaces Vi, for i = 1, . . . ,mk,
consist now of the degrees of freedom of the node i, related to the approximations of the
density and the displacement components, and the degrees of freedom in the surrounding
elements, related to the stress components. The subspaces Qi, for i = 1, . . . ,mk, consist
of the unknowns at node i with respect to the approximation of the Lagrangian multiplier
λ0. Figure 5 shows an example of a patch, where the places marked with a ’�’ indicate the
unknowns of the constant elements and the places marked with a ’•’ indicate the unknowns of
the linear elements. For the actual numerical tests we chose the local block matrix Âi = Ai

Smoothing steps
Level Unknowns 2 4

Iterations Conv. Factor Iterations Conv. Factor

4 725 25 0.478 14 0.255

5 2853 27 0.510 15 0.269

6 11333 26 0.489 14 0.255

7 45189 25 0.479 13 0.230

8 180485 23 0.445 12 0.209

Table 1: Convergence rates for a W-cycle and an error reduction by a factor of 10−8 (ǫ = 0.1, µ = 0.1,
νh

i
= 1 for i = 1, . . . , 8).

and used a W-cycle with 2 smoothing steps (one pre- and one post-smoothing step. We
stopped the iteration process when the initial defect was reduced by a factor of 10−8, measured
by the Euclidean norm. In Table 1 we list the convergence data for the following choice of
parameters: ǫ = 0.1, µ = 0.1, and νh

i = 1 for i = 1, . . . , 8. The table shows the typical
multigrid convergence behavior, i.e., convergence rates that are asymptotic independent of
the grid level and an asymptotic constant number of iterations. For the next test example
we set µ and ǫ so smaller values, as these parameters are supposed to tend to zero in actual
computations. We chose µ = 10−6 and ǫ = 10−4, even smaller values as have actually been
used to compute reasonable designs in Burger and Stainko [5]. All in all, Table 2 shows
again the expected behavior. Both, Table 1 and Table 2, show the robust behaviour of the
multigrid method with respect to the parameters µ and ǫ.
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Smoothing steps
Level Unknowns 2 4

Iterations Conv. Factor Iterations Conv. Factor

4 725 39 0.621 19 0.376

5 2853 25 0.478 14 0.258

6 11333 24 0.460 13 0.226

7 45189 22 0.427 12 0.210

8 180485 22 0.425 12 0.211

Table 2: Convergence rates for a W-cycle and an error reduction by a factor of 10−8 (ǫ = 10−4,
µ = 10−6, νh

i
= 1 for i = 1, . . . , 8).

Also arbitrary values of the dual variables νh
1 , . . . ,νh

4 , in [10−6, 101], possibly after suitable
scaling, do not change this behaviour. However, the dual variables νh

5 , . . . ,νh
8 , that act as

Lagrange multipliers for the slack variables zh
1 , . . . , zh

4 (see (15) in Subsection 3) may cause
troubles. In the case that vh

5 ≤ vh
6 and vh

7 ≤ vh
8 the condition number of the system

matrix is raising, but the multigrid iteration still achieves convergence with more then 4
smoothing steps. See Table 3 for the convergence data for extreme values νh

5 = νh
7 = 10 and

νh
6 = νh

8 = 10−6 with 5 and 9 pre- and post-smoothing steps, respectively. Unfortunately, for

Smoothing steps
Level Unknowns 10 18

Iterations Conv. Factor Iterations Conv. Factor

4 725 52 0.701 26 0.490

5 2853 45 0.664 23 0.446

6 11333 34 0.582 18 0.358

7 45189 29 0.529 17 0.321

8 180485 27 0.500 16 0.298

Table 3: Convergence rates for a W-cycle and an error reduction by a factor of 10−8. (ǫ = 10−4,
µ = 10−6, νh

5 = νh
7 = 10, and νh

6 = νh
8 = 10−6).

some choices vh
5 > vh

6 and vh
7 > vh

8 the upper left block of the system matrix (34) becomes
almost indefinite, e.g., λmin ∈ [−9 · 10−6, 9 · 10−6]. Similar behaviour is reported, e.g. in
Maar and Schulz [11] and Wächter and Biegler [19]. If the upper left block looses
its property to be positive definite, the smoother fails and the multigrid iteration diverges.
For instance for the choices vh

5 = vh
7 = 102 and vh

6 = vh
8 = 10−6 we get λmax = 336 and

λmin = −8 · 106.
A known remedy for the above situation is to add a small multiple of the identity matrix

to the upper left block, which is called inertia correction in literature and is, e.g. used in the
software packages Ipopt, see Wächter and Biegler [19], and LOQO, see Vanderbei and

Shanno [18].
In our test examples a addition of δI, with δ = 10−3, to the upper left part removed the

mentioned difficulties.
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6 Conclusions and Outlook

The optimal solver presented in this report shows the potential of Schwarz-type smoothers
in the multigrid framework, applied to saddle-point problems. The linear complexity solver
should be embedded in a dual-primal interior-point optimization method to show its true
potential.

Moreover, a comparison between the computational behaviour of the additive and the
multiplicative version of the smoother is still missing, as well as the validation of the assump-
tions of Theorem 1 for the additive case. It is expected that the additive version will not
behave as good as the multiplicative version. But, since there is no theory for the multiplica-
tive version available, the theoretical analysis of the additive case will be an interesting future
task.
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