
Nonlinear Function Approximation:

Computing Smooth Solutions with an

Adaptive Greedy Algorithm.∗

Andreas Hofinger†

Abstract

Opposed to linear schemes, nonlinear function approximation al-
lows to obtain a dimension independent rate of convergence. Unfor-
tunately, in the presence of data noise typical algorithms (like e. g.,
backpropagation) are inherently unstable, whereas greedy algorithms,
which are in principle stable, can not be implemented in their original
form, since they require unavailable information about the data.

In this work we present a modified greedy algorithm, which does
not need this information, but rather recovers it iteratively from the
given data. We show that the generated approximations are always at
least as smooth as the original function and that the algorithm also
remains stable, when it is applied to noisy data. Finally the applica-
bility of this algorithm is demonstrated by numerical experiments.

Keywords: Greedy Algorithm, Nonlinear Function Approximation, Data
Noise, Regularization Theory
AMS Subject Classification: 41A46, 41A65, 93C41

1 Introduction

In many black-box models the goal is to approximate a function f using a
simple representation fk of the form

fk =
k

∑

i=1

ciΦ(·, ti) (1.1)

∗This work has been supported by the Austrian Science Foundation FWF through
project SFB F 013 / 08.

†Johann Radon Institute for Computational and Applied Mathematics, Austrian
Academy of Sciences, Linz, Austria.

1

(cf. e. g., [12]). If the parameters ti are chosen a priori, this results in a linear

problem, which can be solved easily, but only yields a convergence rate that
heavily depends on the dimension of the parameter-space (cf. e. g. [11, 10]).

Therefore, typically the parameters ti are chosen via an optimization pro-
cess in dependence of the function f . For instance the “learning” of neural
networks can be interpreted as special case of nonlinear function approx-
imation, also radial basis functions or fuzzy control fall into this scheme
(cf. [1, 8, 4, 2]). In this setting one can obtain—of course at higher compu-
tational cost—the dimension independent rate

‖f − fk‖ = O
(

k−1/2
)

.

Unfortunately, if all ti are determined at the same time this not only results
in a high-dimensional optimization problem with lots of local minima, but
also in instabilities if noise is present (see [2, 9]). For instance it is possible
that some of the parameters ci tend to infinity, or that fk tends to f in L2

but in no space Hs with s > 0.1

An astonishingly simple solution to these two problems is a greedy al-

gorithm ([7, 6, 5, 13, 3]). In such an algorithm the optimization problem
above is not solved at once, but via a sequence of low-dimensional ones; all
parameters ti are determined one after the other. The functions fk are then
defined inductively as convex-combinations of fk−1 and the current element
gk := ckΦ(·, tk).

More precisely, let us assume that the parameters ti are restricted to some
compact set P , and define

G = {Φ(·, t) | t ∈ P}
(in the following we assume ‖Φ(·, t)‖ ≤ 1 for t ∈ P). Furthermore we assume
that f is contained in the closed convex hull of the set Gb := b ·G, which we
denote as f ∈ co(Gb). In the greedy algorithm elements gk ∈ Gb are chosen
one after the other, and the approximating functions fk are built iteratively
as convex-combination of fk−1 and gk, as shown in Algorithm 1.12. The main
purpose of this work will be, to transfer the conceptual Algorithm 1.1 into a
realisable form.

1 The common reason for these effects is that the nonlinear scheme (1.1) allows con-
structions of the form ψε = c (Φ(·, t+ ε) − Φ(·, t)). Clearly, if fk is a good approximation
to f , then also fk + ψε is one, no matter how large c is chosen, provided ε is sufficiently
small. Furthermore, the fact that—by a similar construction—fk may (almost) resemble
the kth derivative of Φ, results in the second type of instability.

2In the following we consider a setup proposed by Dingankar and Sandberg [7]; a slightly
different method with the same spirit has extensively been studied by Temlyakov et. al.,
see [6, 13] and the references therein. The influence of noise and the unavailability of b
have not been considered in these workings.

2

Algorithm 1.1: Abstract greedy approximation of noise free data with a-priori
known smoothness.

Set f0 = 0.

Choose a constant M , such that M > b2 − ‖f‖2.

Choose a positive sequence εk that fulfills

εk ≤ M − (b2 − ‖f‖2)

k2
for k = 1, 2, . . . (1.2)

for k := 1 to maxit do

Find an element gk ∈ Gb such that

∥

∥

∥
f − k − 1

k
fk−1 −

1

k
gk

∥

∥

∥

2

≤ inf
g∈Gb

∥

∥

∥
f − k − 1

k
fk−1 −

1

k
g
∥

∥

∥

2

+ εk

(1.3)

is fulfilled and define fk as

fk =
k − 1

k
fk−1 +

1

k
gk .

end for

Condition (1.3) in Algorithm 1.1 shows that it is not allowed to take ar-
bitrary elements gk in the kth step, but only such, which are almost optimal
approximations to the function kf − (k − 1)fk−1. This local (almost-) opti-
mality is sufficient to maintain the dimension-independent convergence rate,
as the next theorem shows (cf. [7]).

Theorem 1.1. Let f ∈ co(Gb), then the approximating functions fk gener-

ated by Algorithm 1.1 fulfill the error estimate

‖f − fk‖2 ≤ M

k
. (1.4)

Thus, in principle Algorithm 1.1 yields the optimal convergence rate
‖f − fk‖ = O

(

k−1/2
)

; but as already indicated it is only conceptual and
has several disadvantages:

3

1. We need the smoothness parameter3 b in order to compute the iteration
bound M .

2. We need the sequence εk and have to estimate infima to verify if gk is
a sufficiently good approximation.

3. The algorithm is only defined for noise-free data f , also Theorem 1.1
does not provide information about the behavior of Algorithm 1.1 when
applied to noisy data f δ.

It turns out (cf. [3, 9]) that the second point does not pose a problem, since
the corresponding step in the algorithm may be replaced by:

“Find an element gk ∈ Gb such that

∥

∥

∥

∥

f − k − 1

k
fk−1 −

1

k
gk

∥

∥

∥

∥

2

≤ M

k
. ”

Nevertheless, still the parameter M and consequently the smoothness b have
to be known. The main purpose of this work is, to develop an algorithm,
which can be implemented without knowledge of this smoothness parameter
b, but which rather adaptively reconstructs the value of b.

This is important, because usually no information about the size of b will
be available, even if—e. g., due to physical considerations—it is known that
f ∈ co(Gb) for some b.

To obtain the final adaptive Algorithm 4.1 we have to start with an appar-
ently independent step, the investigation of the influence of noise. The reason
for this is that a (wrongly) estimated parameter b has the same influence on
the algorithm, as noisy data—the function f does not fulfill f ∈ co(Gb).

The outline of this paper is as follows. In Section 2 we give some results
on convex approximation, which are used in Section 3 to derive estimates
for noisy data. These two sections will build the basis for Section 4 where
we present the adaptive greedy algorithm. Finally the applicability of Algo-
rithm 4.1 is demonstrated by numerical examples in Section 5.

2 Convex Approximation of Noisy Data

First we present two basic results about approximation in the convex hull of
a set G (see also [5, Chapter 25]).

Lemma 2.1. Let H be a Hilbert-space and G ⊂ H a bounded set. Then for

all h ∈ co(G) and for all v ∈ H there exists g ∈ G such that

〈h − g, v〉 ≤ 0 .

3To construct the instability effects mentioned above we needed unboundedness of b,
vice versa a small value of b ensures that co(Gb) is a set of smooth functions.

4

This result can also be transferred to elements in co(G), the closure of
the convex hull of G.

Corollary 2.2. Let H be a Hilbert-space and G ⊂ H a bounded set. Then

for all f ∈ co(G) and for all v ∈ H the estimate

inf
g∈G

〈f − g, v〉 ≤ 0

holds.

Using Corollary 2.2 we can now construct a sharp estimate for the error
of convex approximations to noisy data. For the case of noise-free data, i. e.,
δ = 0, the result simplifies to the estimate given in [7, Lemma 2].

Theorem 2.3. Let f ∈ co(G) and f δ such that
∥

∥f − f δ
∥

∥ ≤ δ. Furthermore

let h ∈ H and λ ∈ [0, 1]. Then, using the setting b := supq∈G ‖q‖, we have

inf
g∈G

∥

∥f δ − λh − (1 − λ)g
∥

∥

2

≤ λ2
∥

∥f δ − h
∥

∥

2
+ (1 − λ)2

(

b2 − ‖f δ‖2
)

+ 2δ(1 − λ)‖f δ − λh‖ .
(2.1)

Proof. First of all we transfer estimate (2.1) to an equivalent form, by split-
ting the norm on the left hand side such that it cancels the first term on the
right. Remaining we have

inf
g∈G

(1 − λ)2
∥

∥f δ − g
∥

∥

2
+ 2λ(1 − λ)

〈

f δ − g, f δ − h
〉

≤ (1 − λ)2
(

b2 − ‖f δ‖2
)

+ 2δ(1 − λ)‖f δ − λh‖ .

For λ = 1 this is a trivial result, for λ 6= 1 we may transfer the relation to

inf
g∈G

(1 − λ)
(

‖f δ − g‖2 + ‖f δ‖2
)

+ 2λ
〈

f δ − g, f δ − h
〉

≤ (1 − λ)b2 + 2δ‖f δ − λh‖ .

Using the identity ‖f δ − g‖2 +‖f δ‖2 = ‖g‖2 +2
〈

f δ − g, f δ
〉

, we can combine

the two scalar products on the left into one. The term ‖g‖2 is bounded by
b2. Therefore it suffices to show that

inf
g∈G

2
〈

f δ − g, f δ − λh
〉

≤ 2δ‖f δ − λh‖

is fulfilled, which is the direct consequence of the identity
〈

f δ − g, f δ − λh
〉

=
〈

f δ − f, f δ − λh
〉

+
〈

f − g, f δ − λh
〉

,

the estimate ‖f δ − f‖ ≤ δ, the Cauchy-Schwarz-inequality and Corollary 2.2
for the setting v = f δ − λh.

5

Under the assumptions above, the error-estimate (2.1) can not be im-
proved:

Remark 2.4. The estimate in the Theorem above is sharp, as can be seen
for the choice

g0 = 0, g1 = g ∈ H with ‖g‖ = 1 .

G = {g0, g1}, f = h = g, f δ = (1 + δ)g with some δ > 0 .

With this choice of G, f and f δ we obtain equality in Theorem 2.3, indepen-
dent of the value of λ.

When the greedy algorithm is applied to noisy data f δ /∈ co(Gb), Theo-
rem 1.1 cannot hold, since in this case even the optimal approximation yields
a residual greater than 0. Nevertheless, it turns out that the rate M/k can
at least be obtained up to a certain iteration index k∗. In the next section
we will derive a sharp estimate for this iteration index and the corresponding
residual.

3 Optimal Greedy Iteration for Noisy Data

In this section we consider the case that instead of f ∈ co(Gb) only a noisy
version f δ with

∥

∥f − f δ
∥

∥ ≤ δ is available.

For the case of noise-free data we had to pick M > (b2 − ‖f‖2) in Algo-
rithm 1.1, now it turns out that we need at least M > M0 with

M0 :=
(

b2 − ‖f δ‖2 + 2δ‖f δ‖
)

. (3.1)

Furthermore, we find (cf. Theorem 3.1 and Remark 3.3) that we cannot
guarantee the existence of proper updates gk as soon as k > k∗, where

k∗ :=

⌈

η2M0

4δ2(1 + η)

⌉

, (3.2)

and we assumed that M = (1 + η)M0. Both values will appear in a natural
way in Theorems 3.1 and 3.2, but first we have a look at the modified greedy
algorithm shown on the following page.

The crucial step in Algorithm 3.1 is to find elements gδ
k that are a suffi-

ciently good approximation to kf δ − (k − 1)f δ
k−1. Based on Theorem 2.3 we

are able to show, that such elements indeed exist for indices k ≤ k∗.

6

Algorithm 3.1: Greedy approximation of noisy data with given smoothness
parameter b.

Set f δ
0 = 0.

Choose M > M0 with M0 as in (3.1).

Compute k∗ via (3.2).

for k := 1 to min(k∗, maxit) do

Find gδ
k ∈ G (see Theorem 3.1) such that

∥

∥

∥

∥

f δ − k − 1

k
f δ

k−1 −
1

k
gδ

k

∥

∥

∥

∥

2

≤ M

k

is fulfilled and define f δ
k as

f δ
k =

k − 1

k
f δ

k−1 +
1

k
gδ

k .

end for

Theorem 3.1. For indices 1 ≤ k ≤ k∗ Algorithm 3.1 is feasible, i. e., in each

step suitable elements gδ
k can be found. The corresponding approximations f δ

k

satisfy the error estimate

∥

∥f δ − f δ
k

∥

∥

2 ≤ M

k
for 1 ≤ k ≤ k∗ . (3.3)

Proof. The proof uses an induction argument, based on Theorem 2.3. We
consider Algorithm 3.1 with a similar inf-condition as Algorithm 1.1. There-
fore we define a sequence εk as

εk :=
1

k2

(

M − (b2 − ‖f δ‖2 + 2δ‖f δ‖) − 2δ
√

k − 1
√

M
)

. (3.4)

Since the right hand side of (3.4) becomes negative for k → ∞, for given M ,
b, δ and f δ there exists a unique index k∗ with

εk∗
> 0 and εk∗+1 ≤ 0 .

To compute k∗ we solve the equation ε(k) = 0 which is equivalent to

M − M0 − 2δ
√

k − 1
√

M = 0 ,

7

the solution for k is given as

k̃ =
η2M0

4δ2(1 + η)
+ 1 . (3.5)

Since this value is related to the integer value k∗ via k̃ > k∗ ≥ k̃ − 1 we
obtain (3.2). We will now show that up to this index k∗, the rate M/k can
be maintained.

• For the step k = 1 we obtain in the modified algorithm

∥

∥f δ − gδ
1

∥

∥

2 ≤ inf
g∈G

∥

∥f δ − g
∥

∥

2
+ ε1 (3.6)

which we can estimate using Theorem 2.3 for λ = 0 via

≤ (b2 −
∥

∥f δ
∥

∥

2
) + 2δ

∥

∥f δ
∥

∥ + ε1

≤ M ,

since ε1 was chosen according to (3.4).

• Now we inspect the case 1 < k ≤ k∗. We assume that the convergence
rate was preserved up to this step of the iteration, this means that the

estimate
∥

∥f δ − f δ
k−1

∥

∥ <
√

M√
k−1

holds. In the kth step we have

∥

∥

∥

∥

f δ − k − 1

k
f δ

k−1 −
1

k
gδ

k

∥

∥

∥

∥

2

≤ inf
g∈G

∥

∥

∥

∥

f δ − k − 1

k
f δ

k−1 −
1

k
g

∥

∥

∥

∥

2

+ εk , (3.7)

which can again be estimated using Theorem 2.3 via

≤
(

k − 1

k

)2
∥

∥f δ − f δ
k−1

∥

∥

2
+

1

k2
(b2 −

∥

∥f δ
∥

∥

2
)

+ 2δ
1

k

∥

∥

∥

∥

f δ − k − 1

k
f δ

k−1

∥

∥

∥

∥

+ εk

≤ k − 1

k2
M +

1

k2
(b2 −

∥

∥f δ
∥

∥

2
)

+ 2δ
1

k

(

k − 1

k

∥

∥f δ − f δ
k−1

∥

∥ +
1

k

∥

∥f δ
∥

∥

)

+ εk

8

We can now insert the estimate for
∥

∥f δ − f δ
k−1

∥

∥ a second time and
obtain further

≤ 1

k2

(

(k − 1)M + b2 −
∥

∥f δ
∥

∥

2
+ 2δ

(√
k − 1

√
M +

∥

∥f δ
∥

∥

)

)

+ εk

≤ M

k
,

since εk was chosen according to (3.4).

Elements gδ
1 and gδ

k in (3.6) and (3.7) can always be found, since ε1 and
εk are positive. These elements yield the rate M

k
and thus the algorithm is

feasible.

Since the rate O
(

k−1/2
)

only holds up to the index k∗, which depends
on M , f δ, δ and b, it is a natural next step to look for parameters M =
M(f δ, δ, b), such that the residual at the end of the iteration is minimized.
The result of this optimization step is given in the next theorem.

Theorem 3.2. Let M be chosen as M = (1+η)M0, with M0 as in (3.1) and

η > 0. Then for the index k∗ defined via (3.2) the approximations f δ
k∗

in the

greedy algorithm fulfill the estimate

∥

∥f δ − f δ
k∗

∥

∥ ≤ 2
1 + η

η
δ = O (δ) . (3.8)

Proof. According to Theorem 3.1 the residual at the end of the iteration is
given by M

k∗

where k∗ is defined via (3.2). Since k∗ ≥ k̃ − 1, with k̃ defined
in (3.5) we can estimate the residual as

∥

∥f δ − f δ
k∗

∥

∥

2 ≤ M

k∗
≤ M

k̃ − 1

= (1 + η)M0
4δ2(1 + η)

η2M0

= 4δ2 (1 + η)2

η2

which completes the proof.

We will now show that the index k∗ is optimal, i. e. that is is in general
not possible to find proper updates gδ

k in the greedy algorithm for indices
k > k∗. Therefore we demonstrate that the error estimate in the theorem
above is a sharp bound for the minimal residual for countably many values
of η, in particular for a sequence ηi → ∞.

9

Remark 3.3. To show that estimate (3.8) is a sharp bound for the minimal
residual, we choose G as the one-dimensional interval [0, b]. The exact data
is chosen as f = b, and we assume that instead of f we are only given a noisy
version f δ = b + δ, i. e., the noise level is δ.

We now fix µ and η with 1 ≤ µ < 21+η
η

and (1 + η)/µ2 =: k∗ integer,
and construct an approximating sequence, for which the greedy algorithm
terminates with residual

∥

∥f δ − f δ
k∗

∥

∥ = µδ.
With this choice of parameters we have for all k ≤ k∗ that f δ

k := b−(µ−1)δ
is a sufficiently good approximation. Indeed, we have

∥

∥f δ − f δ
k

∥

∥ = µδ ≤
√

(1 + η)δ2

k
for k ≤ k∗ .

We now show that the greedy algorithm terminates in the next step of the it-
eration, which proves that estimate (3.8) is sharp: The optimal element gk∗+1

is given as gk∗+1 = b, hence f δ
k∗+1 := k∗

k∗+1
f δ

k∗

+ 1
k∗+1

b, but this approximation
is not sufficiently good since

∥

∥

∥

∥

f δ − k∗
k∗ + 1

f δ
k∗

− 1

k∗ + 1
b

∥

∥

∥

∥

= δ

(

1 +
k∗(µ − 1)

k∗ + 1

)

>

√

(1 + η)δ2

k∗ + 1
,

as a straight-forward computation shows. Hence for µ < 21+η
η

and appropri-
ate η we obtain that the estimate is sharp.

The reason why we cannot get this result for arbitrary values of η is that
in the proof of Theorem 3.2 we had to distinguish between the real value k̃
and the integer k∗. Ideally these values are almost equal, in the worst case
their ratio is η2/(2 + η)2. In this case estimate (3.8) is only sharp up to the
factor η/(2 + η).

In principle the estimate could be made sharp for all values of η by in-
troducing the factor

⌈

η2

4(1 + η)

⌉

/

(

η2

4(1 + η)
+ 1

)

,

where dae denotes the ceiling of a. Nevertheless, we omit this factor for the
sake of readability.

It should be mentioned that a different estimate is available in the case
that within the greedy algorithm also the weighting in the convex-combina-
tion is optimized (see [5, Chap. 25]).

10

4 An Adaptive Greedy Algorithm for Data

with Unknown Smoothness

In this section we develop the adaptive greedy algorithm, which will be ap-
plicable also if the smoothness of the (noisy) data is not known a-priori.

The motivation for this algorithm is as follows: Assume that we are
given data f ∈ co(GB), where we do not know the actual value B, but we
have the additional knowledge that f ∈ co(Gb) for some b. The natural
approach would be to guess b . B and—if the algorithm does not converge
“properly”—increase b by a certain amount. The results of the section above
will help us to provide a theoretical basis for this heuristic method.

The main idea is that an incorrect, i. e., too small choice of b has the same
effect as noise—the given data f does not fulfill f ∈ co(Gb). In the previous
section we have developed sharp estimates for the corresponding termination
index k∗, now we will use these estimates to develop an update rule for the
parameter b. As a first step, we have to transfer the results from the previous
section to the case of “artificial noise”, i. e., noise that is caused by a wrong
choice of b.

Corollary 4.1. Let f ∈ co(GB) and M = (1 + η)(b2 − ‖f‖2 + 2B−b
B

‖f‖2)
with b ≤ B. Then the approximations of Algorithm 3.1 fulfill

‖f − fk∗
‖ ≤ 2

1 + η

η

B − b

B
‖f‖ (4.1)

Proof. Since b
B

f ∈ co(Gb), we can interpret f as a noisy version of b
B

f , where
the noise level δ can be estimated as δ ≤ B−b

B
‖f‖. The proof now follows

with Theorem 3.2.

In practice neither η nor B are known, in the following lemma we express
η in terms of B, b, f and τ .

Lemma 4.2. Let f ∈ co(GB) and M = (1 + τ)(b2 + ‖f‖2) with 0 < b ≤ B.

Then the approximations of Algorithm 3.1 fulfill

‖f − fk∗
‖ ≤ 2

(1 + τ)(b2 + ‖f‖2)

Bτ(b2 + ‖f‖2) + 2b ‖f‖2 (B − b) ‖f‖ (4.2)

Proof. Follows immediately from Corollary 4.1 using the relation 1+η
η

=
M

M−M0
, where M0 = (b2 −‖f‖2 +2B−b

B
‖f‖2) and M = (1+ τ)(b2 +‖f‖2).

With the estimate of this lemma, we can now construct a lower bound
for the true, unknown parameter B, which we will use as update-rule in
Algorithm 4.1.

11

Algorithm 4.1: Adaptive greedy algorithm for approximation of data with
unknown smoothness parameter B.

1. Choose b0 < B.a

Set k = 1 and f0 = 0.

2. Perform iterations in Algorithm 3.1 as follows

• Take M = (1 + τ)(b2
i + ‖f (δ)‖2) with some τ ≥ 0 in the noise-free

case and τ ≥ 4ξ/
∥

∥f δ
∥

∥ for noisy data.

• Perform iterations as long as valid updates gk can be found.b

3. If the discrepancy principle (4.4) is fulfilled, then stop the iteration.
Otherwise use the residual in the greedy-algorithm to obtain a better
estimate bi+1 for B (see (4.3) and (4.5)), and continue with step 2 at
the index k = k∗,i.

aChoices that guarantee this are b0 = ‖f‖ /2 and b0 = (
∥

∥fδ
∥

∥ − ξ)/2 respectively. In
general severe underestimation is not a problem, b0 may trouble-free be 105 times smaller
than B (cf. the discussion of Figure 5.4).

bSince we try to approximate data f ∈ co(GB), using elements fk ∈ co(Gbi
) (co(GB),

the greedy-algorithm will fail to find a sufficiently good update after a certain number k∗,i

of iterations (see also Remark 4.4).

Theorem 4.3. Let f ∈ co(GB) and M = (1+ τ)(b2 + ‖f‖2) with 0 < b ≤ B.

Then the residual at the end of the iteration of Algorithm 3.1 provides a lower

bound for B via

B ≥ b̃ (b, τ, f, fk∗
) := b

(1 + τ) ‖f‖ + ‖f − fk∗
‖ ‖f‖2

b2+‖f‖2

(1 + τ) ‖f‖ − τ
2
‖f − fk∗

‖ ≥ b (4.3)

Proof. Follows from Lemma 4.2 under the observation that τ ‖f − fk∗
‖ <

2(1 + τ) ‖f‖ for b > 0.

With this update rule, we are now able to construct the adaptive Algo-
rithm 4.1 (given on top of this page). The estimates bi that are generated
within Algorithm 4.1 fulfill lim bi ≤ B, this means that throughout the iter-
ation the generated approximations fk remain at least as smooth as f .

Nevertheless, Theorem 4.3 is still not a complete result, since there are
also numerical effects, that have to be taken care of.

Remark 4.4. In practice there are two effects that may require to adjust
estimate (4.3).

12

Noisy data: Besides the missing information about the value of B we might
even only be given a noisy version f δ with

∥

∥f − f δ
∥

∥ ≤ ξ. If a bound on
the noise level is known, we can derive similar results as in Theorem 4.3
(see Theorem 4.6).

Furthermore, since for noisy data the optimal residual is larger than
zero, we have to incorporate a discrepancy-type stopping criterion into
the algorithm (see Remark 4.5).

Numerical minimization: The estimates in this section are based on the
fact, that sufficiently good approximations gδ

k exist for indices k ≤ k∗.

The index k̂, for which no such approximation gδ
k̂

exists at all is an

upper bound for k∗, i. e., k∗ ≤ k̂. Numerically we try to estimate k̂ by
observing when the algorithm fails to find a sufficiently good update
gδ

k within reasonable time.

If we terminate the algorithm too early, we underestimate k̂ and con-
sequently k∗. Fortunately, Lemma 4.7 shows that this does not pose
a problem as long as the search for the (almost) optimal element is
performed as thorough as in the original algorithm. This lemma also
gives a bound for the amount of underestimation.

As mentioned above, in the case of noisy data we cannot obtain an ar-
bitrarily small residual even if the parameter b would be chosen correctly.
Therefore we have to use an additional stopping rule.

Remark 4.5 (Discrepancy principle). For noisy data with noise level
∥

∥f − f δ
∥

∥ ≤ ξ, Algorithm 4.1 should be stopped at the index k for which for
the first time the estimate

∥

∥f δ − f δ
k

∥

∥ ≤ 2
(1 + τ)(b2 +

∥

∥f δ
∥

∥

2
)

τ(b2 + ‖f δ‖2) + 2 ‖f δ‖ (‖f δ‖ − ξ)
ξ (4.4)

is fulfilled. This follows from the fact that with correct choice of b (i. e.,
b = B), this is—according to Theorem 3.2—the minimal residual that we
can expect with noisy data.

In practice we do not have to check (4.4) for every k, but only in step 3
of Algorithm 4.1, i. e., when we have to check whether we should update bj

or stop the algorithm.
Using this discrepancy rule we can now give the main result of this work:

the update-rule for b for the case of noisy data. This rule was used to generate
the numerical examples in Section 5.

13

Theorem 4.6. Let f ∈ co(GB), f δ such that
∥

∥f − f δ
∥

∥ ≤ ξ and M = (1 +

τ)(b2 +
∥

∥f δ
∥

∥

2
) with 0 < b ≤ B and τ ≥ 4ξ/

∥

∥f δ
∥

∥. Then the residual at the

end of the iteration in Algorithm 3.1 provides a lower bound for B via

B ≥ b̃
(

b, τ, f δ, f δ
k∗

, ξ
)

:=

b
2
(

ξ +
∥

∥f δ
∥

∥

) (∥

∥f δ − f δ
k∗

∥

∥

∥

∥f δ
∥

∥ + M
)

2M (2ξ + ‖f δ‖) −
∥

∥f δ − f δ
k∗

∥

∥

(

τ(b2 + ‖f δ‖2) − 4ξ ‖f δ‖
) .

(4.5)

If furthermore the discrepancy rule (4.4) is used, we obtain in addition

b̃
(

b, τ, f δ, f δ
k∗

, ξ
)

≥ b , (4.6)

i. e., Algorithm 4.1 generates a monotonically increasing sequence bj with

lim bj ≤ B. The discrepancy rule is a necessary condition for monotonicity.

Proof. The proof follows with similar arguments as the proofs of Corollary 4.1
to Theorem 4.3. Again we start with Theorem 3.2, but now with the total
noise level, which can be bounded via δ ≤ ξ(2 − b/B) + (B − b)/B

∥

∥f δ
∥

∥.
Using the relation (1 + η)/η = M/(M − M0) we obtain the estimate

∥

∥f − f δ
k∗

∥

∥ ≤ 2M
(

B(2ξ +
∥

∥f δ
∥

∥) − b(ξ +
∥

∥f δ
∥

∥)
)

B(τ(b2 + ‖f δ‖2) − 4ξ ‖f δ‖) + 2b ‖f δ‖ (ξ + ‖f δ‖)
,

where we needed that τ ≥ 4ξ/
∥

∥f δ
∥

∥. This result now immediately yields
the estimate for B. Under the additional assumption that the discrepancy
principle of Remark 4.5 was used, we have a lower bound for the residual
and can therefore derive the monotonicity result (4.6). Vice versa, assuming
the monotonicity, one obtains (4.6).

Observe that Theorem 4.5 contains the result of Theorem 4.3, since for
the case of noise-free data, estimate (4.5) simplifies to (4.3).

Finally we briefly discuss the second point of Remark 4.4. In the original
greedy algorithm we have to look for almost optimal elements, where the
distance to the optimum in the kth step is bounded by τ(b2 + ‖f‖2)/k2

(cf. the definition of εk in (1.2)). If we perform the algorithm for unknown
smoothness with the slightly better precision λεk with λ < 1, we can estimate
the ratio of k∗ and the actual stopping index k̂. In both cases the precision
has to tend to zero as O (k−2).

Lemma 4.7. Let Algorithm 1.1 be performed with f ∈ co(GB) where B > b,
and precision λτ(b2 + ‖f‖2)/k2 where λ < 1. Then the algorithm is feasible

up to an index k̂, where we have the estimate
√

k∗ − 1
√

k̂ − 1
≤ 1 +

λ

1 − λ + 2 b‖f‖2

τB(b2+‖f‖2)

≤ 1

1 − λ
(4.7)

14

Proof. The algorithm will terminate at the index k̂ for which the working
precision λτ(b2 + ‖f‖2)/k2 is larger than the required precision εk, given
in (3.4). For this index k̂ we have the equation

λτ(b2 + ‖f‖2)

k̂2
≥ 1

k̂2

(

M −
(

b2 − ‖f‖2 + 2
B − b

B
‖f‖2

)

− 2δ

√

k̂ − 1
√

M

)

,

with δ as in the proof of Corollary 4.1. This yields the estimate

2δ

√

k̂ − 1
√

M ≥ (τ − λτ)
(

b2 + ‖f‖2) + 2
b

B
‖f‖2

Since for k∗ we have the relation

2δ
√

k∗ − 1
√

M ≥ τ
(

b2 + ‖f‖2) + 2
b

B
‖f‖2

we obtain the first estimate in (4.7), the second one follows by b ≥ 0.

The following remark shows, how the assumptions of Lemma 4.7 can be
fulfilled in a simple manner.

Remark 4.8. Let the quadratic minimization functional L(t) be defined as

L(t) := ‖F − Φ(·, t)‖2 =

∫

(F (x) − Φ(x, t))2 dx .

In the setting of Section 5 Φ(·, ·) is a radial basis function, i. e., it can be
written as Φ(x, t) = Ξ(‖x − t‖2). Therefore the second derivative of L(t) can
be estimated as |L′′(t)| ≤ 2 ‖Φt,t(·, t)‖ ‖F‖. Close to a local minimum t0 we
now obtain

|L(t)− L(t0)| ' |(t− t0)L
′(t0) +

(t − t0)
2

2
L′′(t0)| ≤ (t− t0)

2 ‖Φt,t‖ ‖F‖ .

If we insert the functions F = f δ − k−1
k

f δ
k−1 and Φ = 1

k
gδ

k we obtain further

|L(t) − L(t0)| .
(t − t0)

2

k2

(

∥

∥f δ
∥

∥ +
√

k − 1
√

M
)

‖gt,t‖ .

Thus, in order to obtain the accuracy O (1/k2) in the kth step of the greedy
algorithm, it is sufficient to choose O(4

√
k) evenly distributed values for t.

There is no need for additional optimization steps.

15

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

k = k∗,12 + 1 = 9 k = 20 k = k∗,13 = 44

Figure 5.1: Development of f δ
k within the greedy algorithm with 5% noise,

B = 1 and b = b13 = 0.8570. The three graphs correspond to k = k∗,12 + 1 =
9, k = 20 and the k = k∗,13 = 44.

5 Numerical Experiments

To test the results of the preceding sections numerically, we implement a
greedy algorithm for a simple, but still infinite-dimensional setting:

The set Gb is generated by Gaussian functions with fixed diameter and
variable center, where the centers are taken from the interval [−0.2, 1.2].
More precisely we define

Gb := b · G with G :=

{

e−50(x−t)2

4
√

π/100
| x, t ∈ [−0.2, 1.2]

}

(5.1)

(We do not have ‖g(t)‖ = b for all t, since part of the function g(t) may
lie outside the interval. Nevertheless all theorems only require that ‖g‖ ≤
b for elements g ∈ Gb). The function f to be approximated is given as
0.2g(0.6)+0.2g(0.3)+0.6g(0.7), i. e., B = 1. This function is discretized and
afterwards contaminated with Gaussian white noise; as initial guess for B we
set b0 = 0.001.

The second step of Algorithm 4.1 is implemented in a very simple way:
To find suitable elements gk we take tr ∈ [−0.2, 1.2] randomly, and take
gk := ±g(tr), where also the sign is determined at random (see Remark 4.8).
If with this element the residual is sufficiently small, the convex combination
fk+1 = k/(k + 1)fk + 1/(k + 1)gk is computed, otherwise a new element gk

is generated. If this procedure fails to find an update within a given number
of trials4, the algorithm breaks. Figure 5.1 shows the development of the
iterates in this procedure for b = b12.

If the computed residual at the end of this approach is already sufficiently
small, i. e., the discrepancy rule (4.4) is fulfilled, then Algorithm 4.1 is ter-

4In the given examples the number of trials in step k was restricted to 25 4
√
k.

16

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

k∗,12 = 8, b12 = 0.71 k∗,14 = 97, b14 = 0.91 k∗,18 = 295, b18 = 0.96

Figure 5.2: Development of f δ
k within the greedy algorithm with 5% noise

and different values of bj. The algorithm was started with b0 = 10−3, the
discrepancy-rule was fulfilled with b18 = 0.9575 < B.

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

k

re
s
id

u
a

l

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

log(k)

lo
g(

re
si

du
al

)

Figure 5.3: Development of the residual within the adaptive greedy algo-
rithm. The solid line represents the residual, the dotted one corresponds to
the iteration bound

√

M/k. The updates for bj lead to the typical saw-tooth
structure.

minated. Otherwise the result of Theorem 4.6 is used, in order to generate
a better estimate for B. While bj increases, also the iterates become better
approximations to the (noisy) data (see Figure 5.2).

Due to (4.6) we can be assured to obtain an increasing sequence bj with
lim bj ≤ B.

Since bj+1 ≥ bj we have f δ
k∗,j ∈ co(Gbj+1

), therefore we are allowed to
continue the iteration at the current index k, there is no need to restart the
whole algorithm with the index k = 1. This procedure yields the typical
saw-tooth shape in Figure 5.3.

Figure 5.4 shows the development of bj during the algorithm. As can
be seen, the estimates immediately (k ≤ 3) increase up to the correct or-
der of magnitude. After a few more updates the discrepancy rule is ful-

17

10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1

1.2

k

b
j

100 101 102
10−3

10−2

10−1

100

k

b j

Figure 5.4: Development of the estimates bj for noise level ξ = 5%. The
estimates immediately approach the correct order of magnitude, already for
k ≤ 3 the parameter b is increased from b0 = 10−3 to b12 = 0.7105.

filled and the algorithm terminates with b = b18 = 0.9757. The residual is
∥

∥f δ − f δ
k

∥

∥ /
∥

∥f δ
∥

∥ = 9.98% ≈ 2 · ξ.
Finally, in Figure 5.5 we investigate the influence of the noise level on the

quality of the results. Clearly, the residual results. Clearly at the end of the
iteration will be larger for higher noise levels, the left plot shows that the
ratio between residual and noise level is approximately constant. The right
graph demonstrates the influence of noise on the recovery of B. For high noise
levels, B is underestimated due to the discrepancy rule—very small values of
b (typical: b ≈ 0.5B) already yield sufficient approximations. For low noise
levels, B is estimated correctly or even overestimated. The overestimation is
due to the numerical effects described in Lemma 4.7, and could in principle
be avoided. Nevertheless, this is not necessary, since typically b stays less
than B, and even in the worst case we only observed b . 1.2B. Furthermore,
after the first step of overestimation the algorithm will usually terminate due
to the discrepancy rule, so there is no danger of substantial overestimation.
The algorithm always produces smooth solutions.

Acknowledgements

The author thanks Martin Burger for useful and stimulating discussions.
Financial support is acknowledged to the Austrian Science Foundation FWF
through project SFB F 013 / 08.

18

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.2

0.4

0.6

0.8

1

noiselevel

R
e

s
id

u
a

l

−1.8 −1.6 −1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2
0

0.2

0.4

0.6

0.8

1

1.2

log(noiselevel)

b

Figure 5.5: The left plot shows the dependence of the final residual on the
noise level, the right one demonstrates the influence on the estimates for B.
For every noise level the algorithm was run 5 times, the noise ranges from
2% to 45%.

References

[1] A. R. Barron, Universal approximation bounds for superpositions of a

sigmoidal function, IEEE Trans. Inform. Theory, 39 (1993), pp. 930–945.

[2] U. Bodenhofer, M. Burger, H. W. Engl, and J. Haslinger,
Regularized data-driven construction of fuzzy controllers, J. Inverse Ill-
Posed Probl., 10 (2002), pp. 319–344.

[3] M. Burger and A. Hofinger, Regularized greedy algorithms for net-

work training with data noise, Computing, (to appear).

[4] M. Burger and A. Neubauer, Error bounds for approximation with

neural networks, J. Approx. Theory, 112 (2001), pp. 235–250.

[5] W. Cheney and W. Light, A Course in Approximation Theory,
Brooks/Cole Publishing Company, 2000.

[6] R. A. DeVore and A. N. Temlyakov, Some remarks on greedy

algorithms, Adv. Comput. Math., 5 (1996), pp. 173–187.

[7] A. T. Dingankar and I. W. Sandberg, A note on error bounds for

approximation in inner product spaces, Circuits Syst. Signal Process.,
15 (1996), pp. 519–522.

[8] F. Girosi, M. Jones, and T. Poggio, Regularization theory and

neural networks architectures, Neural Comput., 7 (1995), pp. 219–269.

19

[9] A. Hofinger, Iterative regularization and training of neural networks,
Diplomarbeit, University of Linz, 2003.

[10] P. Niyogi and F. Girosi, Generalization bounds for function ap-

proximation from scattered noisy data, Adv. Comput. Math., 10 (1999),
pp. 51–80.

[11] A. Pinkus, n-Widths in Approximation Theory, Springer, Berlin, Hei-
delberg, 1985.

[12] J. Sjöberg, Q. Zhang, L. Ljung, A. Benveniste, B. Deylon,

P.-Y. Glorennec, H. Hjalmarsson, and A. Juditsky, Non-linear

black-box modeling in system identification: a unified overview, Auto-
matica, 31 (1995), pp. 1691–1724.

[13] A. N. Temlyakov, Weak greedy algorithms, Adv. Comput. Math., 12
(2000), pp. 213–227.

20

