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ABSTRACT
We provide algorithms that find, in case of existence, indefi-
nite nested sum extensions in which a (creative) telescoping
solution can be expressed with minimal nested depth.

Categories and Subject Descriptors: I.1.2 [Symbolic
and Algebraic Manipulation]: Algebraic algorithms

General Terms: Algorithms
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1. INTRODUCTION
Indefinite nested sums and products in rational terms can

be represented in ΠΣ-extensions [1]. More precisely, take a
difference field (G, σ), i.e., a field G together with a field au-
tomorphism σ : G → G, and let K be its constant field, i.e.,
K = constσG := {k ∈ G |σ(k) = k}. Then a ΠΣ∗-extension
(F, σ) of (G, σ), a restricted version of ΠΣ-extensions, is
a difference field with constσF = K of the following form:
F = G(t1) . . . (te) is a rational function field and σ : F → F
is extended from G to F by the recursively defined applica-
tion σ(ti) = ai ti (product) or σ(ti) = ti + ai (sum) with
ai ∈ G(t1) . . . (ti−1) for 1 ≤ i ≤ e. It is a Σ∗-extension
(resp. Π-ext.), if for all ti we have σ(ti) = ti + ai (resp.
σ(ti) = ai ti); (F, σ) is a ΠΣ∗-field over K if G = K.

Note that the nested depth of these sums/products gives
a measure of the complexity of expressions. For instance,
the sum of the left hand side of (2) has depth four, whereas
the expression on the right hand side has only depth three.

In this article we try to reduce the depth of such indefinite
sums by telescoping: First construct a ΠΣ∗-field, say (F, σ),
in which the summand f ∈ F can be represented, and after-
wards try to find a telescoper g ∈ F for σ(g) − g = f where
the depth of g is not larger than the depth of f . Given such
a g, one gets, roughly speaking,

∑n

k=0 f(k) = g(n+1)−g(0).
So far, methods have been developed in [1, 9] that assist

in constructing a ΠΣ∗-extension and in solving problem A,
that covers besides telescoping also creative telescoping [11].
In particular, if G = K, i.e., (F, σ) is a ΠΣ∗-field, and if K
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is σ-computable1, all these steps (constructing a (F, σ) and
solving A) can be done completely automatically; see [7].

A: Given a ΠΣ∗-extension (F, σ) of (G, σ) and f =
(f1, . . . , fn) ∈ Fn. Find all g ∈ F and c = (c1, . . . , cn) ∈ Kn

with
σ(g) − g = cf , where cf =

∑n

i=1 ci fi. (1)

Within this approach it is crucial to find the appropriate
(F, σ) so that the depth can be reduced by telescoping. For
instance, finding (F, σ) is not so obvious, if one wants to
reduce the depth of the left hand sides of
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we define Hn :=
∑n

i=1
1
i

and H
(r)
n :=

∑n

i=1
1
ir , r > 1. E.g.,

if one wants to find the right hand side of (2), one needs the

sum extensions H
(3)
n and

∑n

j=1 Hj(j
3H

(3)
j − 1)/j5 which do

not occur on the left hand side; see Example 1.1. In short,
using [1, 9] these two extensions must be adjoined manually.

Subsequently, we solve problem B, which dispenses the
user completely from looking for the appropriate extension.

B: Given a ΠΣ∗-extension (F, σ) of (G, σ), K := constσF

and f ∈ Fn. Decide if there are 0 6= c ∈ Kn and g in
a ΠΣ∗-extension (F(x1) . . . (xr), σ) of (F, σ) such that (1)
and2δG(g) = δG(cf ) hold; if yes, compute such a solution.

Remark: In [8] we considered the special case σ(xi)−xi ∈ F
which is too restricted to find the closed forms from above.

More precisely, we introduce depth-optimal ΠΣ∗-exten-
sions, a special class of ΠΣ∗-extensions, in which we can
represent constructively nested sums and products and in
which we can solve B; see Theorems 6 and 8. It turns out
that only Σ∗-extensions are needed to solve problem B.

The resulting algorithms are implemented in the summa-
tion package Sigma [7].
This technical report extends [10] by some additional proofs.

1E.g., a rational function field A(x1, . . . , xr) over an alge-
braic number field A is σ-computable; for a definition see [5].
2δG(f) denotes the maximal depth of the sums and products
occurring in f ∈ F over the ground field G; see Sec. 2.
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2. PROPERTIES AND DEFINITIONS
First we work out that the problem to represent sums in

Σ∗-extensions can be reduced to telescoping.

Theorem 1. [1] Let (F(t), σ) be a difference field.
(1) Then this is a Π-extension of (F, σ) iff σ(t) = a t, t 6= 0,

a ∈ F∗ and there is no n 6= 0 and g ∈ F∗ with an = σ(g)
g

.

(2) Then this is a Σ∗-extension of (F, σ) iff σ(t) = t + a,
t /∈ F, a ∈ F, and there is no g ∈ F with σ(g) − g = a.

Namely, Theorem 1.2 shows that indefinite summation/tele-
scoping and building up Σ∗-extensions are closely related.
E.g., if one fails to find a g ∈ F with σ(g) − g = f ∈ F,
i.e., one cannot solve the telescoping problem in F, one can
adjoin the solution t with σ(t) + t = f to F in form of the
Σ∗-extension (F(t), σ) of (F, σ). Note that with similar tech-
niques one can represent products in Π-extensions; see [5].

Summarizing, by solving A, nested sums can be repre-
sented in Σ∗-extensions. In Section 3 we will show that
by refined telescoping we obtain also refined Σ∗-extensions.
These new aspects can be illustrated as follows.

Example 1. (1) Given the left hand side of (2), say Sn,
telescoping produces the ΠΣ∗-field (Q(t1)(t2)(t3)(t4), σ) over
Q with σ(t1) = t1 + 1, σ(t2) = t2 + 1

t1+1
and σ(tr+1) =

tr+1 +σ( tr

tr
1
) for r = 2, 3. Namely, there is no g ∈ Q(t1) with

σ(g) − g = 1
t1+1

and no g ∈ Q(t1) . . . (tr) with σ(g) − g =

σ( tr

tr
1
) for r = 2, 3. Here t4 represents Sn with depth 4. We

can improve this situation by solving problem B for F :=
Q(t1)(t2)(t3): We obtain the Σ∗-extension (F(x1)(x2), σ) of

(F, σ) with σ(x1) = x1 + 1
(t1+1)3

, σ(x2) = x2 + (1+(t1+1)t2)x1

(t1+1)3

and g := x1t3 −x2 such that σ(g)− g = σ( t3
t31

); see Exp. 6.2.

Then Sn is represented by g, which gives (2).
(2) Suppose we have represented Sn with t4 ∈ Q(t1) . . . (t4)
as above, and suppose that we want to simplify S′

n given on
the left hand side of (3). Then we adjoin the Σ∗-extension

x1 with σ(x1) = x1 + 1
(t1+1)3

in order to represent H
(3)
j , and

look for a solution of σ(g) − g = (1+(t1+1)t2)x1

(t1+1)3
. In this case

we compute g = x1t3 + t4 which is reflected by the identity
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i.e., we have increased the depth by telescoping!
This examples illustrates the advantages of (F, σ) with F :=
Q(t1)(t2)(t3)(x1)(x2): Sn can be represented by x1t3 − x2,
and S′

n is given by x2 with depth 3.

Finally, we introduce further definitions and properties.
• Let (F, σ) be a difference field with K = constσF, a =
(a1, a2) ∈ F2, f = (f1, . . . , fn) ∈ Fn and p ∈ F. We
write σap := a1σ(p) + a2p, σ(f ) := (σ(f1), . . . , σ(fn)) and
f p := (f1 p, . . . , fn p). a is called homogeneous over F if
a1 a2 6= 0 and σag = 0 for some g ∈ F∗.
Let V be a subspace of F over K and suppose that a 6=
0. Then we define the solution space V(a, f , V) as the
subspace

{

(c1, . . . , cn, g) ∈ Kn × V |σag =
∑n

i=1 cifi

}

of the
vector space Kn × F over K. Note that the dimension is at
most n+1; see [1]. Summarizing, problem A is solved if one
finds a basis of V(a, f , F).

• Let (G(t1) . . . (te), σ) be a ΠΣ∗-extension of (G, σ) with
σ(ti) = ai ti or σ(ti) = ti +ai. Then the depth-function over
G, δG : G(t1) . . . (te) → N0, is defined as follows. For any g ∈

G set δ(g) = 0. If δG is defined for (G(t1) . . . (ti−1), σ) with
i > 1, we define δ(ti) = δG(ai) + 1, and for g ∈ G(t1) . . . (ti)
we define3 δ(g) = max({δG(ti) | ti occurs in g} ∪ {0}). We
define δG(f ) = maxi δG(fi) for f = (f1, . . . , fn) ∈ Fn. The
depth of (F, σ) over G, δG(F), is defined by δG((0, t1, . . . , te)).
Convention: Throughout this article the depth is defined
over (G, σ); we set δ := δG. We might use the depth-function
without mentioning G. Then we assume that the corre-
sponding difference fields are ΠΣ∗-extensions of (G, σ). In
all our examples we will assume that G = Q.

• Let (F(t1) . . . (te), σ) be a ΠΣ∗-extension of (F, σ) with
σ(ti) = αi ti + βi. This extension is called ordered if δ(ti) ≤
δ(ti+1). The extension has maximal depth d if δ(ti) ≤ d.
If there is a permutation τ : {1, . . . , e} → {1, . . . , e} with
ατ(i), βτ(i) ∈ F(tτ(1)) . . . (tτ(i−1)) for all 1 ≤ i ≤ e, then the
generators of the ΠΣ∗-extension (F(t1) . . . (te), σ) of (F, σ)
can be reordered without changing the ΠΣ∗-nature of the
extension. In short, we say that (F(tτ(1)) . . . (tτ(e)), σ) can
be reordered to (F(t1) . . . (te), σ) if there exists such a τ . On
the rational function field level we identify two such fields.
• Let (F, σ) and (F′, σ′) be difference fields. Then a σ-mono-
morphism/σ-isomorphism is a field monomorphism/isomor-
phism τ : F → F′ with σ′(τ (a)) = τ (σ(a)) for all a ∈ F.
Suppose that (F, σ) is a ΠΣ∗-ext. of (H, σ).
An H-monomorphism/H-isomorphism τ : F → F′ is a σ-mo-
nomorphism/σ-isomorphism with τ (a) = a for all a ∈ H.

Lemma 1. Let (F(x), σ) with σ(x) = αx + β be a ΠΣ∗-
extension of (F, σ). (1) Let a, f ∈ F and suppose there is a
solution g ∈ F(x) with σ(g) − ag = f , but no solution in F.

If x is a Π-extension then f = 0 and a = σ(h)
h

αm for some
h ∈ F, m 6= 0; if x is a Σ∗-extension then f 6= 0 and a = 1.
(2) Let (F(x)(t), σ) be a Π-extension of (F(x), σ) with α′ :=
σ(t)/t ∈ F. Let (a1, a2) ∈ F be homogeneous over F, a′ :=
(a1 α′i, a2) with i 6= 0 and f ∈ Fn. Then a′ is inhomoge-
neous over F(x) and V(a′, f , F) = V(a′, f , F(x)).

Proof. (1) is equivalent to [2, Lemmas 4.1,4.2].
(2) Consider the extensions x and t as above, and let (a1, a2)
be homogeneous, i.e., we can take a g ∈ F∗ with −a2/a1 =
σ(g)/g. Suppose that a′ is homogeneous over F(x), i.e.,
there is an h ∈ F(x)∗ with −a2/(a1α

′i) = σ(h)/h. Then
α′i = σ(g/h)/(g/h), and hence t is not a Π-ext. by Thm. 1.1;
a contradiction. Now suppose V(a′, f , F) ( V(a′, f , F(x)).
If x is a Π-extension then by Lemma 1.1 there is a p ∈ F∗

with −a2/(a1α
′i)αm = σ(p)

p
for some m 6= 0. This im-

plies that αm = σ(h)/h with h = tip/g. By Thm. 1.1
(F(t)(x), σ) is not a Π-extension of (F(t), σ), a contradiction
by reordering of (F(x)(t), σ). Otherwise, if x is a Σ∗-ext.
then by Lemma 1.1, −a2/(a1α

′i) = 1, i.e., σ(g)/g = α′i. By
Thm. 1.1 (F(t), σ) is not a Π-ext. of (F, σ), a contradiction.
Summarizing, V(a′, f , F) = V(a′, f , F(x)).

Proposition 1. Let (E, σ) be a ΠΣ∗-extension of (F, σ)
with K := constσF. Then the following holds:
(1) Let a ∈ F2 be homogeneous over F and f ∈ F. If there
is a g ∈ E \ F with σag = f then there is not such a g in F.

(2)Let E = F(t1) . . . (te) with σ(ti) − ti ∈ F or σ(ti)
ti

∈ F. If

σ(g)− g = f for g ∈ E then g =
∑e

i=1 ci ti +w where ci ∈ K

and w ∈ F; moreover, ci = 0, if σ(ti)
ti

∈ F.

(3) Let (F(t), σ) and (F(t′), σ) be Σ∗-extensions of (F, σ)

3g is given by g = g1/g2 with g1, g2 ∈ G[t1, . . . , ti] coprime.
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with g ∈ F(t′) \ F s.t. σ(g) − g = σ(t) − t. Then there is an
F-isomorphism τ : F(t) → F(t′) with τ (t) = g.
(4) Let τ : F → F′ be a σ-isomorphism for (F, σ), (F′, σ).
Then there is a ΠΣ∗-extension (E′, σ) of (F′, σ) with a σ-
isomorphism τ ′ : E → E′ where τ ′(a) = τ (a) for all a ∈ F.

Proof. (1) Assume there are such g′ ∈ F and g ∈ E \ F.
Then σa(g − g′) = 0. By assumption σah = 0 for some h ∈

F∗. Hence σ( g−g′

h
) = g−g′

h
, and thus constσE 6= constσF,

a contradiction that (E, σ) is a ΠΣ∗-extension of (F, σ).
(2) The second statement follows by Karr’ Fundamental
Theorem [2, Result, page 314]; see also [3, Thm 4.2.1].
(3) Let σ(g)− g = σ(t)− t =: β ∈ F. By Prop. 1.2 there are
a c ∈ constσF and a w ∈ F such that g = c t′ + w. Since t′

is transcendental over F, also g is transcendental over F and
therefore τ : F(t) → F(g) canonically defined by τ (t) = g
is a field isomorphism. We have τ (σ(t)) = τ (t + β) =
g + β = σ(g) = σ(τ (t)) and thus τ is an F-isomorphism.
Since F(g) = F(s), the third part is proven. (4) Let (F(t), σ)
be a ΠΣ∗-extension of (F, σ) with σ(t) = α t + β. Since τ
is a σ-isomorphism, there is a ΠΣ∗-ext. (F′(t′), σ) of (F′, σ′)
with σ(t′) = τ (α)t′+τ (β) by Thm. 1. Take the field isomor-
phism τ ′ : F(t) → F′(t′) with τ ′(t) := t′ and τ ′(a) := τ (a)
for all a ∈ F. Since σ(τ (t)) = τ (σ(t)), τ ′ is a σ-isomorphism.
Iterative application proves the last statement.

3. DEPTH-OPTIMAL ΠΣ
∗-EXTENSIONS

In this section we introduce depth-optimal ΠΣ∗-extensions
and motivate its relevance to symbolic summation. After-
wards we show how the problem to represent sums in δ-
optimal extensions and how problem B can be reduced to
problem C given below. To this end, we develop algorithms
that solve C in Section 5.
A Σ∗-extension (F(s), σ) of (F, σ) with σ(s) = s + f is
called depth-optimal, in short δ-optimal, if there is no ΠΣ∗-
extension (H, σ) of (F, σ) with maximal depth δ(f) such that
σ(g) − g = f holds for some g ∈ H \ F. A ΠΣ∗-extension
(F(t1) . . . (te), σ) of (F, σ) is called δ-optimal if all the Σ∗-
extensions are δ-optimal.
First we give some examples.

Lemma 2. A ΠΣ∗-extension (G(t1) . . . (te), σ) of (G, σ)
with δ(ti) ≤ 2, σ(t1) = t1 +1 and constσG = G is δ-optimal.

Proof. If δ(tk) = 1, tk is δ-optimal. Otherwise, if δ(tk) =
2 and tk is not δ-optimal, then β := σ(tk) − tk ∈ F for F :=
G(t1) . . . (tk−1) and there is a ΠΣ∗-ext. (F(x1) . . . (xr), σ)
of (F, σ) with δ(xi) = 1 and g ∈ F(x1) . . . (xr) \ F s.t.
σ(g) − g = β. By Prop. 1.2, qj := σ(xj) − xj ∈ G for some
xj . Then σ(qjt1) − qjt1 = qj , i.e., xj is not a Σ∗-extension
by Thm. 1; a contradiction.

Example 2. Consider the ΠΣ∗-field (Q(t1)(t2)(t3)(t4), σ)
from Exp. 1.1. t1, t2 are δ-optimal extensions by Lemma 2.
Moreover, t3 is δ-optimal by Exp. 4. t4 is not δ-optimal
since we find the extension (Q(t1)(t2)(t3)(x1)(x2), σ) and
g := x1t3 − x2 s.t. σ(g) − g = σ(t4) − t4. Later we will
see that the reordered extension (Q(t1)(t2)(x1)(t3)(x2), σ)
is δ-optimal; see Exp. 5 for x1 and Exp. 6.2 for x2.

Next, we work out some important properties.
• In Example 1.2 we have illustrated that in a ΠΣ∗-extension
(F, σ) of (G, σ) we might arrive at a solution g ∈ F of σ(g)−
g = f with f ∈ F where δ(g) > δ(f) + 1. This bad situation
cannot happen in δ-optimal extensions; see Theorem 2.

Lemma 3. Let (E, σ) with E = F(t1) . . . (te) be a δ-optimal
ordered ΠΣ∗-extension of (F, σ) where d := δ(F), δ(ti) > d.
(1) If σ(g)− g = f for g ∈ E and f ∈ F with δ(f) < d, then
δ(g) ≤ d. (2) If (F(x1) . . . (xr), σ) is a Σ∗-extension of (F, σ)
with βi := σ(xi) − xi and δ(xi) ≤ d, then there is the Σ∗-
extension (E(x1) . . . (xr), σ) of (E, σ) with σ(xi) = xi + βi.

Proof. (1) Suppose we have σ(g) − g = f with g ∈

E and m := δ(g) > d. By Prop. 1.2, g =
∑k

i=1 ci ti + h
where tk is a Σ∗-ext. with δ(tk) = m and ck 6= 0. Set
H := F(t1) . . . (tk−1). By Prop. 1.1 there is no g′ ∈ H∗ with
σ(g′) − g′ = f . Therefore by Thm. 1 one can construct a
Σ∗-ext. (H(s), σ) of (E, σ) with σ(s) = s + f where δ(s) =
δ(f) + 1 ≤ d < m. Note that σ(g′) − (g′) = σ(tk) − tk with

g′ = (s −
∑k−1

i=1 citi)/ck ∈ H(s). Hence tk is not δ-optimal,
a contradiction. Therefore δ(g) ≤ d. (2) For r = 0 we are
done. Otherwise, let i ≥ 1 be minimal s.t. (E(x1) . . . (xi), σ)
is not a Σ∗-ext. of (E, σ). Then there is a g ∈ E(x1) . . . (xi−1)
with σ(g) − g = βi. By Lemma 3.1 it follows that δ(g) ≤ d,
i.e., g ∈ F(x1) . . . (xi−1), a contradiction to Thm. 1.2.

Theorem 2. Suppose that (F, σ) is a δ-optimal ordered
ΠΣ∗-extension of (G, σ) and f ∈ F∗. If σ(g) − g = f for
g ∈ F∗ then δ(f) ≤ δ(g) ≤ δ(f) + 1.

Proof. Since δ(σ(g) − g) ≤ δ(g), δ(f) ≤ δ(g). If δ(F) =
δ(f), δ(g) = δ(f). Otherwise, take the δ-optimal ordered
ΠΣ∗-ext. (F, σ) of (H, σ) with F = H(t1) . . . (te), δ(H) =
δ(f)+1, δ(ti) > δ(f)+1. By Lemma 3.1, δ(g) ≤ δ(f)+1.

Remark: In order to find all solutions of (1) in a δ-optimal
ordered ΠΣ∗-extension, one only has to consider those ex-
tensions whose depth is smaller or equal to δ(f ) + 1.

• We show a reordering property; the general case that re-
ordering gives again a δ-optimal extension is skipped here.

Lemma 4. Let (F(t1) . . . (te)(x), σ) be a ΠΣ∗-extension of
(F, σ) where (F(t1) . . . (te), σ) is a δ-optimal extension of
(F, σ) and δ(x) < δ(ti). By reordering (F(x)(t1) . . . (te), σ)
is a δ-optimal ΠΣ∗-extension of (F(x), σ).

Proof. If e = 0 nothing has to be shown. Suppose that
the lemma holds for e ≥ 0. Consider (F(t1) . . . (te)(x), σ) as
claimed above with e > 0. Then by the induction assump-
tion (F(t1)(x)(t2) . . . (te), σ) is a δ-optimal ΠΣ∗-extension of
(F(t1)(x), σ). Note that (F(x)(t1), σ) is a ΠΣ∗-extension of
(F, σ). If t1 is a Π-extension, we are done. Otherwise, sup-
pose that t1 is a Σ∗-extension which is not δ-optimal. Then
there is a ΠΣ∗-extension (H, σ) of (F(x), σ) with maximal
depth δ(t1) − 1 and g ∈ H with σ(g) − g = σ(t1) − t1.
Since δ(x) < δ(t1), (H, σ) is a ΠΣ∗-extension of (F, σ) with
maximal depth δ(t1) − 1. Consequently, (F(t1), σ) is not a
δ-optimal Σ∗-extension of (F, σ), a contradiction.

• Now we can show that a δ-optimal Σ∗-extension (S, σ) of
(F, σ) is “depth-optimal”: Given a ΠΣ∗-extension (H, σ) of
(F, σ), one can construct a ΠΣ∗-extension (E, σ) of (S, σ)
in which the elements of H can be embedded by an F-
monomorphism τ : H → E without increasing the depth.
Remark. (E, σ) and τ can be computed, if one can solve A.

Theorem 3. Let (F, σ) be a ΠΣ∗-extension of (G, σ); let
(S, σ) be a Σ∗-extension of (F, σ) which gives a δ-optimal or-
dered extension of (G, σ) by reordering. Then for any ΠΣ∗-
ext. (H, σ) of (F, σ) with maximal depth d there is a ΠΣ∗-
extension (E, σ) of (S, σ) with maximal depth d and an F-
monomorphism τ : H → E where δ(τ (a)) ≤ δ(a) for a ∈ H.
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Proof. Let (D, σ) be the δ-optimal ordered ΠΣ∗-ext. of
(F, σ) that we get by reordering the Σ∗-extension (S, σ) of
(F, σ). Moreover, let (H, σ) be a ΠΣ∗-extension of (F, σ)
with maximal depth d, i.e., H := F(t1) . . . (te) with di :=
δ(ti) ≤ d. Suppose that δ(ti) ≤ δ(ti+1), otherwise we can
reorder it without loosing any generality. We will show that
there is a ΠΣ∗-extension (E, σ) of (D, σ) with maximal depth
d and an F-monomorphism τ : H → E with δ(τ (a)) ≤ δ(a)
for all a ∈ H. Then reordering of (D, σ) proves the cor-
responding result for the extension (S, σ) of (F, σ). Besides
this we will show that there is a Σ∗-extension (A, σ) of (H, σ)
and a σ-isomorphism ρ : E → A such that ρ(τ (a)) = a for
all a ∈ F(t1) . . . (te); this property is needed to handle the
Π-extension case in the proof step (II).
Induction base: If e = 0, i.e., H = F, the statement is
proven by taking (E, σ) := (D, σ) with the F-monomorphism
τ : F → D where τ (a) = a for all a ∈ F and by taking
(A, σ) := (S, σ) with the σ-isomorphism ρ : D → A where
ρ(a) = a for all a ∈ D.
Induction assumption: Otherwise, suppose that 1 ≤ i <
e and write H′ := F(t1) . . . (ti−1). Assume that there is a
ΠΣ∗-extension (E, σ) of (D, σ) with maximal depth di−1 and
a Σ∗-extension (A, σ) of (H′, σ) with A := H′(s1) . . . (sr) to-
gether with an F-monomorphism τ : H′ → E with δ(τ (a)) ≤
δ(a) for all a ∈ H′ and a σ-isomorphism ρ : E → A with
ρ(τ (a)) = a for all a ∈ H′.
Induction step: (I) First suppose that ti is a Σ∗-extension.
Define f := τ (σ(ti) − ti) ∈ E. Note that

δ(f) ≤ δ(σ(ti) − ti) < di (4)

by assumption. (I.i) Suppose that there is no g ∈ E with
σ(g)−g = f . Then we can construct the Σ∗-ext. (E(y), σ) of
(E, σ) with σ(y) = y+f by Thm. 1 and the F-monomorphism
τ ′ : H′(ti) → E with τ ′(a) = τ (a) for all a ∈ H′ and τ ′(ti) =
y. With (4) we have δ(y) = δ(f) + 1 ≤ di and conse-
quently, using our induction assumption, δ(τ ′(a)) ≤ δ(a) for
all a ∈ H(ti). Moreover, the Σ∗-ext. (E(y), σ) of (D, σ) has
maximal depth di. Furthermore, by Prop. 1.4 we can con-
struct a Σ∗-ext. (A(ti), σ) of (A, σ) with the σ-isomorphism
ρ′ : E(y) → A(ti) with ρ′(a) = ρ(a) for all a ∈ A and ρ′(y) =
ti. Hence ρ′(τ (a)) = a for all a ∈ H′ and ρ′(τ ′(ti)) =
ρ′(y) = ti, i.e., ρ′(τ ′(a)) = a for all a ∈ H′(ti). By re-
ordering we get a Σ∗-ext. (A′, σ) of (H(ti), σ) with our iso-
morphism ρ′ : E(y) → A′. This shows the induction step for
this particular case. (I.ii) Suppose there is a y ∈ E with
σ(y) − y = f . Since (E, σ) is a ΠΣ∗-extension of (D, σ)
with maximal depth di−1 ≤ di, we can apply Lemma 4
and obtain by reordering of (E, σ) a δ-optimal ordered ΠΣ∗-
extension (G(z1) . . . (zl)(x1) . . . (xu), σ) of (G(z1) . . . (zl), σ)
where δ(G(z1) . . . (zl)) ≤ di and δ(xj) > di. Hence with (4)
we can apply Lemma 3.1 and get δ(y) ≤ di, i.e., δ(y) ≤ δ(ti).
In particular, we get the F-monomorphism τ ′ : H′(ti) → E
with τ ′(a) = τ (a) for all a ∈ H′ and τ ′(ti) = y. Then by
the previous considerations and our induction assumption
it follows that δ(τ ′(a)) ≤ δ(a) for all a ∈ H′(ti). What re-
mains to show is that there is a Σ∗-ext. (A′, σ) of (H′(ti), σ)
with a σ-isomorphism ρ′ : E → A′ with ρ′(τ ′(a)) = a for all
a ∈ H′(ti). Define h := ρ(y) ∈ A. Then σ(h) − h = ρ(f).
Let j be minimal such that h ∈ H′(s1) . . . (sj). By Prop. 1.3,
(H′(s1) . . . (sj−1)(sj), σ) and (H′(s1) . . . (sj−1)(ti), σ) are iso-
morphic with λ(a) = a for all a ∈ H′(s1) . . . (sj−1) and
λ(ti) = h. Hence the reordered (H′(ti)(s1) . . . (sj−1), σ),
(H′(s1) . . . (sj−1)(sj), σ) are isomorphic with λ. By Prop. 1.4

there is a Σ∗-ext. (A′, σ) of (H′(ti)(s1) . . . (sj−1), σ) which is
isomorphic to (A, σ) with λ : A′ → A where λ(a) = a for
a ∈ H′ and λ(ti) = h. Take the σ-isomorphism ρ′ : E → A′

with ρ′(a) := λ−1(ρ(a)) for all a ∈ E. Then ρ′(τ ′(a)) =
λ−1(ρ(τ (a))) = λ−1(a) = a for a ∈ H′ and ρ′(τ ′(ti)) =
λ−1(ρ(y)) = λ−1(h) = ti, i.e., ρ′(τ ′(a)) = a for a ∈ H′(ti).
(II) Suppose that ti is a Π-ext., i.e., α := σ(ti)/ti ∈ H′.
Moreover, assume that there is a g ∈ E and an n > 0 with
σ(g)/g = τ (α)n. Then there is a g′ ∈ A with σ(g′)/g′ =
ρ(τ (α))n = αn. Let j be minimal s.t. g′ ∈ H′(s1) . . . (sj).
We have j ≥ 1, since otherwise ti is not a Π-ext. over
H′. Applying Lemma 1.1 shows that such a solution g′ ∈
H′(s1) . . . (sj) does not exist, a contradiction. Therefore,
there is a Π-extension (E(y), σ) of (E, σ) with σ(y) = f y
where f := τ (α). Now we can follow the proof idea as in case
(I.i) to complete the induction step. Namely, we construct
the F-monomorphism τ ′ : H′(ti) → E with τ ′(a) = τ (a) for
all a ∈ H′ and τ ′(ti) = y. With δ(f) = δ(τ (α)) ≤ δ(α) <
di we have δ(y) = δ(f) + 1 ≤ di and consequently, us-
ing our induction assumption, δ(τ ′(a)) ≤ δ(a) for all a ∈
H(ti). Moreover, the Π-extension (E(y), σ) of (D, σ) has
maximal depth di. Furthermore, by Prop. 1.4 we can con-
struct a Π-extension (A(ti), σ) of (A, σ) with the isomor-
phism ρ′ : E(y) → A(ti) with ρ′(a) = ρ(a) for all a ∈ A and
ρ′(y) = ti. This means that ρ′(τ (a)) = a for all a ∈ H′ and
ρ′(τ ′(ti)) = ρ′(y) = ti, i.e., ρ′(τ ′(a)) = a for all a ∈ H′(ti).
By reordering we get a Σ∗-extension (A′, σ) of (H(ti), σ)
with our isomorphism ρ′ : E(y) → A′. This completes our
inductive proof.

Finally, we explain how problem B and the problem to
represent sums in δ-optimal extensions can be solved.
Let (F, σ) be a ΠΣ∗-extension of (G, σ) with d := δ(F), a ∈
(F∗)2, and 0 6= f ∈ Fn. (a, f ) is called F-complete, if for
any ΠΣ∗-extension (E, σ) of (F, σ) with maximal depth d we
have V(a, f , E) = V(a, f , F). We get immediately

Theorem 4. Suppose (F(s), σ) is a Σ∗-extension of (F, σ)
with σ(s) = s + f and δ(s) = δ(F) + 1. Then the extension
s is δ-complete iff ((1,−1), (f)) is F-complete.

Now the crucial observation is that problem B and the prob-
lem to represent sums can be reduced to problem

C: Given a δ-optimal ordered ΠΣ∗-ext. (F, σ) of (G, σ), a
homogenous a ∈ F2 and f ∈ Fn. Find a Σ∗-ext. (S, σ) of
(F, σ) where (S, σ) is a δ-optimal ordered ΠΣ∗-extension of
(G, σ) by reordering and where (a, f ) is S-complete.

• Representing sums in δ-optimal extensions: Suppose
we have given a δ-optimal ordered ΠΣ∗-extension (F, σ) of
(G, σ) and given f ∈ F. Then by solving C we obtain
a ΠΣ∗-extension (S, σ) of (F, σ) which can be reordered
to a δ-optimal ordered ΠΣ∗-extension of (G, σ) and where
((1,−1), (f)) is S-complete. If there is a g ∈ S with σ(g) −
g = f , we can represent the sum by g ∈ S; see Exp. 6.2. By
Lemma 6.3 this will always happen, if δ(f) < δ(F).
Otherwise, if there is no such g and δ(F) = δ(f), take
the Σ∗-extension (F(s), σ) of (F, σ) with σ(s) − s = f and
δ(s) = δ(F) + 1. Then we can apply the following result.

Theorem 5. Let (F, σ) be a ΠΣ∗-extension of (G, σ), and
let (S, σ) be a Σ∗-extension of (F, σ) which gives a δ-optimal
ordered extension of (G, σ) by reordering.
Let 0 6= a ∈ F2 and f ∈ Fn. If (a, f ) is S-complete and
V(a, f , S) = V(a, f , F), then (a, f ) is F-complete.
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Proof. Suppose (a, f ) is not F-complete, i.e., there is a
ΠΣ∗-extension (H, σ) of (F, σ) with maximal depth d := δ(F)
and g ∈ H \ F, c ∈ Kn s.t. σag = cf . By Thm. 3 there is
a ΠΣ∗-extension (E, σ) of (S, σ) with maximal depth d and
an F-monomorphism τ : H → E. Hence σaτ (g) = cf . Since
(a, f ) is S-complete, τ (g) ∈ S. By V(a, f , S) = V(a, f , F),
τ (g) ∈ F; a contradiction.

Namely, by Theorem 5 ((1,−1), (f)) is F-complete. Hence
by Theorem. 4 s is δ-optimal, and thus (F(s), σ) is a δ-
optimal ordered ΠΣ∗-extension of (G, σ); see Example 4.

• Solving B: Suppose we have given a δ-optimal ordered
ΠΣ∗-extension (F, σ) of (G, σ) and given f ∈ Fn. Then
Theorem 6 tells us how we can solve B by solving C.

Theorem 6. Let (F, σ), (S, σ) be as in Theorem 5. Sup-
pose that ((1,−1), f ) is S-complete for f ∈ Fn. Then the
following holds: If there is a solution g and c ∈ Kn for
problem B, there is also a g ∈ S with (1) and δ(g) = δ(cf ).

Proof. Let (S, σ) be such an extension and suppose that
we have a solution of B, i.e., a ΠΣ∗-extension (H, σ) of (F, σ)
with H = F(x1) . . . (xr), a c ∈ Kn and a g ∈ H∗ with σ(g)−
g = c f =: f and δ(g) = δ(f). Hence δ(g) ≤ d := δ(F).
Remove all xi from H where δ(xi) > d. This gives a ΠΣ∗-
extension (H′, σ) of (S, σ) with maximal depth d where g ∈
H′. By Thm. 3 there is a ΠΣ∗-extension (E, σ) of (S, σ)
with maximal depth d and an F-monomorphism τ : H′ → E.
Thus σ(τ (g)) − τ (g) = f with τ (g) ∈ E. Since ((1,−1), f )
is S-complete, τ (g) ∈ S.

Remark: The two problems from above are closely related.
Namely, if one represents sums in δ-optimal Σ∗-extensions as
suggested above, we actually try to solve B with f = (f); see
Exp. 6. Only if this fails, we construct a δ-optimal extension
(E, σ) s.t. g ∈ E with σ(g) − g = f and δ(g) = δ(f) + 1.

4. EXTENSION-STABLE REDUCTIONS
We sketch a reduction strategy presented in [9].

• With this reduction one can solve problem A if one can
solve problem A in the ground field (G, σ) (see Base case I),
and one can compute certain bounds (see Boundings).
• Afterwards we show some properties of this reduction in
Lemma 5, which is the starting point for further refinements.
Namely, we modify the reduction strategy in Section 5 (see
Remark 1) which finally enables us to solve C.

Let (E, σ) with E = G(t1) . . . (te) be a ΠΣ∗-extension of
(G, σ), K := constσG, 0 6= a = (a1, a2) ∈ E2 and f ∈ En.

The reduction strategy for (a, f , E):
If a1 a2 = 0, a basis is immediate. Hence suppose a ∈ (E∗)2.
Base case I: If e = 0, take a basis of V(a, f , G).
Denote H := G(t1) . . . (te−1), t := te; suppose σ(t) = α t+β.
Boundings: First a denominator bound is needed, i.e., a
d ∈ H[t]∗ such that for all c ∈ Kn and g ∈ H(t) with
σag = cf we have d g ∈ H[t]. Given such a d, define
a′ = (a′

1, a
′
2) := (a1/σ(d), a2/d) q ∈ H[t]2 and f ′ := f q ∈

H[t]n for some q ∈ H(t)∗; more precisely, take a q such
that the denominators are cleared and common factors are
cancelled in a′ and f ′ . Since {(κi1, . . . , κin, pi)}1≤i≤µ is a
basis of V(a′, f ′, H[t]) iff {(κi1, . . . , κin, pi

d
)}1≤i≤µ is a basis

of V(a, f , H(t)), it suffices to find a basis of V(a′, f ′ , H[t]).
Next, need a degree bound b ∈ N0 ∪{−1} for the polynomial
solutions, i.e., a b s.t. V(a′, f ′ , H[t]) = V(a′, f ′ , H[t]b) and

f ′ ∈ H[t]l+b where l := max(deg(a′
1), deg(a′

2)) ≥ 0.
Set δ := b and fδ := f ′ . Then we go on with the
Incremental reduction for (a′ , fδ): Suppose that a′ =
(a′

1, a
′
2) ∈ (H[t]∗)2 with l := max(deg(a′

1), deg(a′
2)) ≥ 0 and

fδ = (f1, . . . , fn) ∈ H[t]nδ+l for some δ ∈ N0 ∪{−1}; as given

from above. Then we look for all solutions g =
∑δ

i=0 git
i ∈

H[t]δ and c ∈ Kn with σaδ
g = cfδ as follows. First derive

the possible leading coefficients gδ in (H, σ), then plug in
the resulting solutions into σ

a
′g = cfδ and look for the re-

maining g =
∑b−1

i=0 git
i by recursion. More precisely, define

ãδ := ([a′
1]l αδ, [a′

2]l) and f̃δ := ([f1]δ+l, . . . , [fn]δ+l) (5)

where 0 6= ãδ ∈ H2 and f̃δ ∈ Hn; [p]l gives the l-th coef-
ficient of p ∈ H[t]. Afterwards the task is to find a basis

B1 = {(ci1, . . . , cin, wi)}1≤i≤λ of V(ãδ , f̃δ , H). We follow

Reduction I: Apply Reduction strategy for (ãδ , f̃δ , H).

If B1 = {} then c = 0 and g ∈ H[t]δ−1 are the only
choices for σ

a
′g = cfδ . Hence, try to find a basis B2

of V(a, fδ−1, H[t]δ−1) with fδ−1 := (0). Then the basis
B1 can be reconstructed. Otherwise, if B1 6= {}, define
C := (cij) ∈ Kλ×n, g := (w1 tδ, . . . , wλ tδ) ∈ tδ Hλ and

fδ−1 := C fδ − σa
′g. (6)

By construction, fδ−1 ∈ H[t]λδ+l−1. Now we proceed as fol-

lows. Find all h ∈ H[t]δ−1 and d ∈ Kλ with σa
′(h + d g) =

d C fδ which is equivalent to σa
′h = d fδ−1, i.e., find a

basis B2 of V(a, fδ−1, H[t]δ−1). Then given B1 and B2, a
basis for V(a′, f ′ , H[t]δ) can be computed; for more details
see [9]. To get B2, we follow

Reduction II: Apply Incr. Reduction for (a′ , fδ−1).

If δ = −1, we have reduced the problem to linear algebra.
Base case II: Take a basis of V(a′, f−1, {0}) which equals
to {k ∈ Kn |f−1 k = 0} × {0}.

We call (a, f , H(t)) the reduction problem of V(a, f , H(t)).
• Following Reduction II and Base case II one gets an in-
cremental reduction of (a, f , H(t)). The incremental prob-
lems are ((a′, fδ), . . . , (a′, f−1)) and the coefficient prob-

lems are ((ãδ , f̃δ), . . . , (ã0, f̃0)). (a, f , H(t)) is called the

father-problem of (ãi , f̃i) for 0 ≤ i ≤ δ.
• Following Reduction I and Base case I one gets a tree
of recursive reductions called a reduction of (a, f , H(t)) to
G. We call a coefficient problem in the ground field (G, σ)
within this reduction a G-problem. A G-problem (a′, f ′) is
critical if a′ is homogeneous over G and if for all its father-
problems (ai, fi , G(t1) . . . (ti)) with 1 ≤ i ≤ e within the
reduction the ai are homogeneous over G(t1) . . . (ti).

Next, we introduce reductions to F that are extension-stable.
A denominator bound d ∈ H[te]

∗ of V(a, f , H(te)) or a de-
gree bound b of V(a, f , H[te]) is extension-stable over G if
a is inhomogeneous over H(te) or the following holds: For
any ΠΣ∗-extension (H(te)(x1) . . . (xr), σ) of (H(te), σ) that
can be reordered to the ΠΣ∗-extension (F, σ) of (G, σ) with
F := G(x1) . . . (xr)(t1) . . . (te) the polynomial d is a denomi-
nator bound of V(a, f , F). Similarly, b must also be a degree
bound of V(a, f , G(x1) . . . (xr)(t1) . . . (te−1)[te]).
We call a reduction of V(a, f , H(te)) to G extension-stable
if all denominator and degree bounds within the reduction
to G are extension-stable over G.
Finally, we say that (G, σ) is depth-computable, in short
δ-computable, if one can handle base case I for any 0 6=
a ∈ G2, f ∈ Gn, and for any ΠΣ∗-extension (H(t), σ) of
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(G, σ) the following holds: one can hanlde base case II for
f−1 ∈ H[t]n, and one can compute extension stable denom-
inator and degree bounds. Given these properties a basis of
V(a, f , E)) can be computed by our reduction.

By the results in [6, Thm. 8.2], [4, Thm. 7.3] it follows that
such extension-stable degree bounds exist. Moreover, they
can be computed if (G, σ) is a ΠΣ∗-field over a σ-computable
constant field K. In this case Base case II can be solved by
linear algebra methods and Base case I can be handled by
applying our reduction again. Summarizing, we obtain

Theorem 7. Let (E, σ) with E := G(t1) . . . (te) be a ΠΣ∗-
extension of (G, σ). (1) There is an extension-stable reduc-
tion of (a, f , H(te)) to G for 0 6= a ∈ E2 and f ∈ En. (2) A
ΠΣ∗-field (G, σ) over a σ-computable K is δ-computable.

Example 3. In the ΠΣ∗-field from Exp. 1.1 there is the fol-
lowing extension-stable reduction (a, f , Q(t1)(t2)) to Q(t1)
for a = (1,−1), f = σ(t2/t21). Take for V(a, f , Q(t1)(t2))
the extension-stable denominator 1, for V(a, f , Q(t1)[t2])
the extension-stable degree bound 2. We get the coeffi-
cient problems (((t1 + 1)2,−(t1 + 1)2), f̃i) with f̃2 = (0),

f̃1 = (−2(t1 + 1), 1) and f̃0 = (t1 + 1); these are the Q(t1)-
critical problems in our reduction.

Finally, we show the following generalization of [8, Prop. 1].

Lemma 5. Let (E(x), σ) be a ΠΣ∗-extension of (F, σ) with
E := F(t1) . . . (te) and σ(x) = α x + β where α, β ∈ F;
consider the reordered ΠΣ∗-extension (F(x)(t1) . . . (te), σ) of
(F, σ). Let a ∈ E2 be homogeneous over E, f ∈ En and
take an extension-stable reduction of (a, f , E) to F where
S contains all F-critical problems. If for all (a′, f ′) ∈ S
we have V(a′, f ′, F) = V(a′, f ′ , F(x)) then V(a, f , E) =
V(a, f , E(x)). Moreover, there is an extension-stable reduc-
tion of (a, f , F(x)(t1) . . . (te)) to F(x) where all the F(x)-
critical problems are given by S.

Proof. The proof will be done by induction on the num-
ber of extensions. If e = 0, nothing has to be shown. Oth-
erwise suppose that the lemma holds for the first e − 1 ex-
tensions with e ≥ 1. Let (F(t1) . . . (te)(x), σ) be a ΠΣ∗-
extension of (F, σ) with σ(x) = α x + β, α, β ∈ F, and
consider the reordered ΠΣ∗-extension (F(x)(t1) . . . (te), σ)
of (F, σ). Denote E := F(t1) . . . (te−1), t := te and H :=
F(x)(t1) . . . (te−1) as shortcut. Let a ∈ E(t)2 be homoge-
neous over E(t), f ∈ E(t)n, take an extension-stable re-
duction of (a, f , E(t)) to F where S contains all F-critical
problems, and suppose that V(a′, f ′ , F) = V(a′, f ′ , F(x))
for all (a′ , f ′) ∈ S. Then we show that V(a, f , E(t)) =
V(a, f , H(t)). Moreover, as a by-product, we show that
there is an extension-stable reduction of (a, f , H(t)) to F(x)
with the F(x)-critical problems given by S.
In the extension-stable reduction let d ∈ E[t]∗ be the de-
nominator bound of the solution space V(a, f , E(t)). Since
a is homogeneous over E(t), d ∈ H[t] is also a denomina-
tor bound of V(a, f , H(t)); by definition it is extension-
stable. After clearing denominators and cancelling common
factors, we get a′ = (a′

1, a
′
2) := (a1/σ(d), a2/d) q ∈ E[t]2

and f ′ := f q ∈ E[t]n for some q ∈ E(t)∗ in our reduc-
tion. Note that a′ is still homogeneous over E(t): we have
σa

′h′ = 0 with h′ := h d ∈ H[t]∗ for some h ∈ E(t)∗ with
σah = 0. Now it suffices to show that V(a′, f ′ , H[t]) =
V(a′, f ′ , E[t]). In the given reduction let b be the extension-
stable degree bound of V(a′, f ′ , E[t]). Therefore b is a degree

bound of V(a′, f ′ , H[t]); it is also extension-stable. Hence,
we have to show V(a′, f ′ , E[t]b) = V(a′, f ′, H[t]b). Let
((a′, fb), . . . , (a

′, f−1)) be the incremental problems and

((ãb, f̃b), . . . , (ã0, f̃0)) be the coefficient-problems in the in-

cremental reduction. We show V(ãi , f̃i , E) = V(ãi, f̃i , H)
for all 0 ≤ i ≤ b. First suppose that ãi is inhomogeneous
over E. Note that ãi = ([a′

1]l αi, [a′
2]l) by (5). Since σa

′h′ =
0, we get by coefficient comparison αk[a′

1]lσ(h′′)+ [a′
2]lh

′′ =
0 where k := deg(h′) and h′′ ∈ E∗ is the leading coefficient
of h′. Hence (αk[a′

1]l, [a
′
2]l) ∈ (E∗)2 is homogeneous over E.

Since ãi is inhomogeneous, i 6= k and α 6= 1, i.e., t is a
Π-extension. Therefore, by Lemma 1.2 ãi is inhomogeneous
over E(x) and V(ãi , f̃i , E) = V(ãi, f̃i , E(x)). Thus ãi is

inhomogeneous over H and V(ãi, f̃i, E) = V(ãi , f̃i , H). In

particular, there are no F-critical problems in (ãi , f̃i , E) to

F and no F(x)-critical problems in (ãi , f̃i , H) to F(x). Oth-
erwise, assume that ãi is homogeneous over E. Then the
extension-stable reduction of (a, f , E(t)) to F contains an

extension-stable reduction of (ãi , f̃i , E) to F and all the F-

critical problems of the reduction of (ãi , f̃i , E) are given by
a subset Si of S. Hence with the induction assumption it
follows that V(ãi , f̃i , E) = V(ãi, f̃i , H) and the F(x)-critical

problem in (ãi, f̃i , H) to F(x) are also Si. Since E[t]−1 =
H[t]−1 = {0}, V(a, f−1, E[t]−1) = V(a, f−1, H[t]−1). Thus,
we get an extension-stable reduction of (a, f , H(t)) to F(x)
where the F(x)-critical problems are given by S. By con-
struction, V(a′, fi , E[t]i) = V(a′, fi, H[t]i) for all i. Hence
V(a, f , H(t)) = V(a, f , E(t)) = V(a, f , E(t)(x)).

5. SOLVING PROBLEM C
We will solve C (Theorem 8) by refining the reduction

from above. Some special cases (Lemma 6) are immediate.

Lemma 6. Let (F, σ) be a ΠΣ∗-ext. of (G, σ) with d :=
δ(F), a = (a1, a2) ∈ F2 be homogeneous, f ∈ Fn and V :=
V(a, f , F). (1) If d = 0 or dim V = n + 1, then (a, f ) is F-
complete. (2) If d = 1, constσG = G and σ(g)− g ∈ G∗ for
some g ∈ F, then (a, f ) is F-complete. (3) If δ(f ), δ(a) <
δ(F) and (a, f ) is F-complete, then dim V = n + 1.

Proof. (1) is obvious. (2) Suppose (a, f ) is not F-
complete, i.e., there is a ΠΣ∗-ext. D := F(x1) . . . (xr) with
depth 1, h ∈ D \ F and c ∈ Kn s.t. σah = cf . By Prop. 1.2
there is an xi with σ(xi)−xi =: k ∈ G∗. Hence, σ(c g)−c g =
k with c := k/(σ(g) − g) ∈ G∗, a contradiction that xi is a
Σ∗-ext. by Thm. 1. (3). Suppose dim V < n + 1, i.e., there
is a c ∈ Kn s.t. there is no g ∈ F with σag = cf =: f .
Take h ∈ F∗ with σah = 0. Then there is no g ∈ F with
σ(g) − g = −f/(ha2) where a = (a1, a2). Thus there is the
Σ∗-ext. (F(s), σ) of (F, σ) with σ(s) = s − f/(ha2), δ(s) ≤
δ(F) and σas = f . Hence (a, f ) is not F-complete.

Theorem 8. Let (F, σ) be a δ-optimal ordered ΠΣ∗-ext.
of (G, σ), a ∈ F2 be homogeneous and f ∈ Fn. Then there
is a Σ∗-extension (S, σ) of (F, σ) where (S, σ) is a δ-optimal
ordered ΠΣ∗-ext. of (G, σ) by reordering and where (a, f ) is
S-complete. It can be computed if (G, σ) is δ-computable.

We proceed as follows. Using Lemma 5 from Section 4 we
provide a sufficient condition (Condition A) in Proposition 2
that guarantees that the solution space cannot be increased
by extensions with maximal depth d − 1. Given this result
we can derive a criterion wether (a, f ) is S-complete for a
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given Σ∗-extension (S, σ) of (E, σ); see Thm. 9.

Condition A: Let (E, σ) with E := F(t1) . . . (te) be a ΠΣ∗-
extension of (F, σ) where δ(F) = d − 1 and δ(ti) ≥ d. Let
a ∈ E2 be homogeneous over E and f ∈ En, and suppose
that all F-critical problems, say S = {(ai , fi)}1≤i≤k with
ai = (ai1, ai2), fi = (fi1, . . . , firi

) ∈ Fri , of an extension-
stable reduction of V((1,−1), f , E) to F are F-complete.

Proposition 2. Suppose that Condition A holds, and let
(S, σ) with S = E(x1) . . . (xr) be a ΠΣ∗-extension of (E, σ)
with maximal depth d − 1. Then V(a, f , E) = V(a, f , S).
Moreover, for the reordered difference field (H(t1) . . . (te), σ)
with H = F(x1) . . . (xr) there exists an extension-stable re-
duction of (a, f , H(t1) . . . (te)) to H with the H-critical prob-
lems S which are all H-complete.

Proof. Since all F-critical problems are F-complete, we
have V(ai, fi, F) = V(ai , fi , F(x1)) = · · · = V(ai, fi , H).
By applying Lemma 5 r times, it follows that there is an
extension-stable reduction of (a, f , H(t1) . . . (te)) to H with
the H-critical problems given by S; clearly they are H-com-
plete. Moreover, V(a, f , E) = V(a, f , S).

Theorem 9. Suppose that Cond. A holds with δ(ti) = d.
If (S, σ) is a Σ∗-extension of (E, σ) with maximal depth d

where for any 1 ≤ i ≤ k and 1 ≤ j ≤ ri there is a g ∈ D∗

with ai1 σ(g) − ai2 g = fij then (a, f ) is S-complete.

Proof. Suppose that (a, f ) is not S-complete, i.e., there
is a ΠΣ∗-ext. (H, σ) of (S, σ) with maximal depth m ≤ d, a
g ∈ H \ S and c ∈ Kn with σag = cf . Let m be minimal.

By [8, Lemma 1] we may refine this assumption to H = H̃(s)

with δ(s) = m and σ(s) − s ∈ H̃ where (H̃, σ) is a ΠΣ∗-ext.

of (S, σ) with maximal depth m−1 and g ∈ H̃(s)\H̃. Subse-

quently, write H̃ = E(x1) . . . (xr) with δ(xi) < d. Now con-
sider the extension-stable reduction as claimed above and
take the reordered ΠΣ∗-ext. (F(x1) . . . (xr)(t1) . . . (tr), σ) of

(F, σ); denote F̃ := F(x1) . . . (xr). Applying Prop. 2 we

get an extension-stable reduction of (a, f , F̃(t1) . . . (te)) to

F̃ with the F̃-critical problems S which are all F̃-complete.
By Lemma 5 together with V(a, f , E) ( V(a, f , H) it follows
that there is an (a′, f ′) ∈ S with f ′ ∈ Fν and V(a′, f ′ , F) =

V(a′, f ′ , F̃) ( V(a′, f ′, F̃(s)). Therefore, there is a g′ ∈

F̃(s) \ F̃ and c′ ∈ Kν with σ
a

′g′ = c′f ′ . In particular,

g′ ∈ H̃(s) \ S. By assumption on the Σ∗-extension (S, σ)
of (E, σ) there are gi ∈ S with σa

′gi = f ′
i . Hence for

h′ := c h ∈ S with h = (g1, . . . , gν) we have σa
′h′ = c′f ′ , a

contradiction to Prop. 1.1. Hence (a, f ) is S-complete.

Example 4. With this result and Theorems 4 and 5 we can
test if the extension t3 in Exp. 1.1 is δ-optimal: Take the
reduction to Q(t1) from Exp. 3. By Lemma 6.2 the Q(t1)-
critical problems are Q(t1)-complete, i.e., Condition A holds.
Take (Q(t1)(t2)(x

′
1), σ) with σ(x′

1) = x′
1 +1/(t1 + 1)2. Since

there are g ∈ Q(t1)(t2)(x
′
1) with (t1+1)2σ(g)−(t1+1)2g = f

for f ∈ {0,−2(t1+1), 1, 1/(t1+1)}, P := ((1,−1), (σ(t2/t21)))
is Q(t1)(t2)(x

′
1)-complete by Thm. 9. Since there is no

g ∈ Q(t1)(t2)(x
′
1) with σ(g) − g = σ(t2/t21), P is Q(t1)(t2)-

complete by Thm. 5. Thus t3 is δ-complete by Thm. 4.

Finally, we prove Thm. 8 by showing that such an exten-
sion (S, σ) supposed in Thm. 9 exists. More precisely, in
Lemma 7 we show how we can construct an extension s.t.
Condition A holds (see Alg. 1), and in Lemma 8 we show

how we can construct an extension (S, σ) with the criterion
in Thm. 9 (see Alg. 2). The resulting algorithms are appli-
cable if (G, σ) is δ-computable.
The corresponding proofs are done inductively/recursively:
under the assumption that Theorem 8 holds for the depth
level d − 1 we show the desired results for the depth level d.

Lemma 7. Suppose that Thm. 8 holds with the restriction
that δ(F) = d − 1. Let (E, σ) be a δ-optimal ordered ΠΣ∗-
extension of (G, σ) where E := F(t1) . . . (te) with δ(F) = d−1
and δ(ti) = d; let a ∈ E2 be homogeneous over E and f ∈
En. Then there is a Σ∗-extension (S, σ) of (E, σ) with max-
imal depth d−1 that can be reordered to a δ-optimal ordered
ΠΣ∗-extension (D(t1) . . . (te), σ) of (G, σ) with δ(D) = d − 1
such that the following holds: there is an extension-stable
reduction of (a, f , D(t1) . . . (te)) to D where all D-critical
problems are D-complete. If (G, σ) is δ-computable, such
an extension can be computed.

Proof. If e = 0, the lemma follows by using the depth-
restricted version of Thm. 8. Otherwise suppose that the
lemma holds for a ΠΣ∗-extension (H, σ) of (F, σ) with H :=
F(t1) . . . (te−1), e ≥ 1. Now take a δ-optimal ΠΣ∗-ext.
(H(t), σ) of (H, σ) with δ(t) = d; let f ∈ H(t)n and a ∈
H(t)2 be homogeneous. Then we show that the lemma holds
for (H(t), σ). Take an extension-stable denominator bound
d ∈ H[t]∗ of V(a, f , H(t)). Set a′ := (a1/σ(d), a2/d) ∈
H(t)2, f ′ := f and clear denominators and common fac-
tors s.t. a′ ∈ (H[t]∗)2 and f ′ ∈ H[t]n. Take an extension-
stable degree bound b of V(a′, f ′, H[t]). Now we show that
there is a Σ∗-ext. (S, σ) of (H(t), σ) with maximal depth
d − 1 that can be reordered to a δ-optimal ordered ΠΣ∗-
extension (D(t1) . . . (te−1)(t), σ) of (G, σ) with δ(D) = d − 1
such that for all coefficient problems there is an extension-
stable reduction of (a, f , D(t1) . . . (te−1)) to D in which all
D-critical problems are D-complete. If b = −1, nothing
has to be shown. Otherwise, suppose that we have ob-
tained such an extension that gives extension-stable reduc-
tions for the first u ≥ 0 coefficient problems in which all
D-problems are D-complete. Denote B := D(t1) . . . (te−1)

and let (ã, f̃ ) be the u + 1-th coefficient problem. If ã is
inhomogeneous, no additional D-critical problems appear.
Hence our extension gives extension-stable reductions for
the first u + 1 coefficient problems. Otherwise, if ã is ho-
mogeneous, we can apply our induction assumption and get
a Σ∗-extension (S′, σ) of (B, σ) with maximal depth d − 1,
i.e., S′ = B(s1) . . . (sr) with δ(si) < d and with the fol-
lowing properties. We can reorder the extension to a δ-
optimal ordered ΠΣ∗-extension (B′, σ) of (G, σ) with B′ :=
D′(t1) . . . (te−1) and δ(D′) < d such that all D′-critical prob-

lems in (ã, f̃ , B′) to D′ are D′-complete. Then we apply
Prop. 2 and it follows that also all the D′-critical problems
in the extension-stable reductions of the first u coefficient-
problems are D′-complete. In particular, the correspond-
ing solution spaces are the same. Hence, we obtain an
extension where the first u + 1 coefficient problems have
extension-stable reductions where all D′-critical problems
are D′-complete. Since (D(s1) . . . (sr), σ) is a Σ∗-extension
of (D, σ), (B(t)(s1) . . . (sr), σ) is a Σ∗-ext. of (B(t), σ) by
Lemma 3.2. Moreover, (S′(t), σ) is a δ-optimal ΠΣ∗-ext.
of (S′, σ): if t is a Π-ext., this follows by definition; other-
wise, since (B(t), σ) is a δ-optimal ext. of (B, σ), this follows
by Lemma 4. Since reordering below of t does not change
this property, (B′(t), σ) is a δ-optimal ordered ΠΣ∗-ext. of
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(G, σ). Applying these arguments b + 1-times shows that
there is an extension in which all coefficient problems have
extension-stable reductions and where all D′-critical prob-
lems are D′-complete. Since b and d are extension-stable,
we obtain an extension-stable reduction of (a, f , B′(t)) to
D′ where all D′-problems are D′-complete. If (G, σ) is δ-
computable, Thm. 8 can be applied constructively. Hence
such an extension can be computed; see Alg. 1.

Algorithm 1. CompleteSubProblems(a, f , E, d)

In:A δ-optimal ordered ΠΣ∗-extension (E, σ) of a δ-com-
putable (G, σ) where 0 ≤ d < δ(E) and E = F(t1) . . . (te)
with δ(F) = d, δ(ti) > d; a homogeneous a = (a1, a2) ∈ E2,
f ∈ En. An algorithm with the specification as Alg. 2.

Out:(E′, B, S). A δ-optimal ordered ΠΣ∗-extension (E′, σ)
of (G, σ) with E′ := D(t1) . . . (te) s.t. reordering of (E′, σ)
gives a Σ∗-extension of (E, σ) with maximal depth d. A
basis B of V. The D-critical problems S, all D-complete, of
an extension-stable reduction from (a, f , D(t1) . . . (te)) to D.

(1)IF e = 0 RETURN (E′, B, {(a, f )}) after computing
(E′, B):=CompleteSolutionSpace(a, f , E). FI

(2)Write H := F(t1) . . . (te−1). Compute an extension-stable
denominator bound d ∈ H[te]

∗ of V(a, f , H(te)). Set
a′ := (a1/σ(d), a2/d) ∈ H(te)

2, f ′ := f and clear the de-
nominators and common factors. Compute an extension-
stable degree bound b of V(a′, f ′ , H[te]).

(3)FOR δ := b to 0 DO

(4) Define 0 6= ãδ ∈ H2 and f̃δ ∈ Hn as in (5).

(5) IF ãδ is inhomogeneous over H THEN compute a basis

Bδ of V(ãδ , f̃δ , H) and set Sδ = {}, ELSE

(H, Bδ , Sδ) := CompleteSubProblems(ãδ , f̃δ , H, d). FI

(6) Take the δ-optimal ΠΣ∗-extension (H(te), σ) of (H, σ)
and define fδ−1 by (6) or fδ−1 := (0).

(7)OD

(8)Compute a basis B−1 of V(a′, f−1, {0}) (base case II).
Given the bases Bi, compute for V(a, f , H[te]b) a basis

B = {(κi1, . . . , κin, pi)}1≤i≤µ; set S :=
⋃b

i=0 Si.

(9)RETURN (H(te), S, {(κi1, . . . , κin, pi

d
)}1≤i≤µ). FI

Example 5. We apply our algorithm for a = (1,−1), f =
(σ(t3/t31)) with the δ-optimal Σ∗-extension (Q(t1)(t2)(t3), σ)
of (Q, σ) given in Exp. 1.1. Denote D = Q(t1)(t2). We com-
pute the denominator bound 1, the degree bound 2, and the
first D-critical problem P2 := ((1,−1), (0)); it is D-complete.
Hence, D is not extended. Next, we get the D-critical prob-
lem P1 := (a′, (−2(1 + (t1 + 1)t2), 1)) with a′ = ((t1 +
1)3,−(t1 + 1)3). We compute the δ-optimal Σ∗-extension
(D′, σ) of (Q, σ) with D′ := Q(t1)(t2)(x1) and σ(x1) = x1 +

1
(t1+1)3

s.t. P1 is D′-complete; see Exp 6.1. By Lemma 4 we

can take the δ-optimal extension (D′(t3), σ) of (D′, σ) and
get P0 := (a′, (1 + (t1 + 1)t2,−x1(1 + (t1 + 1)t2), 1)) as the
last D′-critical problem; like in Exp. 4 one can test that P0

is D-complete. Hence, we get an extension-stable reduction
of (a, f , D′(t3)) to D′ with the D′-complete problems Pi. A
basis of V(a, f , D′(t3)) is {(0, 1)}.

Lemma 8. Suppose that Thm. 8 holds with the restriction
that δ(F) = d − 1. Let (E, σ) be a δ-optimal ordered ΠΣ∗-
extension of (G, σ) where E := F(t1) . . . (te) with δ(F) = d−1
and δ(ti) = d; let a1, . . . , an ∈ F2 be homogeneous and let
f1, . . . , fn ∈ F. Then there is a Σ∗-extension (S, σ) of (F, σ)
with maximal depth d which can be reordered to a δ-optimal

ordered Σ∗-extension of (G, σ) with the following property:
there are gi ∈ S with σai

gi = fi for all i. If (G, σ) is δ-
computable, such an extension can be computed.

Proof. Suppose that the existence of such an extension
(S, σ) of (F, σ) is proven for the first n ≥ 0 cases. Take
an additional homogeneous a = (a1, a2) ∈ F2 and f ∈ F.
If there is a g ∈ S with σag = f , we are done. Oth-
erwise, by reordering of (S, σ) we get a δ-optimal ordered
ΠΣ∗-ext. (D(x1) . . . (xr), σ) of (G, σ) with δ(D) = d − 1 and
δ(xi) = d. Take an h ∈ F∗ with σah = 0. By Lemma 7
we can take a Σ∗-ext. (S′, σ) of (S, σ) with maximal depth
d − 1 that can be reordered to a δ-optimal ordered ΠΣ∗-
ext. (D′(x1) . . . (xr), σ) of (G, σ) with δ(D′) = d − 1 s.t.
the following holds: there is an extension-stable reduction
of ((1,−1), (−f/(ha2)), D

′(x1) . . . (xr)) to D′ where all D′-
critical problems are D′-complete. If σag = f for some g ∈
D′(x1) . . . (xr) = S′, we are done. Otherwise, take the Σ∗-
ext. (D′(x1) . . . (xr)(x), σ) of (D′(x1) . . . (xr), σ) with σ(x) =
x − f/(ha2) and δ(x) ≤ d. Then σa(hx) = f . By Prop. 2
the Σ∗-ext. (D′(x1) . . . (xr)(x), σ) of (D′(x1) . . . (xr), σ) is δ-
optimal; by reordering one gets a Σ∗-ext. (S′(x), σ) of (E, σ)
with maximal depth d. Suppose that (G, σ) is δ-computable.
Then such g, h can be computed and Lemma 7 becomes con-
structive. Hence also Lemma 8 gets constructive.

Proof of Theorem 8. The proof will be done by induc-
tion on δ(F). If d = 0, (a, f ) is G-complete by Lemma 6.1.
Now suppose that the theorem holds for (F, σ) with δ(F) =
d−1, d > 0. Consider the δ-optimal ΠΣ∗-ext. (E, σ) of (F, σ)
with E := F(t1) . . . (te) and δ(ti) = d; let a ∈ E2 be homoge-
neous and f ∈ En. By Lemma 7 there is a Σ∗-ext. (S, σ) of
(E, σ) with maximal depth d−1 which can be reordered to a
δ-optimal ordered ΠΣ∗-ext. (D(t1) . . . (te), σ) of (G, σ) with
the following property: there is an extension-stable reduc-
tion of (a, f , D(t1) . . . (te)) to D s.t. all D-critical problems,
say S = {(ai , fi)}1≤i≤k with fi = (fi1, . . . , firi

) ∈ Dri , are
D-complete. Lemma 8 shows that there is a Σ∗-ext. (S′, σ)
of (E, σ) with maximal depth d which can be reordered to a
δ-optimal ordered ΠΣ∗-ext. (D′(t1) . . . (te), σ) of (G, σ) s.t.
σai

= fij for all i, j. By Thm. 9 (a, f ) is D′(t1) . . . (te)-
complete and hence S′-complete. If (G, σ) is δ-computable,
Lemmas 7 and 8 are constructive. This leads to Alg. 2. �

Algorithm 2. CompleteSolutionSpace(a , f , F)

In:A δ-optimal ordered ΠΣ∗-ext. (F, σ) of a δ-computable
(G, σ) with d := δ(F); 0 6= a = (a1, a2) ∈ F2 and f ∈ Fn.
An algorithm with the specification as Alg. 1.

Out:(D, B). A δ-optimal ordered ΠΣ∗-extension (D, σ) of
(G, σ) s.t. reordering gives a Σ∗-ext. of (F, σ) with maximal
depth d and (a, f ) is D-complete; a basis B of V(a, f , D).

(1)IF d = 0, compute a basis B of V(a, f , F); RETURN (F, B).

(2)(E, B, S) := CompleteSubProblems(a, f , F, d − 1).

(3)Following Lemma 8, construct a δ-optimal ordered ΠΣ∗-
extension (D, σ) of (G, σ) s.t. reordering gives a Σ∗-ext.
of (E, σ) with maximal depth d and s.t. there are g ∈ D∗

with σa
′g = f ′

i for all (a′, f ′) ∈ S and all f ′
i from f ′ .

(4)IF E = D RETURN (E, B).

(5)Compute a basis B′ of V(a, f , D); RETURN (D, B′).

Remark 1. If one always skips line (3) (during the recur-
sion), one obtains the reduction presented in Section 4.
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Example 6. Consider (Q(t1)(t2)(t3), σ) from Exp. 1.1.
(1) We solve C for (Q(t1)(t2), σ), a = ((t1 + 1)3,−(t1 + 1)3)
and f = (−2(1 + (t1 + 1)t2), 1) by applying Algorithm 2:
(i) Alg. 1 computes for (a, f , Q(t1)(t2), 1) the Q(t1)-critical
problems (a, f ) with f ∈ {(0, 0), (−2(t1 + 1)2, 0,−2(t1 +
1)), ((t1+1)2, 1)}; they are all Q(t1)-compete by Lemma 6.2.
(ii) Next, the Σ∗-extension (D, σ) of (Q(t1)(t2), σ) with max-
imal depth 2 is computed s.t. for any g ∈ D we have (t1 +
1)3σ(g)−(t1+1)3g = f for f ∈ {0,−2(t1+1)2,−2(t1+1), 1}.
We get D = Q(t1)(t2)(x1)(x

′
1) with σ(x1) = x1+ 1

(t1+1)3
and

σ(x′
1) = x′

1 + 1
(t1+1)2

. By Thm. 9, (a, f ) is D-complete.

(iii) Finally, we compute for V(a, f , Q(t1)(t2)(x1)(x
′
1)) the

basis {(0, 0, 1), (0, 1, x1)}. By Thm. 5 (a, f ) is Q(t1)(t2)(x1)-
complete, i.e., we can remove the extension x′

1.
(2) We solve C for (Q(t1)(t2)(t3), σ), a = (1,−1) and f =
(σ(t3/t31)) by applying Algorithm 2:
(i) We run Alg. 1, see Exp. 5, and get the δ-optimal ordered
Σ∗-extension (D′(t3), σ) of (Q, σ) with the D′-critical prob-
lems P2, P1, P0 for the reduction (a, f , D′(t3)) to D′. Note
that for all f ∈ {0, 1,−2(1 + (t1 + 1)t2), x1(1 + (t1 + 1)t2)}
there is a g ∈ D′(t3) with (t1 + 1)3σ(g) − (t1 + 1)3g = f ,
except the last entry, say f ′.
(ii) We run Alg. 1 and obtain (D′(t3), {(0, 1)}) for the input
(((t1 + 1)3,−(t1 + 1)3), (f ′), D′(t3), 2). Next we construct

the Σ∗-ext. (D′(t3)(x2), σ) with σ(x2) = x2+
f ′

(t1+1)3
. (It is δ-

optimal by Prop 2; (a, f ) is D′(t3)(x2)-complete by Thm. 9.)
(iii) Finally, we get the solution in Exp. 1.1 by computing a
basis for V(a, f , D′(t3)(x2)). Summarizing, we have solved
B for (σ(t3/t31)). In particular, we have represented the lhs
of (2) in a δ-optimal Σ∗-extension.

Improvements of Alg. 2: (1) Skip (3) if there are n+1 el-
ements in B; see Lemma 6.1. (2) Modify (2) if δ(f ), δ(a) <
d−1: Write F = H(t1) . . . (te) where δ(ti) = d, δ(H) = d−1,
and set (H′, B) := CompleteSolutionSpace(a, f , H). After-
wards, construct the ΠΣ∗-extension (E, σ) of (H′, σ) with
E := H′(t1) . . . (te) by Lemma 3.2. By Lemma 6.3 (a, f )
is E-complete. (3) Similarly, speed up the computations in
step (3) (Lemma 8): if δ(fi), δ(a

′) < d − 1, do all the com-
putations in (H, σ). (4) Remove redundant extensions of
(D, σ) in step (5) by applying Thms. 4 and 5; see Exp. 6.1.
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