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Abstract. In this paper we continue the partition explorations made possible

by Omega, the computer algebra implementation of MacMahon’s Partition
Analysis. The focus of our work has been partitions associated with directed

graphs. The graphs considered here are made up of chains of hexagons, and
the related generating functions are infinite products. Somewhat unexpectedly,

while the generating functions are infinite products, they are most emphatically

not modular forms.

1. Introduction

In his pioneering book “Combinatory Analysis” [11, Vol. II, Sect. VIII, pp. 91–
170] MacMahon introduced Partition Analysis as a computational method for solv-
ing combinatorial problems in connection with systems of linear diophantine in-
equalities and equations. In particular, he devotes Chapter II of Section IX to the
study of plane partitions as a natural application domain for his method.

In the course of a joint project devoted to Partition Analysis, the authors have
turned MacMahon’s method into an algorithm described in full detail in [4, 5]. As
demonstrated in references [1]–[10], the resulting computer algebra package Omega1

has been used as a powerful tool for combinatorial investigation. In particular,
in [7, 9] we considered new variations of plane partitions, a study which will be
extended in the present paper to plane partitions of “hexagonal shape”.

The “most simple case” of classical plane partitions, treated by MacMahon in [11,
Vol. II, p. 183], is the situation where the non-negative integer parts ai of the
partition are placed at the corners of a square such that the following order relations
are satisfied:

(1) a1 ≥ a2, a1 ≥ a3, a2 ≥ a4, and a3 ≥ a4.

It will be convenient to use arrows as an alternative description for ≥ relations;
for instance, Fig. 1 represents the relations (1). Here and throughout the following
it will be understood that an arrow pointing from ai to aj is interpreted as ai ≥ aj .
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Figure 1. The inequalities (1)
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By using Partition Analysis MacMahon derives that

ϕ :=
∑

xa1
1 xa2

2 xa3
3 xa4

4

=
1− x2

1x2x3

(1− x1)(1− x1x2)(1− x1x3)(1− x1x2x3)(1− x1x2x3x4)
,

(2)

where the sum is taken over all non-negative integers ai satisfying (1). Furthermore,
he observes that if x1 = x2 = x3 = x4 = q, the resulting generating function is

1
(1− q)(1− q2)2(1− q3)

.

In order to see how Partition Analysis works on (2) we need to recall the key
ingredient of MacMahon’s method, the Omega operator Ω=.

Definition 1. The operator Ω= is given by

Ω
=

∞∑
s1=−∞

· · ·
∞∑

sr=−∞
As1,...,srλ

s1
1 · · ·λsrr :=

∞∑
s1=0

· · ·
∞∑
sr=0

As1,...,sr ,

where the domain of the As1,...,sr is the field of rational functions over C in several
complex variables and the λi are restricted to a neighborhood of the circle |λi| = 1.
In addition, the As1,...,sr are required to be such that any of the series involved is
absolute convergent within the domain of the definition of As1,...,sr .

To avoid confusion we will always have Ω= operate on variables denoted by letters
in the middle of the Greek alphabet (e.g. λ, µ, ν). The parameters unaffected by
Ω= will be denoted by letters from the Latin alphabet.

We emphasize that it is essential to treat everything analytically rather than
formally because the method relies on unique Laurent series representations of
rational functions.

Another fundamental aspect of Partition Analysis is the use of elimination rules
which describe the action of the Omega operator on certain base cases. MacMahon
begins the discussion of his method by presenting a catalog [11, Vol. II, pp. 102–103]
of twelve fundamental evaluations. Subsequently he extends this table by new rules
whenever he is forced to do so. Once found, most of these fundamental rules are
easy to prove. This is illustrated by the following examples which are taken from
MacMahon’s list.

Proposition 1. For integer s ≥ 1,

Ω
=

1
(1− λA)

(
1− B

λs

) =
1

(1−A)(1−AsB)
;(3)

Ω
=

1
(1− λA)(1− λB)

(
1− C

λ

) =
1−ABC

(1−A)(1−B)(1−AC)(1−BC)
.(4)

We prove (3); the proof of (4) is analogous and is left to the reader.

Proof of (3). By geometric series expansion the left hand side equals

Ω
=

∑
i,j≥0

λi−sjAiBj = Ω
=

∑
j,k≥0

λkAsj+kBj ,

where the summation parameter i has been replaced by sj+ k. But now Ω= sets λ
to 1 which completes the proof. �

Now we are ready for deriving the closed form expression for ϕ with Partition
Analysis.
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Proof of (2). First, in order to get rid of the diophantine constraints, one rewrites
the sum expression in (2) into what MacMahon called the “crude form” of the
generating function,

ϕ = Ω
=

∑
a1,a2,a3,a4≥0

λa1−a2
1 λa1−a3

2 λa2−a4
3 λa3−a4

4 xa1
1 xa2

2 xa3
3 xa4

4

= Ω
=

1(
1− λ1λ2x1

)(
1− λ3

λ1
x2

)(
1− λ4

λ2
x3

)(
1− x4

λ3λ4

) .
Next by rule (3) we eliminate successively λ1, λ3, and λ4,

ϕ = Ω
=

1(
1− λ2x1

)(
1− λ2λ3x1x2

)(
1− λ4

λ2
x3

)(
1− x4

λ3λ4

)
= Ω
=

1(
1− λ2x1

)(
1− λ2x1x2

)(
1− λ4

λ2
x3

)(
1− λ2x1x2x4

λ4

)
= Ω
=

1(
1− λ2x1

)(
1− λ2x1x2

)(
1− x3

λ2

)(
1− x1x2x3x4

) .
Finally, applying rule (4) eliminates λ2 and completes the proof of (2). �

Instead of glueing squares together as in the case of standard plane partitions,
in [7] we considered configurations shown in Fig. 2. In the present paper we shall
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Figure 2. A plane partition diamond of length n

study the natural generalization depicted in Fig. 3 where we use hexagons instead
of squares as building blocks of the chain.
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Definition 2. For n ≥ 1 define

Hn := {(a1, . . . , a5n+1) ∈ N5n+1 : the ai satisfy the order relations in Fig. 3},

hn := hn(x1, . . . , x5n+1) :=
∑

(a1,...,a5n+1)∈Hn

xa1
1 · · ·x

a5n+1
5n+1 ,

and

hn(q) := hn(q, . . . , q).



4 GEORGE E. ANDREWS, PETER PAULE, AND AXEL RIESE

In Section 2 we shall derive a closed form (9) for the full generating function
hn(x1, . . . , x5n+1). For the specialization x1 = · · · = x5n+1 = q this will give the
enumerative generating function of the following form.

Theorem 1. For n ≥ 1 we have

hn(q) =
∑

(a1,...,a5n+1)∈Hn

qa1+···+a5n+1

=

∏n−1
j=0 (1 + q5j+2 + 2q5j+3 + q5j+4 + q10j+6)∏5n+1

j=1 (1− qj)
.

Note that the numerator does not factor into cyclotomic polynomials as in the
case of classic plane partition generating functions. However, in heuristical studies
using the Omega package we discovered a refinement H∗n of Hn where the associated
generating function indeed factors completely into cyclotomic factors. Namely,
consider the order relations depicted in Fig. 4.
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Definition 3. For n ≥ 1 define

H∗n := {(a1, . . . , a5n+1) ∈ N5n+1 : the ai satisfy the order relations in Fig. 4},

h∗n := h∗n(x1, . . . , x5n+1) :=
∑

(a1,...,a5n+1)∈H∗n

xa1
1 · · ·x

a5n+1
5n+1 ,

and

h∗n(q) := h∗n(q, . . . , q).

In Section 3 we shall derive a closed form (13) for the full generating function
h∗n(x1, . . . , x5n+1). For the specialization x1 = · · · = x5n+1 = q this will give the
enumerative generating function of the following form.

Theorem 2. For n ≥ 1 we have

h∗n(q) =
∑

(a1,...,a5n+1)∈H∗n

qa1+···+a5n+1 =

∏n−1
j=0 (1 + q5j+2)(1 + q5j+4)∏5n+1

j=1 (1− qj)
.

In Section 4 concluding remarks are made. In particular, we compare the com-
binatorics considered in Section 3 with previous work described in [9].

2. Vertex-Joined Hexagons

In this section we shall prove Theorem 1. To this end we shall derive a closed
form representation for the full generating function hn = hn(x1, . . . , x5n+1).

First we consider the case n = 1. Obviously, we have

h1 = Ω
=

1
(1− x1λ1λ2)

(
1− x2λ3

λ1

)(
1− x3λ4

λ2

)(
1− x4λ5

λ3

)(
1− x5λ6

λ4

)(
1− x6

λ5λ6

) .
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In order to eliminate the λ-variables we apply rule (3) with s = 1 to the variables
λ2, λ3, λ4, λ5, and λ6, in this order, which results in

(5) h1 =
1

1−X6
Ω
=

1(
1− x2

λ1

)(
1− x2x4

λ1

)
(1− x1λ1)(1− x1x3λ1)(1− x1x3x5λ1)

,

where X6 = x1x2 · · ·x6. Subsequently we will often use an extended version of this
short-hand notation.

Definition 4. For n ≥ 1 define

Xn :=
n∏
k=1

xk.

For the following it will be convenient to introduce two further abbreviations.

Definition 5. We define

f(a; b1, b2, b3) :=
1 + (b1b2b3 − b1b2 − b1b3 − b2b3)a+ b1b2b3a

2

(1− ab1)(1− ab2)(1− ab3)

and

g(a1, a2; b1, b2, b3) := f(a1; b1, b2, b3)− a2f(a1a2; b1, b2, b3).

In order to eliminate λ1 from the right hand side of (5) we apply the following
rule which is an extension of rule (4) and which can be found in MacMahon’s
table [11, Vol. II, Art. 348], namely,

(6) Ω
=

1(
1− a

λ

)
(1− b1λ)(1− b2λ)(1− b3λ)

=
f(a; b1, b2, b3)

(1− b1)(1− b2)(1− b3)

whenever the variables a, b1, b2, b3 are free of λ. Rule (6) can be applied to the
right hand side of (5) after carrying out the partial fraction decomposition

1(
1− x2

λ1

)(
1− x2x4

λ1

) =
1

1− x4

(
1

1− x2
λ1

− x4

1− x2x4
λ1

)
;

these steps then give

(7) h1 = h1(x1, . . . , x6) =
1

(1−X6)(1− x4)
g
(
x2, x4;X1,

X3
x2
, X5
x2x4

)
(1−X1)

(
1− X3

x2

)(
1− X5

x2x4

) .
It is straight-forward to verify that the crude generating functions for h2 and for
hn with n ≥ 3 are as follows:

h2 = Ω
=

1
(1− x1λ1λ2)

(
1− x2

λ3
λ1

)(
1− x3

λ4
λ2

)(
1− x4

λ5
λ3

)(
1− x5

λ6
λ4

)(
1− x6

λ7λ8
λ5λ6

)
· 1(

1− x7
λ9
λ7

)(
1− x8

λ10
λ8

)(
1− x9

λ11
λ9

)(
1− x10

λ12
λ10

)(
1− x11

λ11λ12

)
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and

hn = Ω
=

1
(1− x1λ1λ2)

(
1− x2

λ3
λ1

)(
1− x3

λ4
λ2

)(
1− x4

λ5
λ3

)(
1− x5

λ6
λ4

)(
1− x6

λ7λ8
λ5λ6

)
· 1(

1− x7
λ9
λ7

)(
1− x8

λ10
λ8

)(
1− x9

λ11
λ9

)(
1− x10

λ12
λ10

)(
1− x11

λ13λ14
λ11λ12

)
...

· 1(
1− x5n−8

λ6n−9
λ6n−11

)(
1− x5n−7

λ6n−8
λ6n−10

)(
1− x5n−6

λ6n−7
λ6n−9

)(
1− x5n−5

λ6n−6
λ6n−8

)
· 1(

1− x5n−4
λ6n−5λ6n−4
λ6n−7λ6n−6

)(
1− x5n−3

λ6n−3
λ6n−5

)(
1− x5n−2

λ6n−2
λ6n−4

)
· 1(

1− x5n−1
λ6n−1
λ6n−3

)(
1− x5n

λ6n
λ6n−2

)(
1− x5n+1

λ6n−1λ6n

) .

(8)

Proposition 2. For n ≥ 1 we have

hn+1 = Ω
=
hn(x1, . . . , x5n, x5n+1λ6n+1λ6n+2)

· 1(
1− x5n+2

λ6n+3
λ6n+1

)(
1− x5n+3

λ6n+4
λ6n+2

)(
1− x5n+4

λ6n+5
λ6n+3

)
· 1(

1− x5n+5
λ6n+6
λ6n+4

)(
1− x5n+6

λ6n+5λ6n+6

) .
Proof. The result follows immediately from (8). �

Theorem 3. For n ≥ 1 we have
(9)

hn =
1

1−X5n+1

n−1∏
j=0

1
1− x5j+4

n−1∏
j=0

g
(
x5j+2, x5j+4;X5j+1,

X5j+3
x5j+2

,
X5j+5

x5j+2x5j+4

)
(1−X5j+1)

(
1− X5j+3

x5j+2

)(
1− X5j+5

x5j+2x5j+4

) .
Proof. We proceed by induction on n. The case n = 1 is immediate by (7). For the
induction step observe that from Proposition 2 and the induction hypothesis for n
we obtain that

hn+1 =
n−1∏
j=0

1
1− x5j+4

n−1∏
j=0

g
(
x5j+2, x5j+4;X5j+1,

X5j+3
x5j+2

,
X5j+5

x5j+2x5j+4

)
(1−X5j+1)

(
1− X5j+3

x5j+2

)(
1− X5j+5

x5j+2x5j+4

)
· Ω
=

1
1−X5n+1λ6n+1λ6n+2

1(
1− x5n+2

λ6n+3
λ6n+1

)(
1− x5n+3

λ6n+4
λ6n+2

)
· 1(

1− x5n+4
λ6n+5
λ6n+3

)(
1− x5n+5

λ6n+6
λ6n+4

)(
1− x5n+6

λ6n+5λ6n+6

) .
The Ω=-expression is nothing but

h1(X5n+1, x5n+2, x5n+3, x5n+4, x5n+5, x5n+6),

hence applying (7) completes the proof of the induction step. �

Setting all xi to q, a straight-forward simplification gives the generating function
for hn(q) = hn(q, . . . , q) as in Theorem 1. For n → ∞ in Theorem 1, i.e., for a
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chain of infinitely many hexagons with order relations as in Fig. 3 one obtains

h∞(q) =
∞∏
j=1

1 + q5j−3 + 2q5j−2 + q5j−1 + q10j−4

1− qj
.

3. Vertex-Joined Enriched Hexagons

In this section we shall prove Theorem 2. To this end we shall derive a closed
form representation for the full generating function h∗n = h∗n(x1, . . . , x5n+1).

Again we consider the case n = 1 first. For this we need two lemmas.

Lemma 1.

Ω
=

f
(
aλ; b1, b2, b3λ

)
1− b3

λ

=
1− ab1b2

(1− ab1)(1− ab2)(1− ab3)
.

Proof. First observe that

f
(
aλ; b1, b2, b3λ

)
1− b3

λ

=
1− ab1b3 − ab2b3 + ab1b2b3

(1− ab1λ)(1− ab2λ)(1− ab3)
(
1− b3

λ

)
− λab1b2

(1− ab1λ)(1− ab2λ)
(
1− b3

λ

) .(10)

Because of (4) and the similar rule ([5, (2.2)])

Ω
=

λ

(1− λA)(1− λB)
(
1− C

λ

) =
1 + C −AC −BC

(1−A)(1−B)(1−AC)(1−BC)
,

the result of applying the Ω=-operator to the right hand side of (10) equals

(1− ab1b3 − ab2b3 + ab1b2b3)(1− a2b1b2b3)
(1− ab1)(1− ab2)(1− ab3)(1− ab1b3)(1− ab2b3)

− ab1b2(1 + b3 − ab1b3 − ab2b3)
(1− ab1)(1− ab2)(1− ab1b3)(1− ab2b3)

,

which simplifies to
1− ab1b2

(1− ab1)(1− ab2)(1− ab3)
.

�

Lemma 2.

Ω
=

1
1− a2

λ2

g
(
a1λ1,

a2
λ2

; b1, b2λ2, b3
λ2
λ1

)
(1− b2λ2)

(
1− b3 λ2

λ1

)
=

(1− a1b1b2)(1− a2
1a2b2b3)

(1− b2)(1− a1b1)(1− a1b2)(1− a1b3)(1− a1a2b2)(1− a1a2b3)
.

Proof. According to Definition 5, we have

1
1− a2

λ2

g
(
a1λ1,

a2
λ2

; b1, b2λ2, b3
λ2
λ1

)
(1− b2λ2)

(
1− b3 λ2

λ1

)
=

1
1− a2

λ2

f
(
a1λ1; b1, b2λ2, b3

λ2
λ1

)
(1− b2λ2)

(
1− b3 λ2

λ1

) − a2

λ2

1
1− a2

λ2

f
(
a1λ1

a2
λ2

; b1, b2λ2, b3
λ2
λ1

)
(1− b2λ2)

(
1− b3 λ2

λ1

) .

Now we use Lemma 1 twice to eliminate λ1 from the right hand side and obtain
1− a1b1b2λ2

(1− a1b1)
(
1− a2

λ2

)
(1− b2λ2)(1− a1b2λ2)(1− a1b3λ2)

− a2(1− a1a2b1b2)
λ2(1− a1a2b2)(1− a1a2b3)

(
1− a2

λ2

)(
1− a1a2b1

λ2

)
(1− b2λ2)

.
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Finally, we eliminate λ2 by using [5, (2.2)] and [5, (2.4)] from this expression to get
the desired result. �

Clearly, we have

h∗1 = Ω
=

1
(1− x1λ1λ2)

(
1− x2λ3λ5

λ1

)(
1− x3λ4λ6

λ2

)(
1− x4λ7

λ3λ6

)(
1− x6

λ7λ8

)(
1− x5λ8

λ4λ5

) .
By applying the rewrite rules

λ5 → µ1, λ6 → µ2, λ7 → λ5, λ8 → λ6,

we transform h∗1 into

h∗1 = Ω
=

1
(1− x1λ1λ2)

(
1− x2λ3µ1

λ1

)(
1− x3λ4µ2

λ2

)(
1− x4λ5

λ3µ2

)(
1− x6

λ5λ6

)(
1− x5λ6

λ4µ1

) .
Consequently we see that

h∗1 = Ω
=
h1

(
x1, x2µ1, x3µ2,

x4

µ2
,
x5

µ1
, x6

)
,

and thus by (7) we have

h∗1 = Ω
=

1
(1−X6)

(
1− x4

µ2

) g
(
x2µ1,

x4
µ2

;X1,
X3
x2
µ2,

X5
x2x4

µ2
µ1

)
(1−X1)

(
1− X3

x2
µ2

)(
1− X5

x2x4

µ2
µ1

) .
Because of Lemma 2 we eventually obtain

(11) h∗1 =
1

(1−X1) · · · (1−X6)
(1−X1X3)(1−X3X5)(

1− X3
x2

)(
1− X5

x4

) .

Similarly, the crude generating functions for h∗2 and h∗n for n ≥ 3 are found to
be

h∗2 = Ω
=
h2

(
x1, x2µ1, x3µ2,

x4

µ2
,
x5

µ1
, x6, x7µ3, x8µ4,

x9

µ4
,
x10

µ3
, x11

)
and

h∗n = Ω
=
hn

(
x1, x2µ1, x3µ2,

x4

µ2
,
x5

µ1
, x6, . . . ,

x5n−3µ2n−1, x5n−2µ2n,
x5n−1

µ2n
,
x5n

µ2n−1
, x5n+1

)
.

(12)

Theorem 4. For n ≥ 1 we have

(13) h∗n =
5n+1∏
j=1

1
1−Xj

n−1∏
j=0

(1−X5j+1X5j+3)(1−X5j+3X5j+5)(
1− X5j+3

x5j+2

)(
1− X5j+5

x5j+4

) .

Proof. From (9) we get that

hn+1 = hn
1−X5n+1

1−X5n+6

1
1− x5n+4

g
(
x5n+2, x5n+4;X5n+1,

X5n+3
x5n+2

, X5n+5
x5n+2x5n+4

)
(1−X5n+1)

(
1− X5n+3

x5n+2

)(
1− X5n+5

x5n+2x5n+4

) .
Hence, using (12) with ν1 := µ2n+1 and ν2 := µ2n+2, we obtain

h∗n+1 = h∗n
1−X5n+1

1−X5n+6

· Ω
=

1
1− x5n+4

ν2

g
(
x5n+2ν1,

x5n+4
ν2

;X5n+1,
X5n+3
x5n+2

ν2,
X5n+5

x5n+2x5n+4

ν2
ν1

)
(1−X5n+1)

(
1− X5n+3

x5n+2
ν2

)(
1− X5n+5

x5n+2x5n+4

ν2
ν1

) .

Applying Lemma 2 we find that

h∗n+1 = h∗n
1

(1−X5n+2) · · · (1−X5n+6)
(1−X5n+1X5n+3)(1−X5n+3X5n+5)(

1− X5n+3
x5n+2

)(
1− X5n+5

x5n+4

) .
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Together with (11) this proves the assertion. �

Setting all xi to q, immediately gives the generating function for h∗n(q) =
h∗n(q, . . . , q) as in Theorem 2. For n → ∞ in Theorem 2, i.e., for a chain of in-
finitely many hexagons with order relations as in Fig. 4 one obtains

h∞(q) =
∞∏
j=1

(1 + q5j−3)(1 + q5j−1)
1− qj

.

4. Conclusion

In [9] we considered plane partitions with diagonals, i.e., the generating func-
tion

∑
xa1

1 · · ·x
a4n+1
4n+1 , where the ai satisfy the order relations depicted in Fig. 5.

As stated in [9, Thm. 1] its rational function representation involves complicated

c c c c c c c c
c c c c c c c c
��
��
��

��
��
��

��
��
��

a1 a3 a5 a7 a9 a4n−3 a4n−1 a4n+1

a2 a4 a6 a8 a10

. . .

a4n−2 a4n a4n+2

- - - - - -

- - - - - -

?
?

?
?

? ?
?

?* * *

Figure 5

irreducible numerator polynomials of total degree 2. We want to note that despite
the nice structure of the rational function representation of h∗n in Theorem 4 above,
the poset H∗n can be viewed as a variation of the poset described by Fig. 5 if drawn
in an equivalent alternative to Fig. 4. For instance, for n = 3 the poset H∗3 can be
depicted as in Fig. 6.

c c c
c c c c c
c c c c c
c c c

��
�
��
�

�
��
��
�

��
��
��

a1 a3 a5

a6 a8 a10

a11 a13 a15

a2 a4

a7 a9

a12 a14 a16

- -

- - - -

- - - -

- -

?
?

?

?
?

?

?
?

?

*

*

*

Figure 6
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