
Indefinite Summation with Unspecified Summands

Manuel Kauers∗ and Carsten Schneider†

Research Institute for Symbolic Computation
Johannes Kepler Universität

A-4040 Linz, Austria

Abstract

We provide a new algorithm for indefinite nested summation which is applicable
to summands involving unspecified sequences x(n). More than that, we show how to
extend Karr’s algorithm to a general summation framework by which additional types
of summand expressions can be handled. Our treatment of unspecified sequences can
be seen as a first illustrative application of this approach.

1 Introduction

In order to find a “closed form” for the sum F (a, b) =
∑b

k=a f(k), with f(k) independent
of a and b, we focus on the summand sequence f(k). If there exists a solution g(k) of the
telescoping equation

g(k + 1) − g(k) = f(k),

then we obtain the result F (a, b) = g(b + 1) − g(a). Solving the telescoping equation
is therefore referred to as indefinite summation, and for various classes of sequences f(k),
there are algorithms available for doing this job. For instance, Gosper’s algorithm (Gosper,
1978; Paule and Schorn, 1995) and its q-generalization (Paule and Riese, 1997) can find
classical (q-)hypergeometric identities like

n∑

k=0

kk! = (k + 1)! − 1 or
n∑

k=0

[k]q[k]q! =
1

q
([n + 1]q! − 1), (1)

respectively, where [k]q := (1 − qk)/(1 − q) and [k]q! = [1]q[2]q · · · [k]q.

∗Partially supported by the Austrian Science Foundation (FWF) grant F1305 and the German Academic
Exchange Service (DAAD) grant D/03/40515

†Supported by the SFB-grant F1305 and by grant P16613-N12 of the Austrian FWF

1

In this paper, we provide an algorithm that does indefinite summation where the sum-
mand f(k) may depend on an unspecified sequence x(k). This algorithm is able to compute
identities like, e.g.,

n∑

k=0

(
x(k + 1) − 1

)
k∏

i=1

x(i) =

n+1∏

k=1

x(k) − 1, (2)

that hold for all sequences x(k). Observe that both classical identities mentioned above are
included here for appropriate choices of x(k). An equivalent form of (2), also in the scope
of our algorithm, appears in Apery’s proof of the irrationality of ζ(3) (van der Poorten,
1979):

n∑

k=1

1

a + x(k + 1)

k∏

i=1

x(i)

a + x(i)
=

1

a

(

1 −

n+1∏

k=1

x(k)

a + x(k)

)

(a 6= 0 const.)

A similar identity, given in (Graham et al., 1994, Exercise 5.93), is covered by (2) as well.
While algorithms for checking identities of this type are already known (Kauers, 2004),
our algorithm appears to be the first which can also find identities for this general class of
summands.

Our approach extends the abilities of the summation package Sigma (Schneider, 2004b).
This package is based on Karr’s difference field theory (Karr, 1981) and allows not only to
deal with (q-)hypergeometric terms, but also with rational expressions involving indefinite
nested sums and products. For instance, Sigma is able to find identities like

n∑

k=0

k∑

i=0

(
a

k

)

= 1
2

(

(a − n)

(
a

n

)

+ (2n − a + 2)

n∑

k=0

(
a

k

))

, or (3)

n∑

k=1

k2Hn+k = 1
3
n(n + 1

2
)(n + 1)(2H2n − Hn) − 1

36
(10n2 + 9n − 1), (4)

appearing in (Andrews and Paule, 1999, there for n = a) and (Graham et al., 1994,
Exercise 6.69), respectively. (We write Hn =

∑n

k=1 1/k for the nth harmonic number.)
Also these identities can be generalized by our new algorithm. The extended version of
Sigma produces

n∑

k=0

k∑

i=0

x(i) = (n + 1)
n∑

k=0

x(k) −
n∑

k=0

kx(k) and (5)

n∑

k=0

k2
k∑

i=0

x(i) = 1
6

(

n(n + 1)(2n + 1)

n∑

k=0

x(k) −

n∑

k=0

kx(k) + 3

n∑

k=0

k2x(k) − 2

n∑

k=0

k3x(k)
)

.

(6)

Simplifications (Schneider, 2002c; Schneider, 2002a; Schneider, 2002b) and generalizations
(Schneider, 2004c; Schneider, 2003) of Karr’s summation algorithm (Karr, 1981) are the

2

backbone of Sigma’s indefinite summation toolbox. These algorithms proceed by represent-
ing the sums under consideration by suitable difference fields, called ΠΣ-fields. Section 2
gives a short introduction into solving the telescoping equation in such fields. In this arti-
cle, we show that these algorithms can as well be applied to certain difference fields that
are not ΠΣ-fields. In fact, in Section 3, we will give a precise list of all requirements that
a difference field has to meet in order to be “compatible” to the ΠΣ-algorithms. Any new
type of difference field satisfying these requirements then immediately contributes to new
indefinite summation algorithms for nested sums and products. In this spirit, we provide
such a difference field for representing unspecified sequences x(k) in Section 5, adapting
the idea of (Kauers, 2004).

2 Telescoping Problems in Difference Fields

The overall strategy of our approach is as follows. In a first step we reformulate the
telescoping problem by representing the summand f(k) in terms of a field

�
where the

action of the shift operator Sk f(k) := f(k+1) is reflected by a field automorphism σ :
�
→�

. This leads to the concept of difference fields. A difference field is a pair (
�

, σ) where�
is a field and σ is an

�
-automorphism.1 The constant field of (

�
, σ) is defined as

constσ

�
= { c ∈

�
| σ(c) = c }.

Then the second step consists of solving the telescoping equation in the difference field
(

�
, σ): Given f ∈

�
, find, if possible, a g ∈

�
such that

σ(g) − g = f. (7)

Example 1 For identity
n∑

k=0

Hk = (n + 1)Hn − n

we proceed as follows. 1. Construction of the difference field (
�

, σ): We start with the
difference field (� , σ) with σ(c) = c for all c ∈ � , i.e., constσ � = � . Next, we construct
the transcendental field extension � (k) and extend the automorphism σ : � → � to � (k)
by defining the shift relation σ(k) = k+1. Finally, we extend this difference field (� (k), σ)
by taking the transcendental field extension

�
:= � (k)(t) and extending σ : � (k) → � (k)

to � (k)(t) by the shift relation σ(t) = t + 1
k+1

. This means that our difference field (
�

, σ)
consists of the rational function field � (k)(t) and the field automorphism σ : � (k)(t) →

� (k)(t) with σ(k) = k + 1 and σ(t) = t + 1
k+1

. Note that the shift Sk Hk = Hk + 1
k+1

is
reflected by the action of σ on t.
2. Solving the telescoping problem in (

�
, σ): Sigma (Schneider, 2003) finds the solution

g = k(t − 1) ∈
�

for
σ(g) − g = t.

1All fields in this paper are understood as having characteristic 0.

3

This means that g(k) = k(Hk − 1) is a telescoper for f(k) = Hk. This gives the desired
identity. �

Loosely speaking, our difference fields are towers of certain transcendental field extensions
(called ΠΣ-extensions) where each transcendental element represents a sum (Σ∗-extension)
or a product (Π-extension). More precisely, a difference field extension2 (

�
(t), σ) of (

�
, σ)

is a Π-extension (resp. Σ∗-extension3) if
�

(t) is a rational function field, σ(t) = α t (resp.
σ(t) = t + α) for some α ∈

�
and constσ

�
(t) = constσ

�
. A ΠΣ-extension is either a

Π- or a Σ-extension. Moreover, we say that (
�

, σ) is a (nested) ΠΣ-extension of (� , σ)
if

�
= � (t1) . . . (te) is a rational function field and (� (t1) . . . (ti), σ) is a ΠΣ-extension of

(� (t1) . . . (ti−1), σ) for all 1 ≤ i ≤ e. If � := � is the constant field of (
�

, σ) we say that
(

�
, σ) is a ΠΣ-field over � ; for further details see (Karr, 1981; Schneider, 2001; Schneider,

2003).

Of course not all expressions can be represented by ΠΣ-fields, but such expressions may
still be representable by difference fields which are not ΠΣ-fields. For instance, a free
difference field (Cohn, 1965, Chapter 2.6) is a suitable difference field representation for
an unspecified sequence x(n). A free difference field can be seen as a rational function
field � 〈x〉 := � (. . . , x−1, x0, x1, x2, . . .) together with σ defined by σ(c) = c (c ∈ �) and
σ(xi) := xi+1. This difference field is obviously not a ΠΣ-field, and the question arises to
which extend ΠΣ-techniques are applicable. Sections 3 to 5 give algorithms that make it
possible to proceed as outlined in the following example.

Example 2 In order to find a closed form evaluation of (2) we consider the difference
field (� 〈x〉(t), σ) where (� 〈x〉, σ) is free and (� 〈x〉(t), σ) is the ΠΣ-extension defined by
σ(t) = x1 t. In this field we solve (7) with f = (x1 − 1)t, and obtain g = t. This gives the
solution g(k) =

∏k

i=1 x(i) for the telescoping equation with f(k) = (x(k+1)−1)
∏k

i=1 x(k)
which allows to derive (2). �

There is another subtlety with respect to symbolic summation over nested sums. Observe
that so far we constructed the difference field (

�
, σ) for the telescoping problem (7) by

adjoining only those sums and products that are involved in the summand f(k) of the
telescoping equation. But this is in many cases not sufficient, compare (3), (5), and (6). In
order to overcome this situation, we can use refined summation techniques from (Schneider,
2004c). Namely, we search for suitable ΠΣ-extensions in which a closed form evaluation
exists.

Example 3 The summand f(k) = k2
∑k

i=0 x(i) in identity (6) can be represented as
f = k2t in the ΠΣ-extension (� 〈x〉(k)(t), σ) of (� 〈x〉, σ) with σ(k) = k+1 and σ(t) = t+x1.

2As illustrated in Example 1, a difference field (� , σ′) is a difference field extension of a difference field
(� , σ) if � is a subfield of � and σ′(g) = σ(g) for all g ∈ � ; usually we do not distinguish between σ
and σ′.

3For the sake of simplicity we will introduce Σ-extensions only in Section 3.1; the introduced Σ∗-
extensions are a slight simplification.

4

The telescoping equation has no solution in this difference field, but with our refined
summation tools, see problem RTΠΣ in Section 3, we find automatically the ΠΣ-extension
(� 〈x〉(k)(t)(s1)(s2)(s3), σ) of (� 〈x〉(k)(t), σ) with σ(si) = si + ki x1 in which a telescoping
solution of (7) exists. Namely, we obtain g = 1

6

(
(n− 1)n(2n− 1)t− s1 + 3s2 − 2s3

)
which

finally gives (6). �

In a similar fashion the identities (3) and (5) can be derived.

3 Indefinite Summation in ΠΣ-Extensions

As illustrated in Section 2 we are interested in two problems: the representation of the
summand f(k) in a suitable difference field and solving the telescoping problem (7) in this
domain. We approach this goal by looking for algorithms that solve the following problem.

TΠΣ : Telescoping in ΠΣ-extensions

• Given a (nested) ΠΣ-extension (� , σ) of (� , σ) and f ∈ � .
• Find, if possible, a g ∈ � with (7).

Then particular choices of (� , σ), like the constant field or the free difference field, allow
to define suitable difference fields for a given summation problem.

In this section we work out that a particular application of Karr’s algorithm (Karr, 1981)
allows to solve problem TΠΣ if there are algorithms for various subproblems in the ground
field (� , σ). We use the fact that Karr’s algorithm reduces by recursion all arising problems
to subproblems in the ground field (� , σ). The solutions of these subproblems are then
combined to a solution of the original problem TΠΣ .

In the following subsections we will analyze Karr’s algorithm, in particular, a simplified
version given in (Schneider, 2002c; Schneider, 2002a; Schneider, 2002b), in order to de-
termine all the subproblems that have to be solved. Difference fields for which all those
problems can be solved will be called σ-computable; a formal definition is given below.

As direct consequence we shall obtain also refined summation tools in such a σ-computable
difference field. Namely, we can search for suitable ΠΣ-extensions in which a solution for
the telescoping problem exists; see Example 3.

RTΠΣ : Refined Telescoping in ΠΣ-extensions

• Given a ΠΣ-extension (� , σ) of (� , σ) with � := � (t1) . . . (te), f ∈ � and r ∈ {0, . . . , e}.
• Decide if there exists a ΠΣ-extension (� (x1) . . . (xn), σ) of (� , σ) with σ(xi) = αixi + βi and
αi, βi ∈ � (t1) . . . (tr) such that there is a g ∈ � (x1) . . . (xe) with (7). If yes, compute such an
extension and such a g.4

4By difference field theory (Schneider, 2004c) it suffices to look for Σ∗-extensions, i.e., σ(xi) − xi ∈�
(t1) . . . (tr).

5

Then, assuming that (
�

, σ) is σ-computable, refined telescoping can be handled as follows.
Join the “simplest” sums and products in � (t1) . . . (te) first. Then looking for the smallest
possible r such that we obtain a solution in RTΠΣ gives the “simplest” solution g for (7).

3.1 A Constructive Theory of ΠΣ-extensions

In all our examples from Section 2 the summand f(k) is represented in a tower of Π- or Σ∗-
extensions over a σ-computable ground field (� , σ), e.g., � = � or � = � 〈x〉. By using
results from (Karr, 1981) it turns out that this construction can be carried out completely
algorithmically.

In order to accomplish this task, we use the following facts for Π- and Σ∗-extension defined
in Section 2; see (Karr, 1981) and (Schneider, 2003) for further explanations. Given any
difference field extension (

�
(t), σ) of (

�
, σ), the following holds: (1) This is a Π-extension

iff σ(t) = α t, t 6= 0, α ∈
� ∗ and there are no n > 0 and g ∈

�
with σ(g) = αng. (2) This

is a Σ∗-extension iff σ(t) = t + α, t /∈
�

, α ∈
� ∗, and there is no g ∈

�
with σ(g)− g = α.

In particular, this result states that indefinite summation/telescoping and the construction
of a Σ∗-extension are very closely related. Namely, one can either adjoin a sum in form of
a Σ∗-extension with σ(t) = t + β to (

�
, σ), or one can express this sum by a g ∈

�
with

σ(g) = g+β. The product case can be handled essentially in the same way; see (Schneider,
2003).

We call
H(,σ) := { σ(g)/g | g ∈

� ∗ }

the homogeneous group of a difference field (
�

, σ). We can construct a nested ΠΣ-extension
over a given ground field (� , σ) step by step if we know how to solve the following problem.

CΠΣ : Construction of ΠΣ-extensions

• Given a ΠΣ-extension (� , σ) of (� , σ) and α, β ∈ � .
• Decide if there is an n > 0 with αn ∈ H(,σ) (The homogeneous group problem for Π-
extensions).
• Find, if possible, a g ∈ � with σ(g) − αg = β (for Σ∗- and Σ-extensions).

Together with results from Sections 3.2 and 3.3 we can handle this problem if the ground
field (� , σ) is σ-computable; see Definition 2.

For completeness reasons we introduce Σ-extensions, a slightly more general form of Σ∗-
extensions; see (Karr, 1981; Schneider, 2001; Schneider, 2003). An extension (

�
(t), σ) of

(
�

, σ) is a Σ-extension if
�

(t) is a rational function field, σ(t) = α t+β with α, β ∈
� ∗ and

constσ

�
(t) = constσ

�
where the following two properties hold: (1) there does not exist a

g ∈
�

with σ(g) − αg = β, and (2) if αn ∈ H(,σ) for some n ∈
 ∗ then α ∈ H(,σ). Note
that we can decide algorithmically whether we can adjoin a Σ-extension by solving certain
instances of problem CΠΣ .

6

3.2 The Homogeneous Group Problem and Subproblems

Before we get to the definition of σ-computability, we introduce the notion of σ∗-computa-
bility as an intermediate step. This notion will be defined in such a way that we can solve
the homogeneous group problem of CΠΣ in any ΠΣ-extension (� (t1) . . . (te), σ) of (� , σ)
if (� , σ) is σ∗-computable.

We call a difference field (
�

, σ) torsion free if

∀r ∈
 ∗ ∀f ∈ H(,σ) : f r = 1 ⇒ f = 1. (8)

Moreover, we define for a difference field (
�

, σ) with r ≥ 0 the σ-factorial

f(r,σ) := f · σ(f) · · ·σr−1(f).

Definition 1 A difference field (
�

, σ) is called σ∗-computable if the following holds.

(1) There is an algorithm that can factor multivariate polynomials over
�

.

(2) (
�

, σk) is torsion free for all k ∈
 ∗.

(3) There is an algorithm that can solve problem ΠReg:

ΠReg: Π-Regularity

• Given (� , σ) and f, g ∈ � ∗.
• Find, if possible, an n ≥ 0 with f(n) = g.

(4) There is an algorithm that can solve problem ΣReg:

ΣReg: Σ-Regularity

• Given (� , σ), k ∈ � ∗ and f, g ∈ � ∗.
• Find, if possible, an n ≥ 0 with f(0,σk) + · · · + f(n,σk) = g.

(5) There is an algorithm that can solve problem OHG:

OHG: Orbits of the Homogeneous Group

• Given (� , σ) and α1, . . . , αr ∈ � ∗.
• Find, a basis of the submodule { (n1, . . . , nr) ∈ � r | αn1

1 . . . αnr

r ∈ H(,σ) } of � r over � .

Theorem 1 Let (
�

(t), σ) be a ΠΣ-extension of (
�

, σ). If (
�

, σ) is σ∗-computable then
(

�
(t), σ) is σ∗-computable.

Proof. Suppose that (
�

, σ) is σ∗-computable. Then first observe that by (Karr, 1981,
Lemma 4) the extension (

�
(t), σk) of (

�
, σ) is a ΠΣ-extension for all k ∈
 ∗. We have:

(1) There is an algorithm that can factor multivariate polynomials over
�

(t): this follows
since there is an algorithm that can factor multivariate polynomials over

�
, hence over

7

�
[t], and consequently over

�
(t).

(2) (
�

(t), σ) is torsion free: this follows by (Karr, 1981, Lemma 5) and the assumption
that (

�
, σ) is torsion free.

(3) There is an algorithm that solves problem ΠReg in (
�

(t), σ): this follows by (Karr,
1981, Theorem 5) and the assumption that one can solve problem ΠReg in (

�
, σ).

(4) There is an algorithm that solves problem ΣReg in (
�

(t), σ): this follows by (Karr,
1981, Theorem 6) and the assumptions that one can factor polynomials

�
[t], (

�
, σk) is

torsion free for all k ∈
 , and one can solve problem ΣReg.
(5a) Using the already proven statements (3) and (4), it follows by (Karr, 1981, Theorem 4)
that there is an algorithm for problem

SE: Shift Equivalence in a ΠΣ-extension

• Given a ΠΣ-extension (� (t), σ) of (� , σ) and f, g ∈ � (t)∗.
• Find, if possible, an n ∈ � with σn(f)/g ∈ � .

(5) There is an algorithm that solves problem OHG in (
�

(t), σ): This follows by Theorem 7
and Theorem 8 in (Karr, 1981) by using the fact that one can factor polynomials in

�
[t],

there is an algorithm for problem OHG in (
�

, σ), and statement (5a) holds. �

With the proof step (5a) for Theorem 1 there is the following fact needed in Section 3.3.

Corollary 1 Let (
�

(t), σ) be a ΠΣ-extension of (
�

, σ). If (
�

, σ) is σ∗-computable then
one can solve problem SE.

Summarizing, one can lift the property σ∗-computable from the ground field (� , σ) to any
ΠΣ-extension (

�
, σ) with

�
= � (t1) . . . (te). Hence one can solve problem OHG in any ΠΣ-

extension (
�

, σ) of a σ∗-computable (� , σ), which is a generalization of the homogeneous
group problem in CΠΣ .

3.3 Parameterized First Order Linear Difference Equations

In order to handle problem TΠΣ and CΠΣ we consider the following more general problem.

PFLDE: Parameterized First Order Linear Difference Equations

• Given (� , σ) with � := constσ � , a1, a2 ∈ � ∗ and (f1, . . . , fn) ∈ � n.
• Find all g ∈ � and (c1, . . . , cn) ∈ � n with a1 σ(g) + a2 g = c1 f1 + · · · + cn fn.

Definition 2 A difference field (
�

, σ) is σ-computable if it is σ∗-computable and there is
an algorithm that solves problem PFLDE.

Theorem 2 Let (
�

(t), σ) be a ΠΣ-extension of (
�

, σ). If (
�

, σ) is σ-computable then
(

�
(t), σ) is σ-computable.

8

We outline the algorithm given in (Schneider, 2002c; Schneider, 2002a; Schneider, 2002b),
which only makes use of properties of the ground field (

�
, σ) that are included in the

definition of σ-computability. By Corollary 1 we have an algorithm to solve problem SE.
We can apply the following chain of reductions.

Reduction I (denominator bounding). Find a polynomial d ∈
�

[t]∗ such that for all
ci ∈ � and g ∈

�
(t) with

a1 σ(g) + a2 g = c1 f1 + · · ·+ cn fn (9)

we have d g ∈
�

[t]. Then it follows that

a1

σ(d)
σ(g′) +

a2

d
g′ = c1 f1 + · · ·+ cn fn

for g′ ∈
�

[t] if and only if (9) with g = g′/d. By using results from (Karr, 1981; Bronstein,
2000) it is shown in (Schneider, 2002a) that there is an algorithm that computes such a
d ∈

�
[t]∗ if there are algorithms that solve problem SE in the ΠΣ-extension (

�
(t), σ) of

(
�

, σ) and problem OHG in (
�

, σ). We can do this by assumption. Hence, after computing
such a denominator bound, it suffices to look only for ci ∈ � and polynomial solutions
g ∈

�
[t] with (9).

Reduction II (degree bounding). Next, we look for a degree bound b ∈ 0 for the
polynomial solutions. By (Karr, 1981), see (Schneider, 2002b) for further details, there is
an algorithm that computes such a degree bound if there are algorithms that solve problems
PFLDE and OHG in (

�
, σ). By assumption we can solve these problems.

Reduction III (polynomial degree reduction). Given this degree bound one looks for
ci ∈ � and gi ∈

�
such that (9) holds for g =

∑b

i=0 git
i. Loosely speaking, this can be

achieved as follows. First derive the possible leading coefficients gb by solving a specific
instance of problem PFLDE in (

�
, σ), then plug in the corresponding solutions into (9)

and look for the remaining solutions g =
∑b−1

i=0 git
i by recursion. Summarizing, one can

derive the solutions for (9) by solving several problems of the type PFLDE in (
�

, σ).

Corollary 2 There is an algorithm that solves problems PFLDE and CΠΣ for a ΠΣ-
extension (

�
, σ) of (� , σ) when (� , σ) is σ-computable.

Problem RTΠΣ can be solved in a ΠΣ-extension (� (t1) . . . (te), σ) of (� , σ), if the degree
and denominator bounding algorithms in (Schneider, 2002a; Schneider, 2002b) can be
applied in all ΠΣ-extensions (� (t1) . . . (ti), σ) of (� (t1) . . . (ti−1), σ), see (Schneider, 2004c).
As shown in the reduction above, this is possible when (� , σ) is σ-computable.

Corollary 3 There is an algorithm that solves Problem RTΠΣ for a ΠΣ-extension (
�

, σ)
of (� , σ) where (� , σ) is σ-computable.

9

4 Special Case: ΠΣ-Fields

We have defined a ΠΣ-field as a tower of ΠΣ-extensions over a field � of constants. There
are some requirements (Karr, 1981, Theorem 9) which a constant field has to fulfill such
that it can serve as the basis of a ΠΣ-field. Our notion of σ-computability generalizes these
requirements.

Theorem 3 Let (� , σ) be a constant field, i.e., σ(k) = k (k ∈ �). Assume that � has
the following properties: (1) for any k ∈ � it can be decided if k ∈
 ; (2) multivariate
polynomials over � can be factored; (3) for any vector (c1, . . . , ck) ∈ � k, a basis of the
module

{ (n1, . . . , nk) ∈
 k | cn1

1 · · · cnk

k = 1 } ⊆
 k

can be computed.

Then (� , σ) is σ-computable.

Proof. It is immediate that any constant field is torsion-free, because H(� ,σi) = {1} for all
i ∈ . Π-regularity can be decided using (Karr, 1981, Lemma 2), due to property (3). Σ-
regularity can be decided using (Karr, 1981, Lemma 3) and properties (1) and (2). OHG is
property (3). PFLDE only requires solving a linear system as � is a constant field. �

For example, any rational function field over an algebraic number field is σ-computable
(Schneider, 2003).

5 Application of Free Difference Fields

In this section, we show that a free difference field (� 〈x〉, σ) is σ-computable if the un-
derlying constant field � is. Together with the results of Section 3, this provides a com-
plete algorithmic framework that produces identities with unspecified sequences x(k), as
indicated in the introduction. Recall the definition � 〈x〉 = � (. . . , x−1, x0, x1, . . .) with
σ(xk) = xk+1.

Even though � 〈x〉 has infinitely many indeterminates, each particular element does only
involve finitely many of them. Therefore, for any f ∈ � 〈x〉 \ � we may define max ord(f)
as the maximum r ∈
 such that xr occurs in f . The minimum order min ord(f) is defined
analogously. For convenience, we may put max ord(f) := −∞ and min ord(f) := ∞ when
f ∈ � . Reasoning about the order of elements leads to a rather straightforward algorithmic
treatment of (� 〈x〉, σ). We will make free use of obvious relations such as max ord(σf) =
1+max ord(f) (f ∈ � 〈x〉) or max ord(f ·g) = max{max ord(f), max ord(g)} (f, g ∈ � 〈x〉∗).

Theorem 4 If (� , σ) is a σ-computable constant field, then (� 〈x〉, σ) is σ-computable as
well.

10

The rest of this section is devoted to the proof of this theorem.

First, (� 〈x〉, σ) is torsion free: Let f ∈ H(� 〈x〉,σi) with f k = 1 for some i and k. By
definition, there is a g ∈ � 〈x〉 with f = σi(g)/g, so 1 = f k = σi(g)k/gk = σi(gk)/gk,
so gk = σi(gk). This shows that gk ∈ � , because otherwise, gk and σi(gk) would have
different order and could hence not be equal. But (� , σ) is torsion-free, so f = 1.

We now provide algorithms for solving the required problems.

5.1 ΠΣ-Regularity

Consider the problem ΠΣReg in (� 〈x〉, σ). Let f, g ∈ � 〈x〉. If both f, g belong to � ,
σ-computability of � applies. If only one of them belongs to � and the other one does
not, then there can not be an n ∈ with g = f(n). Now suppose that neither of f, g
belongs to � . For all n ≥ 0, we have min ord(f(n)) = min ord(f) and max ord(f(n)) =
max ord(f) + n− 1 by the definition of f(n). Comparing the orders of f and g one obtains
at most one candidate n which may satisfy the required equation g = f(n). For this
candidate, compute f(n) and compare it to g.

Σ-regularity can be decided by a similar reasoning.

5.2 The Orbits of the Homogeneous Group

Consider problem OHG in (� 〈x〉, σ). First observe that given f, g ∈ � 〈x〉, we can decide
whether f and g are shift equivalent (problem SE): consideration of the orders of f and g
gives at most one candidate n for which σn(f)/g ∈ � could possibly be the case. For
this candidate n, σn(f)/g can be decided by inspection. Decidability of shift equivalence
together with the ability to factor multivariate polynomials over � allows the computation
of so-called σ-factorizations (Karr, 1981, Definition 23) of vectors (f1, . . . , fn) ∈ � 〈x〉n.

Using σ-factorizations in � 〈x〉 and the σ-computability of � , OHG can be solved in analogy
to (Karr, 1981, Theorem 8).

5.3 Solving Linear Difference Equations

We complete the discussion by presenting an algorithm for solving PFLDE in (� 〈x〉, σ).
The algorithm transforms the problem to a system of linear equations over � by a chain
of several reductions, similar as in Section 3.3. In view of possible further generalizations,
motivated by (Schneider, 2002c), we consider the following more general problem.

Given a1, . . . , am ∈ � 〈x〉 and f1, . . . , fn ∈ � 〈x〉, find all g ∈ � 〈x〉 and c1, . . . , cn ∈ � such
that

a1σ
m−1(g) + a2σ

m−2(g) + · · · + am−1σ(g) + amg = c1f1 + c2f2 + · · · + cnfn. (10)

PFLDE is included here for m = 2.

11

Reduction I (denominator bounding) First we reduce (10) from � 〈x〉 to the polynomial
difference ring � {x} := � [. . . , x−1, x0, x1, . . .]. As σk(f)/f 6∈ � for all f ∈ � 〈x〉 \ �
and k > 0, we can apply Abramov’s denominator bounding algorithm (Abramov, 1995;
Bronstein, 2000; Schneider, 2002a) without complication. As in Section 3.3, denominator
bounding reduces the rational function problem to a polynomial problem.

Reduction II (order bounding) It remains to consider equation (10) for the case where
the ai and fi are in � {x} and a solution g ∈ � {x} is required. If g is such a solution
and ρ is the maximum of the max ord(ai) and max ord(fi), then g must be free of xk for
all k > ρ − m + 1. This can be seen as follows. Suppose max ord(g) = k > ρ − m + 1.
Then σm−1(g) contains a term of order k + m− 1 > ρ. As no such term can occur in σi(g)
(i < m − 1) or in ai, the left hand side of (10) has order k + m − 1. But the right hand
side has at most order ρ. So g cannot be a solution, in contradiction to the assumption.

A lower bound for min ord(g) can be found by a similar argument. For clarity of notation,
we may assume for the next steps without loss of generality that 0 bounds min ord(g) from
below and r is an upper bound for max ord(g).

Reduction III (degree bounding) Now, after bounding the denominator and the orders,
and after clearing denominators, we may consider (10) as an equation in the polynomial
ring � [x0, . . . , xr]. We seek a polynomial solution g in this ring. For efficiency reasons, we
will show how to compute separate degree bounds for each indeterminate xi, rather than
using an overshooting bound for the total degree.

We write ai =
∑

k ai,kx
k
0, fi =

∑

k fi,kx
k
0 and make the ansatz g =

∑

k gkx
k
0. The ai,k, fi,k

and gk are supposed to be free of x0. A degree bound for g in x0 is readily found using
that σk(g) is free of x0 for all k > 0. Based on this starting point, we will incrementally
find degree bounds for the gi,k with respect to x1, then degree bounds for the coefficients
w.r.t. x2, etc., as follows.

For obtaining a degree bound of gk w.r.t. x1, we plug in the ansatz for g into the difference
equation (10). This gives

∑

k

am,kx
k
0

∑

k

gkx
k
0 +

m−1∑

j=1

∑

k

aj,kx
k
0

∑

k

σm−j(gk)
︸ ︷︷ ︸

free of x1

xm−j = c1f1 + · · ·+ cnfn.

We now iterate through all terms xk
0 in the product

∑

k am,kx
k
0

∑

k gkx
k
0 and compare co-

efficients. This leads to equations of the form p(x1)gk = q(x1) for some polynomials p, q,
from which lower and upper bounds for the degree of x1 in gk can be read of. We need not
worry about the symbolic σm−j(gk) contained in q, because they are free of x1.

Having degree bounds for all the gk w.r.t. x1 at hand, we write ai =
∑

k,l ai,k,lx
k
0x

l
1,

fi =
∑

k,l fi,k,lx
k
0x

l
1 and we refine the ansatz g =

∑

k gkx
k
0 by gk =

∑

l gk,lx
l
1. Compar-

ing coefficients of xk
0x

l
1 leads to degree bounds w.r.t. x2, and we proceed in the same way

until the bound r for the maximum order is reached.

The result of this procedure is a finite set of candidate terms that may possibly occur in
a solution. Compared to a naively computed total degree bound, the procedure described

12

here offers a severe reduction of the computational overhead. The set of candidate terms
is often optimal in practice, or overshooting by a few terms only. Naive bounds for the
total degree, on the other hand, overshoot by a factor of up to 100 on certain examples.

Reduction IV (coefficient comparison) Based on the set of terms computed in the previous
step, we make an indetermined ansatz for the solution, plug it into the difference equation
and compare coefficients. This leads to a linear system over � .

6 Conclusion

We were able to extend the algorithmic theory of ΠΣ-fields to new types of difference
fields. Indefinite nested summation over sequences represented by any difference field is
now possible, provided that the difference field satisfies the stated sufficient conditions
(σ-computability, Def. 2). With this approach, we obtained a new summation algorithm
for dealing with unspecified sequences.

Concerning unspecified sequences, summation techniques beyond indefinite summation
still have to be investigated. Since problem PFLDE allows to model creative telescoping
(Petkovšek et al., 1996) in the difference field setting, see (Schneider, 2004b) for the ΠΣ-
case, we plan to apply our ideas also to definite summation. As also higher order difference
equations can be solved in free difference fields, our summation framework can possibly be
extended to indefinite and definite summation with summands involving ∂-finite expres-
sions as well (Chyzak, 2000; Schneider, 2004a).

Let us finally remark that the idea of representing “arbitrary sequences” by free difference
fields should work similarly in the Risch algorithm for symbolic integration (Risch, 1969;
Risch, 1970), using a free differential field for representing an “arbitrary function.” In this
vein, identities like

∫ x

0

∫ t

0

f(τ) dτ dt = x

∫ x

0

f(t) dt −

∫ x

0

tf(t) dt

(compare (6) above) should be possible to find automatically.

References

Abramov, S. (1995). Rational solutions of linear difference and q-difference equations with
polynomial coefficients. In Levelt, T., editor, Proc. ISSAC’95, pages 285–289. ACM
Press, New York.

Andrews, G. and Paule, P. (1999). MacMahon’s partition analysis IV: Hypergeometric
multisums. Sém. Lothar. Combin., B42i:1–24.

Bronstein, M. (2000). On solutions of linear ordinary difference equations in their coefficient
field. J. Symbolic Comput., 29(6):841–877.

13

Chyzak, F. (2000). An extension of Zeilberger’s fast algorithm to general holonomic func-
tions. Discrete Math., 217:115–134.

Cohn, R. (1965). Difference Algebra. Interscience Publishers, John Wiley & Sons.

Gosper, R. (1978). Decision procedures for indefinite hypergeometric summation. Proc.
Nat. Acad. Sci. U.S.A., 75:40–42.

Graham, R., Knuth, D., and Patashnik, O. (1994). Concrete Mathematics. Addison-Wesley
Publishing Company, Amsterdam, 2nd edition.

Karr, M. (1981). Summation in finite terms. J. ACM, 28:305–350.

Kauers, M. (2004). Computer proofs for polynomial identities in arbitrary many variables.
In Proc. ISSAC’04.

Paule, P. and Riese, A. (1997). A Mathematica q-analogue of Zeilberger’s algorithm based
on an algebraically motivated aproach to q-hypergeometric telescoping. In Ismail, M.
and Rahman, M., editors, Special Functions, q-Series and Related Topics, volume 14,
pages 179–210. Fields Institute Toronto, AMS.

Paule, P. and Schorn, M. (1995). A Mathematica version of Zeilberger’s algorithm for
proving binomial coefficient identities. J. Symbolic Comput., 20(5-6):673–698.

Petkovšek, M., Wilf, H., and Zeilberger, D. (1996). A = B. A.K. Peters, Wellesley, MA.

Risch, R. (1969). The problem of integration in finite terms. Trans. Amer. Math. Soc.,
139:167–189.

Risch, R. (1970). The solution to the problem of integration in finite terms. Bull. Amer.
Math. Soc., 76:605–608.

Schneider, C. (2001). Symbolic summation in difference fields. Technical Report 01-17,
RISC-Linz, J. Kepler University. PhD Thesis.

Schneider, C. (2002a). A collection of denominator bounds to solve parameterized lin-
ear difference equations in ΠΣ-fields. SFB-Report 02-20, J. Kepler University, Linz.
Submitted.

Schneider, C. (2002b). Degree bounds to find polynomial solutions of parameterized lin-
ear difference equations in ΠΣ-fields. SFB-Report 02-21, J. Kepler University, Linz.
Submitted.

Schneider, C. (2002c). Solving parameterized linear difference equations in ΠΣ-fields. SFB-
Report 02-19, J. Kepler University, Linz. Submitted.

Schneider, C. (2003). Product representations in ΠΣ-fields. SFB-Report 2003-10, J. Kepler
University, Linz. Submitted.

14

Schneider, C. (2004a). A new Sigma approach to multi-summation. Technical Report
04-09, RISC-Linz, J. Kepler University. Submitted.

Schneider, C. (2004b). The summation package Sigma: Underlying principles and a rhom-
bus tiling application. Technical Report 04-07, RISC-Linz, J. Kepler University. To
appear in Discrete Math. Theor. Comput. Sci.

Schneider, C. (2004c). Symbolic summation with single-nested sum extensions. Proc.
ISSAC’04.

van der Poorten, A. (1979). A proof that Euler missed. . . Apéry’s proof of the irrationality
of ζ(3). Math. Intelligencer, 1:195–203.

15

