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Abstract. We present a streamlined and refined version of Karr’s summation algorithm.
Karr’s original approach constructively decides the telescoping problem in ΠΣ-fields, a very
general class of difference fields that can describe rational terms of arbitrarily nested indefinite
sums and products. More generally, our new algorithm can decide constructively if there
exists a so called single-nested ΠΣ-extension over a given ΠΣ-field in which the telescoping
problem for f can be solved in terms that are not more nested than f itself. This allows to
eliminate an indefinite sum over f by expressing it in terms of additional sums that are not
more nested than f . Moreover, our refined algorithm contributes to definite summation: it
can decide constructively if the creative telescoping problem for a fixed order can be solved
in single-nested Σ∗-extensions that are less nested than the definite sum itself.

1. Introduction

Let (F, σ) be a difference field, i.e., a field1 F together with a field automorphism σ : F → F,
and let K be its constant field, i.e., K = constσF := {k ∈ F |σ(k) = k}. Then Problem PFLDE
plays an important role in symbolic summation.

Problem PFLDE: Solving Parameterized First Order Linear Difference Equations

• Given a1, a2 ∈ F∗ and (f1, . . . , fn) ∈ Fn.
• Find all g ∈ F and (c1, . . . , cn) ∈ Kn with a1 σ(g) + a2 g =

∑n

i=1
ci fi.

For instance, if one takes the field of rational functions F = K(k) with the shift σ(k) = k+1
and specializes to n = 1, a1 = 1 and a2 = −1, one considers the telescoping problem for a ratio-
nal function f1 = f ′(k) ∈ K(k). Moreover, if K = K′(m) and fi = f ′(m+ i− 1, k) ∈ K′(m)(k)
for 1 ≤ i ≤ n, one formulates the creative telescoping problem [14] of order n − 1 for definite
rational sums.
More generally, ΠΣ-fields, introduced in [6, 7], are difference fields (F, σ) with constant field
K where F := K(t1) . . . , (te) is a rational function field and the application of σ on the ti’s
is recursively defined over 1 ≤ i ≤ e with σ(ti) = αi ti + βi for αi, βi ∈ K(t1) . . . (ti−1); we
omitted some technical conditions given in Section 2. Note that ΠΣ-fields enable to describe
a huge class of sequences, like hypergeometric terms, as shown in [13], or most d’Alembertian
solutions [1, 9], a subclass of Liouvillian solutions [5] of linear recurrences. More generally,
ΠΣ-fields allow to describe rational terms consisting of arbitrarily nested indefinite sums and
products. We want to emphasize that the nested depth of these sums and products gives a
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measure of the complexity of expressions. This can be carried over to ΠΣ-fields by introduc-
ing the depth of ti as the number of recursive definition steps that are needed to describe the
application of σ on ti; for more details see Section 2. Moreover, the depth of f ∈ F is the
maximum depth of the ti’s that occur in f , and the depth of (F, σ) is the maximum depth of
all the ti.
The main result in [6] is an algorithm that solves Problem PFLDE and therefore the tele-
scoping and creative telescoping problem for a given ΠΣ-field (F, σ) where the constant field
K is σ-computable. This means that (1) for any k ∈ K one can decide if k ∈ Z, (2) polyno-
mials in K[t1, . . . , tn] can be factored over K, and (3) one knows how to compute a basis of
{

(n1, . . . , nk) ∈ Zk | cn1

1 . . . cnk

k = 1
}

for (c1, . . . , ck) ∈ Kk which is a submodule of Zk over Z.
For instance, any rational function field K = A(x1, . . . , xr) over an algebraic number field A

is σ-computable; see [13].
In this paper we will present a streamlined and simplified version of Karr’s original algo-
rithm [6] for Problem PFLDE using Bronstein’s denominator bound [2] and results from [6,
12, 10, 11]. Afterwards we will extend this approach to an algorithm that can solve

Problem RS: Refined Summation

• Given a ΠΣ-field (F, σ) with depth d, constant field K and (f1, . . . , fn) ∈ Fn.
• Decide constructively if there are (0, . . . , 0) 6= (c1, . . . , cn) ∈ Kn and g ∈ F(x1) . . . (xe) for σ(g)− g =
∑n

i=1
ci fi in an extended ΠΣ-field (F(x1) . . . (xe), σ) with depth d and σ(xi) = αi xi + βi where

αi, βi ∈ F.

Suppose we fail to find a solution g with σ(g)− g = f in a given ΠΣ-field (F, σ) with depth
d and f ∈ F∗ with depth d, but there exists such an extended ΠΣ-field (F(x1) . . . (xe), σ) and
a solution g with depth d for σ(g) − g = f . Then our new algorithm can compute such an
extension with such a solution g. As a side result we will show that it suffices to restrict to
the sum case, i.e., σ(xi) − xi ∈ F. In some sense our results shed new constructive light on
Karr’s Fundamental Theorem [6].

For instance, in Karr’s approach [6] one can find the right hand side in (1) only by setting
up manually the corresponding ΠΣ-field in terms of the harmonic numbers Hn :=

∑n
i=1

1
i

and the generalized versions H
(r)
n :=

∑n
i=1

1
ir

, r > 1, whereas with our new algorithm the
underlying ΠΣ-field is constructed completely automatically. Additional examples are
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Our new approach also refines creative telescoping: we might find a recurrence of smaller
order by introducing additional sums with depths smaller than the definite sum.
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All these algorithms have been implemented in form of the summation package Sigma in
the computer algebra system Mathematica. The wide applicability of this new approach is
illustrated for instance in [9, 8, 4].

2. Refined Summation in ΠΣ-Fields

First we introduce some notations and definitions. Let (F, σ) be a difference field with
K = constσF, a = (a1, a2) ∈ F2 and f = (f1, . . . , fn) ∈ Fn. For any h = (h1, . . . , hn) ∈ Fn

and p ∈ F we write f h :=
∑n

i=1 fi hi, σ(h) := (σ(h1), . . . , σ(hn)), and h p := (h1 p, . . . , hn p).
We define 0n := (0, . . . , 0) ∈ Kn, and write 0 = 0n if it is clear form the context. We call a

homogeneous over F if a1 a2 6= 0 and a1 σ(g) + a2 g = 0 for some g ∈ F∗.
Now let V be a subspace of F over K and suppose that a 6= 0. Then we define the solution
space V(a,f , V) as the subspace {(c1, . . . , cn, g) ∈ Kn × V | a1σ(g) + a2g =

∑n
i=1 cifi} of the

vector space Kn ×F over K. By difference field theory [3], the dimension is at most n+1; see
also [9, 10]. Therefore Problem PFLDE is equivalent to find a basis of V(a,f , F).
A difference field (E, σ′) is a difference field extension of (F, σ) if F is a subfield of E and
σ′(g) = σ(g) for g ∈ F; note that from now σ and σ ′ are not distinguished anymore.
A difference field extension (F(t), σ) of (F, σ) is a Π- (resp. Σ∗-) extension if F(t) is a rational
function field, σ(t) = a t (σ(t) = t + a resp.) for some a ∈ F∗ and constσF(t) = constσF.
A difference field extension (F(t), σ) of (F, σ) is a Σ-extension if F(t) is a rational function
field, σ(t) = α t + β for some α, β ∈ F∗, constσF(t) = constσF, and the following two prop-

erties hold for α: (1) there does not exist a g ∈ F(t) \ F with σ(g)
g

= α, and (2) if there is a

g ∈ F∗ and n 6= 0 with σ(g)/g = αn then there is also a g ∈ F∗ with σ(g)/g = α. Note that
any Σ∗-extension is also a Σ-extension; for more details see [6, 7, 2, 9, 13]. A ΠΣ-extension
is either a Π- or a Σ-extension. A difference field extension (F(t1) . . . (te), σ) of (F, σ) is a
(nested) Σ∗/ΠΣ-extension if (F(t1) . . . (ti), σ) is a Σ∗/ΠΣ-extension of (F(t1) . . . (ti−1), σ) for
all 1 ≤ i ≤ e; for i = 0 we define F(t1) . . . (ti−1) = F. Note that e = 0 gives the trivial
extension.
For H ⊆ F, a ΠΣ-extension (F(t1) . . . (te), σ) of (F, σ) is single-nested over H, or in short over
H, if σ(ti) = αi ti + βi with αi, βi ∈ H for all 1 ≤ i ≤ e. A ΠΣ-extension of (F, σ) is called
single-nested, if it is single-nested over F.
Finally, a ΠΣ-field (F, σ) over K is a ΠΣ-extension of (K, σ) with constσK = K, i.e., constσF =
K.

In [6] alternative definitions of ΠΣ-extensions are introduced that allow to decide construc-
tively if an extension (F(t), σ) of (F, σ) is a ΠΣ-extension under the assumption that (F, σ)
is a ΠΣ-field over a σ-computable K. For instance, for Σ∗-extensions there is the following
result given in [7, Theorem 2.3] or [9, Corollary 2.2.4].

Theorem 1. Let (F(t), σ) be a difference field extension of (F, σ). Then this is a Σ∗-extension
iff σ(t) = t + β, t /∈ F, β ∈ F, and there is no g ∈ F with σ(g) − g = β.

In particular, this result states that indefinite summation and building up Σ∗-extensions are
closely related. Namely, if one fails to find a g ∈ F with σ(g) − g = β ∈ F, i.e., one cannot
solve the telescoping problem in F, one can adjoin the solution t with σ(t) + t = β to F in
form of the Σ∗-extension (F(t), σ) of (F, σ).

Our refined simplification strategy for a given sum is as follows: If we fail to solve the
telescoping problem, we do not adjoin immediately the sum in form of a Σ∗-extension, but we
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first try to find an appropriate ΠΣ-extension in which the sum can be formulated less nested.
These ideas can be clarified further with the depth-function. Let F = K(t1, . . . , te) be a func-
tion field over K. Then for g = g1

g2
∈ F∗ with gi ∈ K[t1, . . . , te] and gcdK[t1,...,te](g1, g2) = 1

we define the support of g, in short suppF(g), as those ti that occur in g1 or g2. Then for a
ΠΣ-field (F, σ) over K with F := K(t1) . . . (te) and σ(ti) = αi ti+βi for αi, βi ∈ K(t1) . . . (ti−1),
the depth-function depth : F → N0 is defined recursively as follows. For any g ∈ K set
depth(g) = 0. If the depth-function is defined for (K(t1) . . . (ti−1), σ) with i > 1, we de-
fine depth(ti) = max(depth(αi),depth(βi))+ 1 and for g ∈ K(t1) . . . (ti) we define depth(g) =
max({depth(x) |x ∈ suppK(t1,...,ti)(g)} ∪ {0}). The depth of (F, σ), in short depth(F), is the

maximal depth of all elements in F, i.e., depth(F) is equal to max(0,depth(t1), . . . ,depth(te)).
We say that a ΠΣ/Σ∗-extension (F(t1) . . . (te), σ) of a ΠΣ-field (F, σ) has maximal depth d if
depth(ti) ≤ d for all 1 ≤ i ≤ e.
Now we can reformulate Problem RS as follows. Given a ΠΣ-field (F, σ) with depth d and
f ∈ Fn. Decide constructively if there is a single-nested ΠΣ-extension (E, σ) of (F, σ) with
maximal depth d, g ∈ E and 0 6= c ∈ Kn such that σ(g) − g = c f .

Example 1. Denote the left side in (1) with S
(3)
n and define S

(1)
n :=

∑n
i=1

1
i

and S
(2)
n :=

∑n
j=1 S

(1)
j /j. In the straightforward summation approach one applies usual telescoping which

results in the ΠΣ-field (Q(t1)(t2)(t3)(t4), σ) over Q with σ(t1) = t1 + 1, σ(t2) = t2 + 1
t1+1 ,

σ(t3) = t3 + σ( t2
t1

) and σ(t4) = t4 + σ( t3
t1

), i.e., there is no g ∈ Q(t1) with σ(g) − g = 1
t1+1

and no g ∈ Q(t1) . . . (tr) with σ(g) − g = σ( tr
t1

) for r = 2, 3. Then tr represents S
(r−1)
n with

depth(tr) = r for r = 2, 3, 4, and depth(Q(t1) . . . (t4)) = 4. But with our refined summation
approach we obtain the following improvement starting from the ΠΣ-field (F, σ) with F :=
Q(t1)(t2). We find the Σ∗-extension (F(s), σ) of (F, σ) with σ(s) = s+ 1

(t1+1)2
with the solution

g :=
t2
2
+s

2 for σ(g)−g = σ( t2
t1

) that represents the sum S
(2)
n . Moreover, we find the Σ∗-extension

(F(s)(s′)), σ) of (F(s), σ) with σ(s′) = s′ + 1
(t1+1)3

and the solution g′ = 1
6 (t32 + 3t2 s + 2s′) for

σ(g′) − g′ = σ(g/t1). Then S
(3)
n is represented by g′ with depth(g′) = 2 which gives the right

hand side of identity (1).

Besides refined indefinite summation, we obtain a generalized version of creative telescoping
in ΠΣ-fields. Suppose that the sequences f ′(m + i − 1, k) can be represented with fi ∈ F for
i ≥ 1 in a ΠΣ-field (F, σ) over K(m) with depth(fi) = d. Moreover assume that we do not find
a g ∈ F and 0 6= c ∈ K(m)n with σ(g)− g = cf for f = (f1, . . . , fn). Then the usual strategy
is to increase n, i.e., the order of the possibly resulting creative telescoping recurrence. But
if we find a solution for Problem RS, we derive a recurrence of order n − 1 in terms of sum
extensions with maximal depth d.
Summarizing, for telescoping and creative telescoping we are interested in finding a single-
nested ΠΣ-extension in which a nontrivial linear combination of (f1, . . . , fn) in the solution
space exists. More generally, we will ask for those extensions that will give us additional
linear combinations. To make this more precise, we define for any A ⊆ Fn+1 the set Πn(A) :=
{(a1, . . . , an) | (a1, . . . , an, an+1) ∈ A}.

Definition 1. Let (E, σ) be a ΠΣ-field over K with depth d, 1 ≤ δ ≤ d + 1, and f ∈ En.
We call a ΠΣ-extension (G, σ) of (E, σ) single-nested δ-complete for f if for all single-nested
ΠΣ-extensions (H, σ) of (E, σ) with maximal depth δ we have

Πn(V((1,−1),f , H)) ⊆ Πn(V((1,−1),f , G)). (2)
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In this paper we solve the following problem. Given a ΠΣ-field (E, σ) over a σ-computable
K with depth d, f ∈ En and δ ∈ N with 1 ≤ δ ≤ d + 1; compute a single-nested Σ∗-extension
(G, σ) of (E, σ) with maximal depth δ which is single-nested δ-complete for f , and compute a
basis of V((1,−1),f , G). Note that Problem RS for single-nested ΠΣ-extension is contained
in this problem by setting δ := d.

3. A more general problem

In order to treat the problem stated in the previous paragraph, we solve the more general
problem to find an F-complete extension of (E, σ) for f defined in

Definition 2. Let (E, σ) be a ΠΣ-extension of (F, σ) and f ∈ En. We call a ΠΣ-extension
(G, σ) of (E, σ) single-nested F-complete for f , or in short F-complete for f , if (2) holds for
all ΠΣ-extensions (H, σ) of (E, σ) over F.

The following lemma is crucial to show in Theorem 2 that there exists a Σ∗-extension of
(E, σ) over F which is F-complete for f . This means that it suffices to restrict to Σ∗-extensions.
Moreover this lemma is needed to prove Theorem 6 which gives us the essential idea how one
can compute such F-complete extensions.

Lemma 1. Let (E, σ) be a ΠΣ-extension of (F, σ) and f ∈ E∗. If there exists a single-nested
ΠΣ-extension (G, σ) of (E, σ) over F with a g ∈ G\E such that σ(g)− g = f then there exists
a Σ∗-extension (E(s), σ) of (E, σ) over F with a w ∈ E such that σ(s + w) − (s + w) = f .

Proof. Let (G, σ) be a ΠΣ-extension of (E, σ) over F, i.e., G = E(t1) . . . (te) with σ(ti) =
αi ti + βi and αi, βi ∈ F, and suppose that there is a g ∈ G \ E with σ(g) − g = f . Then
by Karr’s Fundamental Theorem [6, Theorem 24], see also [7, Section 4], it follows that
g =

∑e
i=0 ci ti + w for some w ∈ E and ci ∈ K, where ci = 0 if σ(ti) − ti /∈ F. In particular,

0 6= (c1, . . . , ce), since g /∈ E. Now let E(s) be a rational function field and suppose that
the difference field extension (E(s), σ) of (E, σ) with σ(s) − s =

∑e
i=1 ci (σ(ti) − ti) =: β ∈ F

is not a Σ∗-extension. Then by Theorem 1 we can take a g ′ ∈ E with σ(g′) − g′ = β.
Let j be maximal such that cj 6= 0. Then we have σ(v) − v = σ(tj) − tj ∈ F for v :=
1
cj

(

g′ −
∑j−1

i=1 ci ti
)

∈ E(t1) . . . (tj−1), and thus (E(t1) . . . (tj−1)(tj), σ) is not a Σ∗-extension of

(E(t1) . . . (tj−1), σ) by Theorem 1, a contradiction. Hence (E(s), σ) is a Σ∗-extension of (E, σ)
over F, and σ(s + w) − (s + w) =

∑e
i=1 ci(σ(ti) − ti) + σ(w) − w = σ(g) − g = f . �

Observe that Lemma 1 follows immediately by Theorem 1 if one restricts to the special case
E = F. For the case F ( E, in which we are actually interested, we have to involve Karr’s
Fundamental Theorem [6].

Theorem 2. Let (E, σ) be a ΠΣ-extension of (F, σ) and f ∈ En. Then there is a Σ∗-extension
of (E, σ) over F which is F-complete for f .

Proof. Let (G, σ) be a Σ∗-extension of (E, σ) over F which is not F-complete for f . Then
we can take a c ∈ Kn such that σ(g) − g = c f ∈ E has a solution in some ΠΣ-extension
of (E, σ) over F, but no solution in E. Then by Lemma 1 it follows that there is a Σ∗-
extension (E(s), σ) of (E, σ) over F with σ(s + w) − (s + w) = f for some w ∈ E. Observe
that there also does not exist an h ∈ G with σ(h) − h = β ∈ F. Otherwise we would have
σ(h + w) − (h + w) = c f with h + w ∈ G, a contradiction. Consequently, by Theorem 1 also
(G(s), σ) is a Σ∗-extension of (G, σ) with σ(s) = s + β and therefore a Σ∗-extension of (E, σ)
over F. Since Πn(V((1,−1),f , G)) is a proper subspace of Πn(V((1,−1),f , G(s))) and those
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spaces have dimension at most n, this argument can be repeated at most n times before an
F-complete Σ∗-extension is reached. �

In the following we will represent the ΠΣ-field (E, σ) in such a way that one can find a
single-nested δ-complete extension of (E, σ) for f by finding an F-complete extension over a
certain subfield F ⊆ E.

Let G := F(s1) . . . (su)(x)(t1) . . . (tv) be a field of rational functions. Then the field H :=
F(x)(s1) . . . (su)(t1) . . . (tv) is isomorphic with G by the field isomorphism τ : G → H with
τ(f) = f for all f ∈ F, τ(si) = si, τ(x) = x and τ(ti) = ti. More sloppily, we write τ(f) = f
for f ∈ G, or G = H. Now suppose that in addition we consider a ΠΣ-extension (G, σ) of
(F, σ). Then we can define the automorphism σ ′ : H → H with σ′(f) = τ(σ(τ−1(f))) for all
f ∈ H. In a more sloppy way, we write σ = σ ′. Then obviously, (H, σ) is a difference field
extension of (F, σ) with constσG = constσH = constσF. But in general, (H, σ) is not anymore
a ΠΣ-extension of (F, σ). But if we have σ(x) = αx + β with α, β ∈ F then this reordering
of the variables gives us again a ΠΣ-extension which is isomorphic to the original one with
the trivial difference field isomorphism τ : G → H with τ(f) = f and σ(τ(f)) = τ(σ(f)). The
proof of this statement can be carried out rigorously with techniques used in [9, Section 2.4].
Observe that one can reorder a ΠΣ-field (E, σ) over K with depth d and 1 ≤ δ ≤ d + 1
to a ΠΣ-field (F(t1) . . . (te), σ) with depth(F) = δ − 1 and depth(ti) ≥ δ for all 1 ≤ i ≤ e.
This construction is possible, since any ΠΣ-extension in F has smaller depth than the ti and
is therefore free of the ti in the definition of σ. In addition, we obtain the difference field
isomorphism τ : E → F(t1) . . . (te) where τ(f) = f for all f ∈ E. With this reordered ΠΣ-field
one obtains

Lemma 2. Let (F(t1) . . . (te), σ) be a ΠΣ-field with δ := depth(F) + 1 and depth(ti) ≥ δ
for 1 ≤ i ≤ e, and let (H, σ) be a single-nested ΠΣ-extension of (F(t1) . . . (te), σ). Then this
extension has maximal depth δ iff it is over F.

Proof. Write H := F(t1) . . . (te)(s1) . . . (su). First assume that the extension is over F, i.e.,
σ(si) = αisi+βi with αi, βi ∈ F. Then, because of depth(F) = δ−1 it follows that depth(βi) ≤
δ−1 and depth(αi) ≤ δ−1, thus depth(si) = max(depth(αi),depth(βi))+1 ≤ δ, and therefore
the extension has maximal depth δ. Conversely, suppose that this extension has maximal
depth δ, i.e. depth(si) ≤ δ. Then depth(αi) ≤ δ − 1 and depth(βi) ≤ δ − 1, and consequently
αi, βi ∈ F. �

Theorem 3. Let (E, σ) with E := F(t1) . . . (te) be a ΠΣ-field where δ := depth(F) + 1 and
depth(ti) ≥ δ for 1 ≤ i ≤ e, and f ∈ En. Then a ΠΣ-extension (G, σ) of (E, σ) over F which
is F-complete for f has maximal depth δ and is single-nested δ-complete for f .

Proof. Assume such an extension (G, σ) of (E, σ) is not single-nested δ-complete for f .
Then take a single-nested ΠΣ-extension (H, σ) of (E, σ) with maximal depth δ and c ∈
Πn(V((1,−1),f , H)) \Πn(V((1,−1),f , G)). Since δ = depth(F)+ 1 and depth(ti) ≥ δ, (H, σ)
is an extension of (E, σ) over F by Lemma 2, and thus the extension (G, σ) of (E, σ) is not
F-complete for f , a contradiction. Moreover, the extension (G, σ) of (E, σ) is single-nested
with maximal depth δ by Lemma 2. �

In Section 5 we will develop an algorithm that computes an F-complete Σ∗-extension of
(F(t1) . . . (te), σ) over F for f . Then by Theorem 3 this extension will be also single-nested
δ-complete for f with maximal depth δ.
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4. A Reduction Strategy

We develop a streamlined version of Karr’s summation algorithm [6] based on results of
[2] and [9, 12, 10, 11] that solves Problem PFLDE. In particular, this approach will assist in
finding F-complete extensions over F.

More precisely, let (F(t), σ) be a ΠΣ-extension of (F, σ) with σ(t) = α t + β, K = constσF,
0 6= a = (a1, a2) ∈ F(t)2 and f ∈ F(t)n. We will introduce a simplified version of Karr’s
reduction strategy [6] that helps in finding a basis of V(a,f , F(t)) over K. If (F, σ) is a ΠΣ-
field, this reduction turns into a complete algorithm. Moreover, this reduction technique will
deliver all the information to compute an F-complete extension.

A special case. If a1 a2 = 0, we have g = cσ−1( f
a1

) with a1 6= 0 or g = c
f
a2

with

a2 6= 0. Then it follows with g = (g1, . . . , gn) and the i-th unit vector (0 . . . , 1, . . . , 0) ∈ Kn

that {(0 . . . , 1, . . . , 0, gi)}1≤i≤n ⊆ Kn ×F(t) is a basis of V(a,f , F(t)). Hence from now on we
suppose a ∈ (F(t)∗)2.

Clearing denominators and cancelling common factors. Compute a′ = (a′1, a
′
2) ∈

(F[t]∗)2, f ′ = (f ′
1, . . . , f

′
n) ∈ F[t]n such that gcdF[t](f

′
1, . . . , f

′
n, a′1, a

′
2) = 1 and a′ = a q,

f ′ = f q for some q ∈ F(t)∗. Then we have V(a,f , F(t)) = V(a′,f ′, F(t)). Therefore we may
suppose that a ∈ (F[t]∗)2 and f ∈ F[t]n where the entries have no common factors.

In Karr’s original approach [6] the solutions g = p+q ∈ F(t) in (c1, . . . , cn, g) ∈ V(a,f , F(t))
are computed by deriving first the polynomial part p ∈ F[t] and afterwards the fractional part
q ∈ F(t), i.e., the degree of the numerator is smaller than the degree of the denominator.
We simplify this approach substantially by first computing a common denominator of all the
possible solutions in F(t) and afterwards computing the “numerator” of the solutions over
this common denominator.

Denominator bounding. In the first important reduction step one looks for a denomi-
nator bound d of V(a,f , F(t)), i.e. a polynomial d ∈ F[t]∗ that fulfills

∀(c1, . . . , cn, g) ∈ V(a,f , F(t)) : d g ∈ F[t].

Since V(a,f , F(t)) is a finite dimensional vector space over K, a denominator bound must
exist. Now suppose that we have given such a d and define a′ := ( a1

σ(d) ,
a2

d
). Then it follows

that {(ci1, . . . , cin, gi)}1≤i≤r is a basis of V(a′,f , F[t]) if and only if {(ci1, . . . , cin, gi

d
)}1≤i≤r is

a basis of V(a,f , F(t)). For a proof we refer to [9, 12]. Hence, given a denominator bound d
of V(a,f , F(t)), we can reduce the problem to search for a basis of V(a,f , F(t)) to look for a
basis of V(a′,f , F[t]). By clearing denominators and cancelling common factors in a and f ,
as above, we may also suppose that a ∈ (F[t]∗)2 and f ∈ F[t]n.

Polynomial degree bounding. The next step consists of bounding the polynomial
degrees in V(a,f , F[t]). For convenience we introduce F[t]b := {f ∈ F[t] | deg(f) ≤ b} for
b ∈ N0 and F[t]−1 := {0}. Moreover, we define ||b|| := deg b for b ∈ F[t]∗, ||0|| := −1, and
||b|| := max1≤i≤l ||bi|| for b = (b1, . . . , bl) ∈ F[t]l. Then we look for a polynomial degree bound b
of V(a,f , F[t]), i.e., a b ∈ N0 ∪ {−1} such that

V(a,f , F[t]b) = V(a,f , F[t]), b ≥ max(−1, ||f || − ||a||). (3)

Again, since V(a,f , F[t]) is finite dimensional over K, a degree bound must exist. Note that
by the second condition in (3) it follows that f ∈ F[t]||a||+b which is needed to proceed with
the degree elimination technique below.
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Due to [6, 7, 2] the problem to determine a denominator bound or degree bound is completely
constructive if (F, σ) is a ΠΣ-field over a σ-computable K. The proofs and sub-algorithms of
these results can be found in [2, 10, 11].

Theorem 4. If (F(t), σ) is a ΠΣ-field over a σ-computable K, a ∈ (F[t]∗)2 and f ∈ F[t]n then
there are algorithms that compute a denominator bound of V(a,f , F(t)) or a degree bound of
V(a,f , F[t]).

Polynomial degree reduction. Finally we have to deal with the problem to compute
a basis of V(a,f , F[t]δ) for some δ ∈ N0 ∪ {−1} where f ∈ F[t]nδ+l with l := ||a||; this is
guaranteed if δ is a polynomial degree bound of V(a,f , F[t]). Here we follow exactly the idea
in [6]. Namely, we first find the candidates of the leading coefficients gδ ∈ F for the solutions

(c1, . . . , cn, g) ∈ V(a,f , F[t]δ) with g =
∑δ

i=0 gi t
i, plugging back its solution space and go on

recursively to derive the candidates of the missing coefficients gi ∈ F.
This reduction idea is graphically illustrated in Figure 1 which has to be read as follows.

The problem of finding a basis of V(a,f , F[t]δ) is reduced to (i) searching for a basis of

V(ãδ, f̃δ, F) for some specifically determined 0 6= ãδ ∈ F2 and f̃δ ∈ Fn and (ii) finding
a basis of V(a,fδ−1, F[t]δ−1) for some particular chosen fδ−1 ∈ F[t]λδ−1. Then (iii), the
original problem V(a,f , F[t]δ) can be reconstructed by the two bases of the corresponding
subproblems. Intuitively, the solution in F[t]δ is reconstructed by sub-solutions in F (the
leading coefficients) and F[t]δ−1 (the polynomial with the remaining coefficients) which is
reflected by the vector space isomorphism F[t]δ'F[t]δ−1 ⊕ tδ F. In the sequel we explain this
reduction in more details. Define

ãδ = (ã1, ã2) :=
(

coeff(a1, l) αδ , coeff(a2, l)
)

f̃δ := (coeff(f1, δ + l), . . . , coeff(fn, δ + l)).
(4)

where 0 6= ãδ ∈ F2 and f̃δ ∈ Fn; coeff(p, l) gives the l-th coefficient of p ∈ F[t]. Then

there is the following crucial observation for a solution c ∈ Kn and g =
∑δ

i=0 gi t
i ∈ F[t]δ of

V(a,f , F[t]δ); see [9, 12]: Since t is transcendental over F, it follows by coefficient comparison

that ã1 σ(gδ) + ã2 gδ = c f̃δ which means that (c1, . . . , cn, gδ) ∈ V(ãδ, f̃δ, F). Therefore,

the right linear combinations of a basis of V(ãδ, f̃δ, F) enable one to construct partially the
solutions (c1, . . . , cn, g) ∈ V(a,f , F[t]δ), namely (c1, . . . , cn) ∈ Kn with the δ-th coefficient gδ

in g ∈ F[t]δ. So, the basic idea is to find first a basis B1 of V(ãδ, f̃δ, F).
• CASE A: B1 = {}. Then there are no g ∈ F[t]δ and 0 6= c ∈ Kn with a1 σ(g) + a2 g = c f ,
and thus c = 0 and g ∈ F[t]δ−1 with a1 σ(g)+a2 g = 0 give the only solutions; see [12]. Hence,
take a basis B2 of V(a,fδ−1, F[t]δ−1) with

fδ−1 := (0)

and try to extract such a g ∈ F[t]∗δ−1 from B2. If possible, a basis of V(a,f , F[t]δ) is
(0, . . . , 0, g). Otherwise, V(a,f , F[t]δ) = {0n+1}.
• CASE B: B1 6= {}, say B1 = {(ci1, . . . , cin, wi)}1≤i≤λ. Then define C := (cij) ∈ Kλ×n, g :=

(w1 tδ, . . . , wλ tδ) ∈ tδ Fλ and consider

fδ−1 := C f − (a1 σ(g) + a2 g). (5)

By construction it follows that fδ−1 ∈ F[t]λδ+l−1. Now we proceed as follows. We try to de-

termine exactly those h ∈ F[t]δ−1 and d ∈ Kλ that fulfill a1 σ(h + dg) + a2 (h + d g) = d C f

which is equivalent to a1 σ(h) + a2 h = dfδ−1. For this task, we take a basis B2 of
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fδ := f , λδ := n V(a, fδ, F[t]δ)
HHHH(i) j

YHHHH
(iii)

V(ãδ, f̃δ, F)

ãδ ∈ F
m, f̃δ ∈ F

λδ

�����

(ii)
fδ−1 ∈ F[t]

λδ−1

l+d−1
V(a, fδ−1, F[t]δ−1)

(iii)6

...

f0 ∈ F[t]λ0

l V(a, f0, F[t]0)
HHHH(i) j

YHHHH
(iii)

V(ã0, f̃0, F)

ã0 ∈ F
m, f̃0 ∈ F

λ0

�����

(ii)
f−1 ∈ F[t]

λ
−1

l−1
V(a, f−1, F[t]−1)

(iii)6

Figure 1. Incremental reduction

V(a,fδ−1, F[t]δ−1).
? CASE B.a: B2 = {}. Then V(a,fδ, F[t]δ) = {0n+1}.
? CASE B.b: B2 6= {}, say B2 = {(di1, . . . , diλ, hi)}1≤i≤µ. Then define D := (dij) ∈

Kµ×λ,h := (h1, . . . , hµ) ∈ F[t]µδ−1 which gives a1 σ(h + D g) + a2 (h + D g) = D C f . Now

define κij ∈ K and pi ∈ F[te]
µ
δ with

(

κ11 ... κ1n

...
...

κµ1 ... κµn

)

:= D C, (p1, . . . , pµ) := h + D g. (6)

Then by the above considerations it follows that B3 := {(κi1, . . . , κin, pi)}1≤i≤µ spans a sub-
space of V(a,f , F[t]δ) over K. By linear algebra arguments one can even show that B3 is a
basis of V(a,f , F[t]δ) over K. This polynomial degree reduction is the inner core of Karr’s
summation algorithm given in [6]. A complete proof can be found in [12].

Summarizing, let (F(t), σ) be a ΠΣ-extension of (F, σ), a ∈ (F[t]∗)2 with l := ||a|| and
f ∈ F[t]nδ+l for some δ ∈ N0 ∪ {−1}. Then we can apply this reduction technique step
by step and obtain an incremental reduction of (a,f , F[t]δ) given in Figure 1. We call

{(a,fδ, F[t]δ), . . . , (a,f−1, F[t]−1)} the incremental tuples and {(ãδ, f̃δ, F), . . . , (ã0, f̃0, F)}
the coefficient tuples of such an incremental reduction.

Base case I. In the incremental reduction we finally reach the problem to find a basis of
V(a,f , F[t]−1) with F[t]−1 = {0}. Then we have V(a,f , {0}) = NullspaceK(f) × {0} where
NullspaceK(f) = {k ∈ Kn |f k = 0}. Note that a basis of V(a,f , {0}) can be computed by
linear algebra if (F, σ) is a ΠΣ-field over a σ-computable K; for more details see [12].

Example 2. Take the ΠΣ-field (Q(t1)(t2), σ) over Q from Example 1 and write F := Q(t1).
With our reduction strategy we will find a basis of V(a,f , F(t2)) for a = (1,−1) ∈ F(t2)

2

and f = (σ(t2/t1)) = (1+(t1+1) t2
(t1+1)2

) ∈ F(t2)
1. Clearing denominators gives the vectors a =

((t1 + 1)2,−(t1 + 1)2) ∈ F[t2]
2, f = (1 + (t1 + 1) t2) ∈ F[t2]

1. A denominator bound of
V(a,f , F(t2)) is 1, and a degree bound of V(a,f , F[t2]) is 2. Now we start the incremen-
tal reduction of (a,f , F[t2]2). For the incremental tuple (a,f2, F[t2]2) with f2 := f ∈ F[t2]

1
2



10 C. SCHNEIDER

we obtain the coefficient tuple (a, (0), F). The basis {(1, 0), (0, 1)} of V(a, (0), F) gives C =
( 1

0 ) ∈ K2×1, g = (0, t22) ∈ F[t2]
2
2. This defines the incremental tuple (a,f1, F[t2]1) with f1 =

(1 + (t1 + 1) t2,−1 − 2(t1 + 1) t2) ∈ F[t2]
2
1 and the coefficient tuple (a, (t1 + 1,−2(t1 + 1)), F).

Then taking the basis {(2, 1, 0), (0, 0, 1)} of V(a, (1,−2), F), one obtains f0 = (1,−t1 − 1) ∈
F2

0, the incremental tuple (a,f0, F[t2]0) and the coefficient tuple (a,f0, F). A basis of the solu-
tion space V(a,f0, F) is {(0, 0, 1)} which defines f−1 = (0). Finally, a basis of V(a,f−1, {0})
is {(1, 0)}. This gives the basis {(0, 0, 1)} of V(a,fi, F[t2]i) for i ∈ {0, 1} and therefore the
basis {(0, 1)} of V(a,f2, F[t2]2) and V(a,f , F(t2)).

A reduction to F. Suppose that we have given not only a single but a nested ΠΣ-
extension (F(t1) . . . (te), σ) of (F, σ) where we write Fi := F(t1) . . . (ti) for 0 ≤ i ≤ e, i.e.,
F0 = F. Let 0 6= a = (a1, a2) ∈ Fe and f ∈ Fn

e . Then we understand by a reduction of
(a,f , Fe) to F a recursive application of the above reductions. More precisely, if e = 0, we
do nothing. Otherwise, suppose that e > 0. If a1 a2 = 0, we just apply the special case
from above. Otherwise, within our reduction there is a denominator bound d ∈ Fe−1[te]

∗

which reduces the problem to find a basis of V(a,f , Fe) to find one for V(a′,f ′, Fe−1[te]) for
some a′ ∈ (Fe−1[te]

∗)2 and f ′ ∈ Fe−1[te]
n; those are given by setting a′ := (a1/σ(d), a2/d),

f ′ := f and clearing denominators and cancelling common factors. Next, with a degree
bound b of V(a′,f ′, Fe−1[te]) the incremental reduction of (a′,f ′, Fe−1[te]b) is applied. Within
this reduction the coefficient tuples (ai,fi, Fe−1) for 0 ≤ i ≤ b give the subreductions of
(ai,fi, Fe−1) to F for 0 ≤ i ≤ b that define recursively the whole reduction of (a,f , Fe) to F.

We call T the tuple set of a reduction of (a,f , Fe) to F if besides (a,f , Fe) ∈ T the set T
contains exactly all those coefficient tuples that occur in the recursively applied incremental
reductions. Moreover, for ae := a and fe := f we call {(ai,fi, Fi)}r≤i≤e ⊆ T path-tuples
of (ar,fr, Fr) ∈ T if in the subreduction of (ai+1,fi+1, Fi+1) to F the coefficient tuple
(ai,fi, Fi) occurs for each r ≤ i < e in the incremental reduction. Finally, we introduce
the Fr-critical tuple set S in a reduction of (a,f , Fe) to F as that subset of the tuple set T
of the reduction to F that contains all (a′,f ′, Fr) ∈ T with the following property: for its
path-tuples {(ai,fi, Fi)}r≤i≤e we have that ai is homogeneous for all r ≤ i ≤ e.
Summarizing, we obtain the following method that generates a reduction to F.

Algorithm 1. SolveSolutionSpace((F(t1) . . . (te), σ),a,f)

Input: A ΠΣ-extension (F(t1) . . . (te), σ) of (F, σ) with K := constσF; 0 6= a = (a1, a2) ∈
F(t1) . . . (te)

2 and f ∈ F(t1) . . . (te)
n.

Output:A basis of V(a,f , F(t1) . . . (te)) over K.

(1) IF e = 0 compute a basis B of V(a,f , F) and RETURN B. FI

Let H := F(t1) . . . (te−1), i.e. (H(te), σ) is a ΠΣ-ext. of (H, σ).

(2) IF a1 a2 = 0 THEN set g := f
a2

if a2 6= 0, otherwise set g := σ(f )
a2

; with g = (g1, . . . , gn)

RETURN {(0 . . . , 1, . . . , 0, gi)}1≤i≤n. FI

(3) Clear denominators and common factors s.t. a ∈ (H[te]
∗)2, f ∈ H[te]

n.

(4) Compute a denominator bound d ∈ H[te]
∗ of V(a,f , H(te)).

(5) Set a′ := (a1/σ(d), a2/d) ∈ H(te)
2, f ′ := f and clear denominators and common factors

s.t. a′ ∈ (H[te]
∗)2 and f ′ ∈ H[te]

n.

(6) Compute a degree bound b of V(a′,f ′, H[te]).

(7) Compute a basis B := IncrementalReduction((H(te), σ), b,a′,f ′) by using Algorithm 2;
say B = {(κi1, . . . , κin, pi)}1≤i≤µ.
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(8) IF B = {} THEN RETURN {} ELSE RETURN {(κi1, . . . , κin, pi

d
)}1≤i≤µ. FI

Algorithm 2. InrementalReduction((F(t1) . . . (te), σ), δ,a,f)

Input: A ΠΣ-extension (F(t1) . . . (te), σ) of (F, σ) with K := constσF; δ ∈ N0 ∪ {−1};
a = (a1, a2) ∈ (F(t1) . . . (te−1)[te]

∗)2 with l := ||a|| and f ∈ F(t1) . . . (te−1)[te]
n
l+δ.

Output:A basis of V(a,f , F[t]δ) over K.

(1) IF d = −1, RETURN a basis of NullspaceK(f) × {0} over K. FI

Let H := F(t1) . . . (te−1), i.e. (H(te), σ) is a ΠΣ-ext. of (H, σ).

(2) Define 0 6= ãδ ∈ H2 and f̃δ ∈ Hn as in (4).

(3) Compute B1 := SolveSolutionSpace((H, σ), ãδ , f̃δ) with Alg. 1.

(4) IF B1 = {} THEN

(5) Compute B2 := IncrementalReduction((H(te), σ), δ − 1,a, (0)).

(6) IF an h ∈ H[te]δ−1 with a1 σ(h) + a2 h = 0 is found THEN
RETURN {(0, . . . , 0, h)} ⊂ Kn × H[te]δ−1 ELSE RETURN {} FI

FI

(7) With B1 = {(ci1, . . . , cin, wi)}1≤i≤λ define C := (cij) ∈ Kλ×n, g := (w1 tδe, . . . , wλ tδe) ∈

tδe Hλ, and fδ−1 ∈ H[te]
λ
δ−1 as in (5).

(8) Compute B2 := IncrementalReduction((H(te), σ), δ − 1,a,fδ−1).

(9) IF B2 = {} THEN RETURN {} FI

(10) Let B2 = {(di1, . . . , diλ, hi)}1≤i≤µ and define D := (dij) ∈ Kµ×λ,h := (h1, . . . , hµ) ∈
H[te]

µ
δ−1. Define κij ∈ K for 1 ≤ i ≤ µ, 1 ≤ j ≤ n and pi ∈ H[te]δ for 1 ≤ i ≤ µ as in (6).

(11) RETURN {(κi1, . . . , κin, pi)}1≤i≤µ

If the denominator bound problem and polynomial degree bound problem can be solved
in the ΠΣ-extensions (Fi, σ) of (Fi−1, σ) for 1 ≤ i ≤ e and one can compute a basis of
any solution space in (F, σ), Algorithms 1 and 2 give an algorithm to compute a basis of a
solution space V(a,f , Fe). In particular these algorithms give a reduction of (a,f , Fe) to F.
Moreover, by taking all (a,f , Fi) when calling Algorithm 1, one gets the reduction tuple set
of this reduction. Furthermore, if one stops collecting tuples in the subreductions of (a,f , F i)
to F when a is inhomogeneous, one can extract the Fr-critical tuples in this reduction.
Now assume that (F, σ) is a ΠΣ-field over a σ-computable K, i.e., (F(t1) . . . (te), σ) is a ΠΣ-field
over K. Then by Theorem 4 there are algorithms to solve the denominator and polynomial
degree bound problem. Moreover, for the special case F = K there is the following

Base case II. If constσK = K, 0 6= a = (a1, a2) ∈ K2 and f = (f1, . . . , fn) ∈ Kn then
V(a,f , K) = NullspaceK(f ′) for f ′ = (f1, . . . , fn,−(a1 + a2)). A basis can be computed by
linear algebra; see [10].

Hence, with Algorithms 1 and 2 one can compute a basis of V(a,f , F(t1) . . . (te)) in a
ΠΣ-field (F(t1) . . . (te), σ) over a σ-computable K and can extract the F-critical tuples of the
corresponding reduction of (a,f , F(t1) . . . (te)) to F.
Finally, we introduce reductions to F that are extension-stable. Let (F(t1) . . . (te), σ) be a
ΠΣ-extension of (F, σ), a ∈ (H[te]

∗)2 and f ∈ H[te]
n for H := F(t1) . . . (te−1). We call

a denominator bound d ∈ H[te]
∗ of V(a,f , H(te)) or a degree bound b of V(a,f , H[te])

extension-stable over F if a is inhomogeneous over H(te) or the following holds. Take any
Σ∗-extension (F(t1) . . . (te)(s), σ) of (F(t1) . . . (te), σ) over F, and embed a, f in the reordered
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ΠΣ-ext. (F(s)(t1) . . . (te), σ) of (F, σ). Then also d embedded in F(s)(t1) . . . (te) must be
a denominator bound of V(a,f , F(s)(t1) . . . (te)). Similarly, b must be a degree bound of
V(a,f , F(s)(t1) . . . (te−1)[te]).
We call a reduction of V(a,f , F(t1) . . . (te)) to F extension-stable if all denominator and degree
bounds within the reduction to F are extension-stable over F.
It has been shown in [10, Theorem 8.2] and [11, Theorem 7.3] that the algorithms proposed
in [6] already compute extension-stable denominator and degree bounds in a ΠΣ-field. Sum-
marizing, we obtain

Theorem 5. Let (E, σ) be a ΠΣ-field over a σ-computable K, 0 6= a ∈ E2 and f ∈ En.
Then with Algorithms 1 and 2 one can compute a basis of V(a,f , E) with an extension-stable
reduction of (a,f , E) to F. Moreover, during this computation, one can extract the F-critical
tuples.

Example 3. In Example 2 the denominator and degree bounds are extension-stable. Con-
sequently, this reduction of ((1,−1), (σ(t2/t1)), F(t2)) to F is extension-stable. The F-critical
tuples are (((t1 + 1)2,−(t1 + 1)2),f , F) for f ∈ {(0), (t1 + 1,−2(t1 + 1)), (1,−(t1 + 1))}.

5. Refined Summation Algorithms

In the sequel let (E, σ) with E := F(t1) . . . (te) be a ΠΣ-field over a σ-computable K and
f ∈ En. Then in Theorem 6 we will develop a constructive criterium which tells us if a Σ∗-
extension of (E, σ) over F is F-complete for f and how such an extension can be constructed.
For this task we first compute a basis of V := V((1,−1),f , E) with Algorithms 1 and 2 together
with an extension-stable reduction of ((1,−1),f , E) to F; see Theorem 5. If the dimension
of V is n + 1, the trivial extension (E, σ) of (E, σ) is clearly F-complete for f . Otherwise, we
extract the F-critical tuple set in our extension-stable reduction; see Theorem 5. Then the
crucial observation is stated in Proposition 1 that depends on Lemma 3. This lemma is a
special case of Karr’s Fundamental Theorem [6, 7]; for a proof see [9, Proposition 4.1.2].

Lemma 3. If (E, σ) is a Σ∗-extension of (F, σ), 0 6= a ∈ F2 inhomogeneous over F and
f ∈ Fn then V(a,f , E) = V(a,f , F).

Proposition 1. Let (E(s), σ) with E := F(t1) . . . (te) be a ΠΣ-extension of (F, σ) with σ(s)−
s ∈ F and consider the reordered ΠΣ-extension (F(s)(t1) . . . (te), σ) of (F, σ). Let a ∈ E2

be homogeneous over E, f ∈ En, and let S be an F-critical tuple set of an extension-stable
reduction of (a,f , E) to F. If for all (a′,f ′, F) ∈ S we have V(a′,f ′, F) = V(a′,f ′, F(s))
then V(a,f , E) = V(a,f , E(s)) = V(a,f , F(s)(t1) . . . (te)).

Proof. The proof will be done by induction on the number e of extensions F(t1) . . . (te). First
consider the case e = 0. Since a is homogeneous, (a,f , F) ∈ S and therefore V(a,f , F(s)) =
V(a,f , F). Now assume that the proposition holds for e ≥ 0. Let (F(t1) . . . (te)(te+1)(s), σ)
be a ΠΣ-extension of (F, σ) with σ(s) − s ∈ F and consider the reordered ΠΣ-extension
(F(s)(t1) . . . (te)(te+1), σ) of (F, σ). We write E := F(t1) . . . (te) and H := F(s)(t1) . . . (te)
as shortcut. Let a ∈ E(te+1)

2 be homogeneous over E(te+1), f ∈ E(te+1)
n, and take any

extension-stable reduction of (a,f , E(te+1)) to F with the F-critical tuple set S. Now suppose
that V(a′,f ′, F) = V(a′,f ′, F(s)) for all (a′,f ′, F) ∈ S. Then we will show that

V(a,f , E(te+1)) = V(a,f , H(te+1)). (7)

In the extension-stable reduction let d ∈ E[te+1]
∗ be the denominator bound of the solution

space V(a,f , E(te+1)). Since a is homogeneous over E(te+1), d ∈ H[te+1] is also a denominator
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bound of V(a,f , H(te+1)). After clearing denominators and cancelling common factors, we
get a′ := (a1/σ(d), a2/d) q ∈ E[te+1]

2 and f ′ := f q ∈ E[te+1]
n for some q ∈ E(te+1)

∗ in our
reduction. Note that a′ is still homogeneous over E(te+1). This follows from the fact that
if for h ∈ E(te+1) we have a1 σ(h) + a2 h = 0 then a′1 σ(h d) + a′2 h d = 0. Now it suffices to
show that V(a′,f ′, H[te+1]) = V(a′,f ′, E[te+1]), in order to show (7). In the given reduction
let b be the degree bound of V(a′,f ′, E[te+1]). Since a′ is homogeneous over E(te+1), b is
a degree bound of V(a′,f ′, H[te+1]) too. Hence, if V(a′,f ′, E[te+1]b) = V(a′,f ′, H[te+1]b),
also (7) is proven. Let ((a,fb, E[te+1]b), . . . , (a,f−1, E[te+1]−1)) be the incremental tuples and

((ãb, f̃b, E), . . . , (ã0, f̃0, E)) be the coefficient-tuples in the incr. reduction of (a,f , E[te+1]b).

We show that V(ãi, f̃i, E) = V(ãi, f̃i, H) for all 0 ≤ i ≤ b. By reordering of the difference
field (F(t1) . . . (te+1)(s), σ) we get the ΠΣ-extension (F(t1) . . . (te)(s)(te+1), σ) of (F, σ). First

suppose that ãi is inhomogeneous over E. Hence, V(ãi, f̃i, E) = V(ãi, f̃i, E(s)) by Lemma 3,

and therefore V(ãi, f̃i, E) = V(ãi, f̃i, H) by (F(t1) . . . (te)(s), σ)' (F(s)(t1) . . . (te), σ).
Otherwise, assume that ãi is homogeneous over E. Then the extension-stable reduction of
(a,f , E(te+1)) to F contains an extension-stable reduction of (ãi, f̃i, E) to F and the F-critical

tuple set of the reduction of (ãi, f̃i, E) is a subset of S. Hence with the induction assumption

it follows that V(ãi, f̃i, E) = V(ãi, f̃i, H). Since E[te+1]−1 = H[te+1]−1 = {0}, we have
V(a,f−1, E[te+1]−1) = V(a,f−1, H[te+1]−1). Then by the construction of the incremental
reduction we can conclude that V(a,fi, E[te+1]i) = V(a,fi, H[te+1]i) for all −1 ≤ i ≤ b and
therefore we have proven (7). With reordering (F(s)(t1) . . . (te+1), σ)'(F(t1) . . . (te+1)(s), σ),
it follows V(a,f , E(te+1)) = V(a,f , E(te+1)(s)). �

Consequently we have V((1,−1),f , E) ( V((1,−1),f , E(s)) for a Σ∗-extension (E(s), σ) of
(E, σ) over F if V(a′,f ′, F) ( V(a′,f ′, F(s)) in one of its F-critical tuples (a′,f ′, F) in an
extension-stable reduction to F.

Example 4. Consider the ΠΣ-fields from Example 1, 2 and 3. By Example 1 it follows

that V((1,−1), (σ(t2)
t1

), F(t2)) is a proper subset of V((1,−1), ( σ(t2)
t1

), F(t2)(s)). Hence looking
at the F-critical tuples of our extension stable reduction in Example 3, we know by Propo-
sition 1 that there is an f ∈ {(0), (t1 + 1,−2(t1 + 1)), (1,−(t1 + 1))} such that V(a,f , F)
with a = ((t1 + 1)2,−(t1 + 1)2) is a proper subset of V(a,f , F(s)). Indeed, we can choose
f = (1,−(t1 + 1)) since there does not exist a g ∈ F with σ(g) − g = 1

(t1+1)2 , but there is the

solution g = s ∈ F(s).

Next we provide a sufficient condition in Proposition 2 which tells us if a Σ∗-extension
cannot contribute further to a given solution space.

Proposition 2. Let (F, σ) be a difference field with a = (a1, a2) ∈ F2 homogeneous over F

and f = (f1, . . . , fn) ∈ Fn. If for all 1 ≤ i ≤ n there is a g ∈ F∗ with a1 σ(g) + a2 g = fi

then for any difference field (ring) extension (E, σ) of (F, σ) with constσE = constσF we have
V(a,f , F) = V(a,f , E).

Proof. Let gi ∈ F with a1 σ(g0)+a2 g0 = 0 and a1 σ(gi)+a2 gi = fi for 1 ≤ i ≤ n. Then observe
that (0, . . . , 0, g0), (1, 0, . . . , 0, g1), . . . , (0, . . . , 0, 1, gn)} forms a basis of V := V(a,f , F) over
K := constσF. Since V is a subspace of W := V(a,f , E) over K and the dimension of W is at
most n + 1, it follows that V = W. �

This result allows us to specify a criterium in Theorem 6 if a Σ∗-extension of (E, σ) over F

is F-complete for f .
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Theorem 6. Let (E, σ) with E := F(t1) . . . (te) be a ΠΣ-extension of (F, σ) and f ∈ En. Let
{(ai,fi, F)}1≤i≤k with ai = (ai1, ai2) and fi = (fi1, . . . , firi

) ∈ Fri be the F-critical tuple set
of an extension-stable reduction of V((1,−1),f , E) to F. If (G, σ) is a Σ∗-extension of (E, σ)
over F where for any 1 ≤ i ≤ k and 1 ≤ j ≤ ri there is a g ∈ G∗ with ai1 σ(g) − ai2 g = fij

then the extension is F-complete for f .

Proof. Suppose such an extension (G, σ) of (E, σ) over F is not F-complete for f . Then we
can take a c ∈ Kn such that σ(g) − g = c f has a solution in some ΠΣ-extension of (E, σ),
but no solution in (G, σ) and therefore no solution in (E, σ). Hence, by Lemma 1 there is a
Σ∗-extension (E(s), σ) of (E, σ) over F and a g ∈ E(s) with σ(g) − g = c f . Consequently,
by Proposition 1 there exists an i with 1 ≤ i ≤ k such that V(ai,fi, F) ( V(ai,fi, F(s))
holds for the Σ∗-extension (F(s), σ) of (F, σ). But by Proposition 2 we have V(ai,fi, F) =
V(ai,fi, F(s)), a contradiction. �

Example 5. Consider Examples 2 and 3. Since for any f ∈ {0, t1 +1,−2(t1+1), 1,−(t1+1)}
there is a g ∈ F(t2)(s) with σ(g) − g = f , it follows that the Σ∗-extension (F(t2)(s), σ) of
(F(t2), σ) is F-complete for (σ(t2)/t1).

Finally, in Proposition 3 we show that such an extension can be constructed that fulfills
our sufficient criterium.

Proposition 3. Let (E, σ) be a ΠΣ-extension of (F, σ), (ai1, ai2) ∈ F2 be homogeneous over
F and fi ∈ F for 1 ≤ i ≤ n. Then there is a Σ∗-extension (G, σ) of (E, σ) over F such that
there is a g ∈ G∗ with ai1 σ(g) + ai2 g = fi for all 1 ≤ i ≤ n. If (F, σ) is a ΠΣ-field over a
σ-computable K, such a ΠΣ-field (G, σ) can be computed.

Proof. Suppose that we have shown the existence for such a Σ∗-extension (G, σ) of (E, σ)
over F for 1 ≤ i ≤ n. Now let (a1, a2) ∈ F2 be homogeneous over F and f ∈ F. If there is
a g ∈ G with a1 σ(g) + a2 g = f , we have shown the induction step. Otherwise, construct

the extension (G(s), σ) of (G, σ) with s transcendental over F and σ(s) = s − f
ha2

∈ F where

h ∈ F∗ with a1 σ(h)+a2 h = 0. Now suppose there is a g′ ∈ G∗ with σ(g′)− g′ = − f
ha2

. Then

for w := h g′ ∈ G∗ we have f = −a2 h(σ(g′)− g′) = a1 σ(h)σ(g′) + a2 h g′ = a1 σ(w) + a2 w, a
contradiction. Hence by Theorem 1 (G(s), σ) is a Σ∗-extension of (G, σ) over F. Furthermore,
for v := h s ∈ G(s) we have that a1 σ(v) + a2 v = f , which follows by similar arguments as
above for w. This closes the induction step.
Now suppose that (F, σ) is a ΠΣ-field over a σ-computable K. Then by Theorem 5 one can
decide if there exists a g ∈ G∗ with a1 σ(g) + a2 g = f and can compute an h ∈ F∗ with
a1 σ(h) + a2 h = 0. This shows, that the proof above becomes completely constructive. �

Summarizing, we first compute a basis of V((1,−1),f , E) with an extension-stable reduc-
tion and extract the F-critical tuples; this is possible by Theorem 5. Next we construct with
Proposition 3 a Σ∗-extension of (E, σ) over F that fulfills the criterium in Theorem 6.

Example 6. Looking at Example 3 we obtain immediately the Σ∗-extension (F(t2)(s), σ)
of (F(t2), σ) with σ(s) = s + 1

(t1+1)2
which is F-complete for (σ(t2/t1)) ∈ F(t2)

1 by fol-

lowing this strategy. Finally we restart our computation in this extension and obtain for
V((1,−1), (σ(t2/t1)), F(t2)(s)) the basis {(0, 1), (2, t2 + s)} which gives the result g = t2+s

2 in
Example 1.
Now we proceed, and try to find a g′ ∈ F(t2)(s) such that σ(g′) − g′ = σ(g/t1), but we fail.
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Therefore, we extract the F-critical tuples (((t1 + 1)3,−(t1 + 1)3),f , F) with

f ∈ {(−(t1 + 1)2,
t1 + 1

2
,−2(t1 + 1)), (2(t1 + 1)2, 0, 0),

(0, 0), (−3(t1 + 1)2, (t1 + 1)2, 0), ((t1 + 1), 2, (t1 + 1)2)} (8)

from our extension stable reduction to F. Following Theorem 6 we construct a Σ∗-extension
(G, σ) of (F(t2)(s), σ) over F such that there are h ∈ G with σ(h) − h = f

(t1+1)2
for all

f ∈ F from (8). Following the algorithm given in the proof of Proposition 3 we obtain the
Σ∗-extension (F(t2)(s)(s

′), σ) of (F(t2)(s), σ) with σ(s′) = s′ + 2
(t1+1)3 ; afterwards we cancel

the constant factor 2. By Theorem 6 this extension is F-complete for (σ(g/t1)) ∈ F(t2)(s)
1.

To this end we compute for the solution space V((1,−1), (σ(g/t1)), F(t2)(s)(s
′)) the basis

{(0, 1), (6, (t32 + 3t2 s + 2s′))} which gives the final result in Example 1.

Let I ⊆ {0, . . . , e}. Restricting Algorithm 3 to I = {0} gives just the above strategy.
In addition, Fi := F(t1) . . . (ti)-complete extensions can be searched for all i ∈ I. This can
be motivated as follows. Fi-complete extensions (Ei, σ) of (E, σ) with bigger i can give more
solutions Wi := Πn(V((1,−1),f , Ei); but they might be also more complicated, since they
depend on more tj (which are usually more nested). Hence, one should look for extensions
with smallest possible i that give still interesting solutions in Wi. Algorithm 3 enables one
to search in one stroke for all those Fi-complete extensions with i ∈ I.

Algorithm 3. SingleNestedCompleteExtensions((E0, σ),f)

Input: A ΠΣ-field (E0, σ) with E0 := F(t1) . . . (te) over a σ-computable K,
I = {j1 < · · · < jλ} ⊆ {0, . . . , e} and f ∈ En

0 .

Output:Σ∗-extensions (Ei, σ) of (Ei−1, σ) over F(t1) . . . (tji
) which are single-nested

F(t1) . . . (tji
)-complete for f for 1 ≤ i ≤ λ; a basis of V((1,−1),f , Eλ).

(1) Compute a basis B of V((1,−1),f , E0) with an extension-stable reduction to F. Let d :=
dimV((1,−1),f , E0).

(2) IF d = n + 1 RETURN ((E0, σ), B) FI

(3) FOR i = 1 TO λ DO

(4) Extract the F(t1) . . . (tjλ
)-critical tuple set, say {ai,fi, F}1≤i≤k where ai = (ai1, ai2) and

fi = (fi1, . . . , firi
) ∈ Fri with ri > 0. Construct a single-nested Σ∗-extension (Ei, σ) of

(Ei−1, σ) over F(t1) . . . (tjλ
) such that for any 1 ≤ i ≤ k and 1 ≤ j ≤ ri there exists a

g ∈ E∗
i with ai1 σ(g) − ai2 g = fij. OD

(5) IF (Eλ, σ) = (E0, σ) RETURN ((E0, σ), B) FI

(6) Compute a basis B ′ of V((1,−1),f , Eλ) with dimension d′.

(7) IF d = d′ then RETURN ((E0, σ), B) else RETURN((Eλ, σ), B′) FI

Theorem 7. Let (E0, σ) with E0 := F(t1) . . . (te) be a ΠΣ-field over a σ-computable K,
I = {j1 < · · · < jλ} ⊆ {0, . . . , e} and f ∈ En

0 . Then with Algorithm 3 Σ∗-extensions (Ei, σ)
of (Ei−1, σ) over F(t1) . . . (tji

) can be computed which are F(t1) . . . (tji
)-complete for f for

1 ≤ i ≤ λ.

The Σ∗-extension (Eλ, σ) of (E, σ) over F produced by Algorithm 3 can be reduced to a
more compact extension that delivers the same solutions Πn(V((1,−1),f , Eλ)). Namely, if
Eλ := E(s1) . . . (sε), remove those si that do not occur in Wλ = V((1,−1),f , Eλ). More-
over, join all those si’s to one single Σ∗-extension which occur in a basis element of Wi; see
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Lemma 1. Furthermore, cancel constants from K that may occur in the summand σ(si)− si;
see Example 6.

Observe that recursively applied indefinite summation can be treated more efficiently, if
one reduces these extensions after each application of Algorithm 3.
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