
Automated Generation of Loop Invariants by
Recurrence Solving in Theorema

Laura Ildikó Kovács, Tudor Jebelean?

Research Institute for Symbolic Computation,
Johannes Kepler University, Linz, Austria,
Institute e–Austria, Timisoara, Romania
{kovacs,jebelean}@risc.uni-linz.ac.at

Abstract. Most of the properties established during program verifica-
tion are either invariants or depend crucially on invariants. The effec-
tiveness of automated verification of (imperative) programs is therefore
sensitive to the ease with which invariants, even trivial ones, can be au-
tomatically deduced. We present a method for invariant generation that
relies on combinatorial techniques, namely on recurrence solving and
variable elimination. The effectiveness of the method is demonstrated on
examples.

AMS Subject Classification: 33F10, 65G20, 68N30, 68Q60, 68W30
Keywords and phrases: program analysis, verification, invariant genera-
tion, recurrence solving, symbolic computation

1 Introduction

Verification of imperative programs is a cumbersome task, since additional the-
ory is needed to relate program statements to logic, and some of the logic of
the program (such as loop invariants) is often not explicitly available. Thus,
invariants and intermediate assertions are the key to deductive verification of
imperative programs. Correspondingly, techniques for automatically checking
and finding invariants and intermediate assertions have been studied (cf., e.g.,
[13],[8],[3]). The importance of automated invariant generation for verification
of a problem is well–known. Invariant assertions (i.e. assertions that are true of
any program state reaching that location) can be used to establish properties of
a program and to obtain lemmas for proving safety and correctness properties.

In this paper we present our practical approach to program verification using
backward propagation, most specifically verification of while loops, in the frame
of the Theorema (www.theorema.org) system. Our approach for invariant gener-
ation is build upon the difference equations method ([1]), which proceeds in two
steps: first, by means of recurrence equations (also called difference equations),
? The program verification project is supported by BMBWK (Austrian Ministry of

Education, Science, and Culture), BMWA (Austrian Ministry of Economy and Work)
and by MEC (Romanian Ministry of Education and Research) in the frame of the
e-Austria Timisoara project.

an explicit expression is found for the value of each variable as a function of the
number of the loop iteration k, other variables that remain constant in the loop,
and the input variables; then the variable k is eliminated to obtain invariant
properties. Our method uses powerful algorithms from combinatorics, namely
recurrence solvers and variable elimination. Nevertheless, only using recurrence
solvers, one cannot detect all the invariance properties in general. Some prop-
erties, such as inequations, non–linear constraints, etc., might be also necessary
for the verification process. For this purpose, one can analyze the postcondition
of a loop to extract relevant information. A more powerful and abstract tech-
nique was presented in [6], where non–linear constraint solving and quantifier
elimination is used to attack the problem of finding invariant linear inequalities.
Our ongoing work is to investigate this approach, together with the applicability
of Gröbner bases [13], [8], [3] and elimination theory, which are not as costly as
the general methods for quantifier elimination.

The main contribution of this paper consists in combining the combinato-
rial methods with the automated generation of invariants in the Theorema sys-
tem, namely the technique of generating functions and solving non–linear re-
currences. Furthermore, build upon these techniques, and also the technique of
Gosper–solvable recurrences (see [11]), we developed a method that can generate
invariants in the case of inner–loops.

2 The Working Environment: Theorema

The Theorema group is active since 1994 in the area of computer aided mathe-
matics, with main emphasis on developing automated reasoning. The Theorema
system (www.theorema.org) is an integrated environment for mathematical ex-
plorations [4]. In particular, the Theorema system offers support for computing,
proving and solving mathematical expressions using specified knowledge bases,
by applying several simplifiers, solvers and provers, which imitate the style used
by human when proving mathematical statements. The Theorema system tries
to combine proving, computing, and solving, use of computer algebra, special
sequent calculus, domain specific provers, induction, use of meta–variables, etc.

Moreover, Theorema offers the possibility of composing, structuring and ma-
nipulating arbitrary complex mathematical texts consisting of formal mathe-
matical expressions together with structural information like labels or keywords
such as Definition, Theorem, Proposition, Algorithm, etc.

Algorithms can be expressed in Theorema using the language of predicate
logic, with equalities interpreted as rewrite rules (which leads to an elegant func-
tional programming style), and program verification is done by proving speci-
fications based on definitions (both are logical formulae). However, the system
also contains an imperative language with interpreter and verifier, allowing pro-
gram verification for imperative programs by generating and proving verification
conditions depending on the program text [9].

The Theorema system is particularly appropriate for program verification,
because it delivers the proofs in a natural language by using natural style in-

ferences. The system is implemented on top of the computer algebra system
Mathematica [18], thus it has access to a wealth of powerful computing and
solving algorithms.

3 Application of Invariant Generation to Program
Verification

Programs written in functional style can be expressed directly in the Theo-
rema language, thus the “compilation” step (and its possible errors) is avoided.
However, for users which are more comfortable with the imperative style, Theo-
rema features a procedural language, as well as a verification condition generator
based on a practically oriented version of the theoretical frame of Hoare–Logic,
namely on the Weakest Precondition Strategy [9], [2]. This verification tool pro-
vides readable arguments for the correctness of programs, with useful hints for
debugging.

The user interface has few simple and intuitive commands (Program, Specification,
V CG, Execute). The programs are considered as procedures, without return val-
ues and with input, output and/or transient parameters. The programming lan-
guage features integer variables, the usual arithmetic operations (+, ∗, div, mod, etc.).
Programs are annotated with pre- and postcondition, loop invariants and ter-
mination terms (invariants involving linear inequalities and modulo operations
still have to be given by the users). The source code of a program contains a
sequence of the following statements: [9, 15]:

– assignments (may contain also function calls);
– conditional statements: IF [cond,THEN-branch,ELSE-branch]
– WHILE loops: WHILE[cond, body, optional:Invariant, TerminationTerm]
– FOR loops: FOR[counter, lowerBound, upperBound, step, body, Invariant];
– procedure calls

In this imperative language, for the WHILE and FOR statements we allow
additional arguments, namely the invariant and termination term in the case of
WHILE loop, and invariant in the case of FOR loop. These optional arguments
are relevant in the verification process of the program. A restriction on the body
of a loop is that it may contain only assignments or other loop, no If − Then−
Else statements.

Basically the verification of programs contains three components.
First of all, the Verification Condition Generator (VCG), that takes an an-

notated program with pre– and postcondition (i.e. the program’s specification),
and produces, as output, a verification condition containing a collection of for-
mulas that must be satisfied in order to ensure the (partial) correctness of the
program. The verification condition generator is based on a list of inference rules.
It is recursive on the structure of the code, and works back–to–front, statement
by statement. The conditions are generated according to Floyd–Hoare–Dijkstra’s
inductive assertion method [7], by applying the weakest precondition strategy,
so that each verification condition is associated to a fragment of code. Thus,

internally, VCG repeatedly modifies the postcondition using a predicate trans-
former, such that at the end the result is a list of verification conditions in the
Theorema syntax. The invariant (and termination term) generation is performed
in this phase.

Subsequently, as a second part of the verification, the generated verification
conditions are given to the automated theorem provers of the Theorema system
in order to check whether they hold. The obtained proofs are generated using
natural style of inferences, and they return as final output Proved for successfully
proved situations or Pending for proof failures.

Finally, a third component of our verification process is the proof–analyzer.
This is still an ongoing work. The analyzer would be applied for pending proofs,
in order to retrieve useful information about why and where the proof got
stopped. Thus, we would be able to obtain additional knowledge, which, proven
separately, can be embedded in the theory that is necessary for proving correct-
ness.

The invariants obtained with our combinatorial approach are used to prove
automatically the (partial) correctness of programs. We performed and succeeded
with this proving process for a number of various examples. Our verifier is still
under development in the Theorema system.

4 Generation of Loop Invariants

Verification of correctness of loops needs additional information, so-called an-
notations. In the case of FOR loops these annotations consist in the invariants
only, but in the case of WHILE loops, beside the invariant, another annotation
is a termination term necessary for proving termination [10].

In most verification systems, these annotations are given by the user. It
is generally agreed [5] that finding automatically such annotations is difficult.
However, in most of the practical situations, finding invariant expression – or at
least giving some useful hints – is quite feasible. For practical applications this
may be very helpful for the user. In this paper we present our work–in–progress
technique for automated invariant generation by combinatorial and algebraic
methods. So far, in the invariant generation process, we dealt with three type
of recursive equations, namely with Gosper summable, non–linear and mutual
recurrences, each of them being presented in the next subsections.

Let us denote by X the set of (global) variables the program operates on;
we assume that the variables take values in the fixed field of real numbers IR.
Also, for our technique, we assume that the statements from the body of a loop
are polynomial assignments of the form x := p (where x ∈ X and p ∈ IR[X])
or While loops. Moreover, positive Boolean combinations can be also treated, as
follows:

– conjunction of polynomial assignments is considered as a sequence of sepa-
rated assignments

– manipulation of disjunction of polynomial assignments is done by using prod-
uct properties, i.e. p1 = 0

∨
p2 = 0 is rewritten as p1 · p2 = 0

4.1 Solving First Order Recurrences

Gosper summable Reccurences Analyzing the code of a loop, we can gener-
ate recursive equations for those variables which are modified during the execu-
tion of the loop (called critical variables). By means of these recurrence equations
(also called called difference equations), explicit expression is found for the value
of each critical variable as a function of the number of loop iteration, other vari-
ables that remain constant in the loop and the input variables. Afterwards, we
eliminate the variable which refers to the current iteration of the loop to ob-
tain invariant formulas. Thus, the resulting equation(s) contain the information
that have to embedded in the invariant of the loop. This generation process was
presented in much more detail in [11]. For illustration, consider the “Division”
program of two natural numbers:

Specification[”Division”, Div[↓ x, ↓ y, ↑ rem, ↑ quo],
P re → ((x ≥ 0) ∧ (y > 0)),
Post → ((quo ∗ y + rem = x) ∧ (0 ≤ rem < y))]

Program[”Division”, Div[↓ x, ↓ y, ↑ rem, ↑ quo],
quo := 0;
rem := x;
WHILE[y ≤ rem,

rem := rem− y;
quo := quo + 1]

By our approach, we are able to generate the invariant equation:

rem = x− quo ∗ y.

By, further analysis of conditions upon the the variables of the loop–body, we
generate the final invariant:

Invariant ≡ (quo ∗ y + rem = x) ∧ 0 ≤ rem

Non–linear Recurrences When the obtained recurrence is not Gosper–summable,
but it is of the form:

xn = t ∗ xc
n−1,

where t is a term that does not depend on n, and c ∈ Q, the closed form of the
detected recurrence can be solved by our recurrence solving package.

The presented strategy works only if we do not have mutual recurrence(s) in
the loop body.

4.2 Mutual Recurrences

In most cases, beside the above recurrences, a program–code contains higher
order recurrences. An interesting case of this type of recurrence is the case of

mutual recurrence, where, for instance, two equations are mutually depending
on each other. For solving such a problem, we use the technique of generating
functions [17] from combinatorics ([17] is an original work about P-finite and
D-finite sequences, namely about closure properties).

Consider the example of the well-known program for computing the Fibonacci
numbers, which has its specification and source code, as follows:

Specification[”Fibonacci”, F ibonacciProcSpec[↓ n, ↑ F],
P re → (n ≥ 0),
Post → (F = FibExp[n])]

Program[”Fibonacci”, F ibonacciProc[↓ n, ↑ F],
Module[{H, i},

i := n;
F := 1;
H := 1;
WHILE[i > 1,

H := H + F ;
F := H − F ;
i := i − 1]]

Note: FibExp[n] denotes the term: Fk = φk−φ̂k

√
5

, where φ = 1+
√

5
2 and φ̂ is its

conjugate.
From the loop–body, we can merely set up the recurrence:

Hk = Hk−1 + Fk−1 (k ≥ 1), H1 = 1

Fk = Hk − Fk−1 (k ≥ 1), F1 = 1

For solving this problem, we apply the technique of generating functions, namely,
given a sequence (gk) that satisfies a given recurrence (in our example, the
sequences are (Fk) and (Hk), we seek a closed form for gk in term of k.

For our computations we extend Mallinger’s Mathematica package Generat-
ingFunctions [12], which was developed in the Combinatoric Group of RISC. In
order to apply this package–extension, first we rewrite the equations of expres-
sions Hk and Fk in such a way that they are valid for all integers k, assuming
that H0 = Hnegative = 0 and F0 = Fnegative = 0.

Hence we obtain:

Hk = Hk−1 + Fk−1 + [k = 1] (k ∈ Z)

Fk = Hk + Fk−1 (k ∈ Z)

(where the meaning of [k = 1] is that it adds 1 (i.e. H1) when k = 1, and it
makes no change when k 6= 1.

Then, by applying the generating functions technique, we obtain the har-
monic forms:

H(z) =
∑

k

Hkzk =
∑

k

Hk−1z
k +

∑
k

Fk−1z
k +

∑
k

[k = 1]zk (k ∈ Z)

= zH(z) + zF (z) + z

F (z) =
∑

k

Hkzk +
∑

k

Fk−1z
k (k ∈ Z)

= H(z) + zF (z)

Solving a system of two equations with two unknowns, we obtain the gener-
ating functions:

F (z) =
z

1− z − z2

H(z) =
z(1 + z)

1− z − z2

and thus, by combinatorial techniques, the desired closed form of their coeffi-
cients is determined, namely:

Fk =
φk − φ̂k

√
5

Hk =
φk+1 − φ̂k+1

√
5

Hence, at the kth iteration, we have as invariance properties:

Fk =
φk − φ̂k

√
5

Hk =
φk+1 − φ̂k+1

√
5

From the third recurrence equation of the loop, i.e. ik+1 = ik − 1, i0 = n, by the
Gosper algorithm, we obtain the closed form: ik = n− (k − 1).

In the following steps, we proceed as in the previous section, namely we
eliminate the loop’s counter variable k from the three equations, thus we obtain:(

F =
φn−i+1 − φ̂n−i+1

√
5

) ∧ (
H =

φn−i+2 − φ̂n−i+2

√
5

)

One notes that these are exactly the expressions of the Fibonacci numbers [14].
Summarizing, the technique of generating functions turns out to be practical

and effective for solving higher order recurrences, thus for generating invariance
properties for more complex programs.

The theoretical details of these methods are described in [16].

5 Invariant Generation for WHILE loops with WHILE
statements

So far in the automatic invariant generation we dealt with cases when a loop
had only assignments. However, more interesting situations arise in the case
of nested whiles, i.e. with while loops in a body of a while loop. Therefore,
the next step in our work is to develop an invariant generation method for
nested whiles. There are other approaches for doing so [13], [8], namely a method
built upon polynomial ideal theory, using Gröbner bases. By their approach, the
invariant generation problem is translated to a (linear or non–linear) constraint
solving problem (where the constraints describe properties of the coefficients of
the polynomial loop invariant).

In our method, as a continuation of the combinatorial approach, the main
idea is to simulate the execution of whiles with recurrence equations. We have
seen, that in the case of loops with only assignment statements the combinatorial
manipulation of the statements from the loop’s body is efficient for invariant gen-
eration. Starting from this base–case, as a first step, we annotate our programs
in such a way that the combinatorial approach can be performed.

There are several ways for modelling programs, e.g. in [12] they use (alge-
braic) transition systems (with set of variables, locations, transitions between
locations, an initial condition and assertion), while in [8] the notion of control
flow–graphs is introduced and used (with set of program points, set of edges
between points, a mapping that annotates each edge with an assignment state-
ments and with a start point). In our approach, in order to succeed with the
combinatorial approach, we have to take special care of the counters of the loops,
i.e. the loop–iterations. Doing so, the first step of our invariant generation prob-
lem will consist of building the set of loop–variables V and assigning counters
to loops w.r.t. the hierarchy they appear.

For a better understanding, we illustrate this step for the Binary Power
problem, having its source code and specification as follows:

Specification[”BinaryPower”, BinPowerSpec[↓ x, ↓ y, ↑ z],

P re →

(
(y ≥ 0)

∧
(IsInteger[y])

)
,

Post → (z = xy)],
Program[”BinaryPower”, BinPower[↓ x, ↓ y, ↑ z],

Module[{a, b},
z := 1;
a := x;
b := y;
WHILE[b > 0,

b := b− 1;
z := z ∗ a;

WHILE[IsEven[b] ∧ b > 0,

a := a ∗ a;
b := b/2,

b := b/2
]]

](∗Module∗)].

Thus, V = {a, b, z} for both loops, and we will have the following counter–
assignments:

j0 : WHILE[b > 0,

b := b− 1;
z := z ∗ a;
j1
0 : WHILE[IsEven[b] ∧ b > 0,

a := a ∗ a;
b := b/2]]

These annotations have intuitively the meaning, that the loop with counter
j1
0 is the first sub–loop of the loop with the counter j0.

The next step of the generation process is the statement– and variable–
manipulation. Therefore, we proceed as follows:

– split the body of the outer–loop into separated parts: one part will contain
the assignment statements that are present before the inner while, the next
part the inner while, the third part the assignment statements after the inner
while (and if other while are also present, the splitting continues)

– for each part, rewrite the recursive polynomial assignment using the proper
indexes (loop–counters). For those variables that do not change in the specific
part, consider the assignment that describes the constant property of them
(i.e. xj+1 := xj)

– for the inner while, by the combinatorial methods for summation, generate
a polynomial equation(s) that contain invariant properties

– replace the inner while loop with its (polynomial) invariant(s), taking care
of the proper specification of the loop counter, and that the initial values of
the variables of the inner loop are given by the outer loop’s variables.

– solve – by repeated substitutions – the obtained system of recursive equa-
tions, obtaining the invariant for the outer loop. In this process, also some
other properties can be established that describe the initial values of the
critical variables of the inner loop.

For a better understanding, let us continue the example of the Binary Power.
In this case we proceed as follows:

– For the inner loop, we obtain, by recurrence solving:

bj1
0

=
bj1

0 ini

2j1
0

aj1
0

= a2
j10

j1
0 ini

where aj1
0 ini

and bj1
0 ini

are the values of a and b before the inner loop. Hence,
(by special solving and elimination techniques for j1

0 , the invariant is:

a
b

j1
0

j1
0

= a
b

j1
0ini

j1
0 ini

and
zj1

0
= zj1

0 ini

– Referring to the counter of the outer–loop, we will have the substitution in
the above invariant:

aj1
0
→ aj0+1; bj1

0
→ bj0+1; aj1

0 ini
→ aj0 ; bj1

0 ini
→ bj0 ; zj1

0
→ zj0+1; zj1

0 ini
→ zj0

and obtain the system of equations:
bj0 = bj0−1 − 1 (1)
zj0 = zj0−1 ∗ aj0−1 (2)
aj0 = aj0−1 (3)
a

bj0+1

j0+1 = a
bj0
j0

(4)
zj0+1 = zj0 (5)

which, by bottom–up substitutions leads to the system:{

a
bj0+1

j0+1 = a
bj0−1−1
j0−1 (6)

zj0+1 = zj0−1 ∗ aj0−1 (7)

which leads to the product formula:

zj0+1 ∗ a
bj0+1

j0+1 = zj0−1 ∗ a
bj0−1

j0−1 ,

thus, by initial values replacements, we obtain the invariant:

z ∗ ab = xy.

In the case when a loop contains two or more inner loops, our technique is
still applicable. For illustration, consider the program (and its specification) that
calculates simultaneously the lcm and the gcd of two integers x1 and x2.

Specification[”LCM −GCD”, LcmGcdSpec[↓ x1, ↓ x2, ↑ y1, ↑ y3, ↑ y4],

P re → IsInteger[x1, x2, y1, y3, y4],

Post → (y1 = GCD[x1, x2]) ∧ y3 + y4 = LCM [x1, x2]],

(where LCM and GCD are the Mathematica built–in functions that computes the
LCM and GCD of two integers.)

Program[”LCM −GCD”, LcmGcd[↓ x1, ↓ x2, ↑ y1, ↑ y3, ↑ y4],

Module[{y2},

y1 := x1;

y2 := x2;

y3 := x2;

y4 := 0;

WHILE[y1 6= y2,

WHILE[y1 > y2,

y1 := y1− y2;

y4 := y4 + y3

];

WHILE[y2 > y1,

y2 := y2− y1;

y3 := y3 + y4

]]

](∗Module∗)]

For generating the invariant, we build the set of variables of each loop and
start by assigning to each loop a counter. In this example, the set of variables is
common, e.g. V = {x1, x2, y1, y3, y3, y4} and we obtain the following annotated
code:

j0 : WHILE[y1 6= y2,

j1
0 : WHILE[y1 > y2,

y1 := y1− y2;
y4 := y4 + y3];

j2
0 : WHILE[y2 > y1,

y2 := y2− y1;
y3 := y3 + y4

]]

Hence, for each inner–loop, we obtain two systems of recursive equations which
by recurrence solving lead to the system of equations:

first inner loop

y1j1

0
:= y1j1

0 ini
− j1

0 ∗ y2j1
0

(1.1)
y4j1

0
:= y4j1

0 ini
+ j1

0 ∗ y3j1
0

(1.2)
y2j1

0
:= y2j1

0 ini
(1.3)

y3j1
0

:= y3j1
0 ini

(1.4)

and

second inner loop

y2j2

0
:= y2j2

0 ini
− j2

0 ∗ y1j2
0

(2.1)
y3j2

0
:= y3j2

0 ini
+ j2

0 ∗ y4j2
0

(2.2)
y1j2

0
:= y1j2

0 ini
(2.3)

y4j2
0

:= y4j2
0 ini

(2.4)

Thus, by elimination of j1
0 and j2

0 , we obtain the following invariants:

first inner loop:

y1j1

0
∗ y3j1

0
+ y2j1

0
∗ y4j1

0
:= y3j1

0
∗ y1j1

0 ini
+ y2j1

0
∗ y4j2

0 ini
(1.5)

y2j1
0

:= y2j1
0 ini

(1.6)
y3j1

0
:= y3j1

0 ini
(1.7)

second inner loop:

y2j2

0
∗ y4j2

0
+ y3j2

0
∗ y1j2

0
:= y2j2

0 ini
∗ y4j2

0
+ y1j2

0
∗ y3j2

0 ini
(2.5)

y1j2
0

:= y1j2
0 ini

(2.6)
y4j2

0
:= y4j2

0 ini
(2.7)

and the counter–correspondence for variables:

y1j1
0 ini

→ y1j0

y2j1
0 ini

→ y2j0

y3j1
0 ini

→ y3j0

y4j1
0 ini

→ y4j0

y1j1
0
→ y1j0+1

y2j1
0
→ y2j0+1

y3j1
0
→ y3j0+1

y4j1
0
→ y4j0+1

y1j2
0 ini

→ y1j1
0

y2j2
0 ini

→ y2j1
0

y3j2
0 ini

→ y3j1
0

y4j2
0 ini

→ y4j1
0

y1j2
0
→ y1j1

0+1

y2j2
0
→ y2j1

0+1

y3j2
0
→ y3j1

0+1

y4j2
0
→ y4j1

0+1

Hence, by backward substitution (of (2.6) and (2.7) into (2.5)), and index ma-
nipulation, we obtain first:

second inner loop: y2j1
0+1 ∗ y4j1

0
+ y3j1

0+1 ∗ y1j1
0

:= y2j1
0
∗ y4j1

0
+ y1j1

0
∗ y3j1

0

which, using the invariant equations and counter–manipulations of the first
inner–loop, yields the main invariant equation:

first inner loop: y2j0+2 ∗ y4j0+2 + y3j0+2 ∗ y1j0+2 := y2j0 ∗ y4j0 + y1j0 ∗ y3j0),

which, by initial value substitution, yields the invariant:

y1 ∗ y3 + y2 ∗ y4 = x1 ∗ x2.

(Note: For the verification process, applying the exit condition y1 = y2 yields,
y1 ∗ (y3 + y4) = x1 ∗ x2. Assuming that y1 = GCD(x1, x2) and y3 + y4 =
LCM(x1, x2), the invariant states that LCM(x1, x2) ∗ GCD(x1, x2) = x1 ∗ x2.
Note that correctness cannot be inferred directly since LCM and GCD func-
tions cannot be expressed algebraically. For correctness additional knowledge is
necessary.)

We have tried our method with several examples, and succeeded to generate
in each case the loop invariant. Currently we are working on the theoretical basis
and justification of this approach, in order to ensure correctness (and complete-
ness) of the method.

6 Generation of Termination Terms

In the case of the WHILE loop, one is also interested to be able to prove termi-
nation, i.e. to have an automatic generation of a termination term. Knowing that
the termination term must be positive [7], we transform the given loop-condition
Φ using specific heuristics (algebraic manipulations) until we obtain a term T
such that T ≥ 0 ⇔ Φ.

In the Division example, the termination term will be:

rem− y

7 Conclusions and Further Work

Combined with a practically oriented version of the theoretical frame of Hoare-
Logic, Theorema provides readable arguments for the correctness of programs,
as well as useful hints for debugging. Moreover, it is apparent that the use of al-
gebraic computations (summation methods, variable elimination) is a promising
approach to analysis of loops.

Regarding the verifier, our plans in the near future are following:

– implement the proof–analyzer;
– perform additional type checking, since by the Hoare–verification–rule for

assignments the replaced value is subsumed to be of the same type as the
original value. This, in practice might lead to a situation, when the correct-
ness proof will succeed, although the program is not correct (i.e. the division
problem of integers subsumes integer division);

– develop and integrate in the verifier a technique for mechanically inferring
loop invariants that are linear inequalities (see [6]);

– enrich the invariant generation technique for the case when a loop–body
contains If − Then− Else statements (see [13], [3]).

Another necessary continuation of our work is the analysis of programs con-
taining recursive calls. We are currently investigating the theoretical framework
and we are designing the methods for extracting the verification conditions of
this type of programs.

References

1. B.Elspas and M.W.Green and K.N.Lewitt and R.J.Waldinger. Research in Interac-
tive Program–Proving Techniques. Technical report, Standford Research Institute,
Menlo Park, California, USA. Technical Report, May 1972.

2. E. W. Dijkstra. A Discipline of Programming. Prentince-Hall, 1976.
3. E.Rodriguez-Carbonell and D.Kapur. Automatic Generation of Polynomial Loop

Invariants: Algebraic Foundations. In Proc. of the International Symphosium on
Symbolic and Algebraic Computation (ISSAC 04), 2004. July 4-7, University of
Cantabria, Santander, Spain.

4. B. Buchberger et al. The Theorema Project: A Progress Report. In M. Kerber and
M. Kohlhase, editors, Calculemus 2000: Integration of Symbolic Computation and
Mechanized Reasoning. A. K. Peters, Natick, Massatchussets, 2000.

5. G. Futschek. Programmentwicklung und Verifikation. Springer, 1989.
6. M.Colòn and S.Sankaranarayanan and H.B.Sipma. Linear Invariant Generation

Using Non–Linear Constraint Solving. In Computer Aided Verification (CAV
2003), 2003. vol. 2725 of Lecture Notes in Computer Science, pp. 420–432. Springer
Verlag.

7. C. A. R. Hoare. An axiomatic basis for computer programming. Comm. ACM, 12,
1969.

8. M.Müller-Olm and H.Seidl. Polynomial Constants are Decidable. In Static Analysis
Symposium (SAS 2002), vol.2477 of LNCS, 2002. pp. 4-19.

9. M. Kirchner. Program verification with the mathematical software system Theo-
rema. Technical Report 99-16, RISC-Linz, Austria, 1999. PhD Thesis.

10. L. Kovács. Program Verification using Hoare Logic. In Computer Aided Verifi-
cation of Information Systemsm Romanian-Austrian Workshop, 2003. Timisoara,
Romania, February 2003.

11. L.Kovács and T.Jebelean. Generation of Invariants in Theorema. 2003. In
N.Boja(ed): Proceedings of the 10th International Symphosium of Mathemat-
ics and its Application, Scientific Bulletins of the ”Politehnica” University of
Timisoara, Romania, Transactions on Mathematics and Physics, ISSN 1224-6069.
Timisoara, Romania, November 2003.

12. C. Mallinger. Algorithmic manipulations and transformations of univariate holo-
nomic functions and sequences. Master’s thesis, RISC, J. Kepler University, Linz,
August 1996.

13. S.Sankaranaryanan and B.S.Henry and Z. Manna. Non-Linear Loop Invariant
Generation using Gröbner Bases. In ACM Principles of Programming Languages
(POPL’04), 2004. January 14-16, Venice, Italy.

14. R.L. Graham and D.E. Knuth and O. Patashnik. Concrete Mathematics, 2nd ed.
Addison-Wesley Publishing Company, 1989. pg. 306-330.

15. L. Kovács and N. Popov. Procedural Program Verification in Theorema. In Omega-
Theorema Workshop, May 2003. Hagenberg, Austria.

16. B. Salvy and P. Zimmermann. Gfun: A package for the manipulation of generating
and holonomic functions in one variable. ACM Trans. Math. Software, 20:163–177,
1994.

17. R.P. Stanley. Differentiably finite power series. 1:175–188, 1980.
18. S. Wolfram. The Mathematica Book, 3rd ed. Wolfram Media / Cambridge Univer-

sity Press, 1996.

