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Abstract. Flat theory with sequence variables and flexible arity sym-
bols has infinitary matching and unification type. Decidability of general
unification is shown and a unification procedure to enumerate minimal
complete set of unifiers is described. The flat matching procedure is com-
pared with the flat matching algorithm implemented in the Mathemat-

ica system.

1 Introduction

Symbol attributes are an important feature of the Mathematica [11] system
that specify how the function symbols should be treated during evaluation and
pattern matching. One of such attributes is Orderless, which specifies that the
order of arguments of a function with this attribute does not matter and allows
them to be rearranged in trying to match patterns. Another attribute is Flat,
allowing to flatten all the nested occurrences of a symbol with this attribute.
In Mathematica 4.2 there are 19 possible attributes, and they can also be
combined with each other.

The work described in this paper was motivated by the Flat attribute of
Mathematica. Initially, our goal was to characterize pattern matching modulo
flatness for terms (possibly) involving sequence variables, as it was implemented
in Mathematica. However, finally it evolved into a more general framework,
equational unification with sequence variables and flat and free function symbols.

Sequence variables add flexibility and expressiveness into a language. They
are used together with flexible arity symbols. Sequence variables can be instan-
tiated by an arbitrary, possibly empty, sequence of terms, and flexible arity
symbols can take an arbitrary finite, possibly empty, sequence of arguments.
Unification with sequence variables is a quite hard problem: a particular case
can be reduced to A-unification. The minimal complete set of solutions of a
unification problem with sequence variables is infinite even for the free theory
[8]. Here we show that in the flat theory not only unification, but also matching
is infinitary. We prove decidability of flat unification and describe a minimal
complete unification procedure.

Relations between decidability of unification/matching problems and unifica-
tion/matching type have been studied in the literature (see, e.g., [6]). However,
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to our knowledge, no theory with infinitary matching type, decidable unification,
and minimal complete unification procedure has been described so far.

Besides, we also compare the general flat matching procedure with the Math-

ematica flat matching algorithm. To our knowledge, the algorithm itself is
nowhere described, but is briefly explained on examples in [11].

We also made an experimental implementation of the general flat unification
procedure in a rule-based system FunLog [9] built on top of Mathematica.

The paper is organized as follows: in Sect. 2 we give preliminary notions
related with unification theory with sequence variables. Section 3 shows decid-
ability of flat unification. In Sect. 4 a flat unification procedure is described.
Sect. 5 discusses an implementation of flat functions in Mathematica.

2 Preliminaries

We consider an alphabet consisting of the following pairwise disjoint sets of
symbols: the set of individual variables VInd, the set of sequence variables VSeq,
the set of fixed arity function constants FFix and the set of flexible arity function
constants FFlex. We denote by V the set of variables VInd∪VSeq and by F the set
of function symbols FFix ∪ FFlex. A term (over F and V) is defined recursively
as follows:

– If t ∈ V then t is a term.

– If f ∈ FFix, f is n-ary, n ≥ 0, and t1, . . . , tn are terms such that for all
1 ≤ i ≤ n, ti /∈ VSeq, then f(t1, . . . , tn) is a term.

– If f ∈ FFlex and t1, . . . , tn (n ≥ 0) are terms, then so is f(t1, . . . , tn).

f is called the head of f(t1, . . . , tn). Function symbols with the fixed arity 0 are
called constants. For a fixed arity symbol f , ar(f) denotes its arity. The set of
all terms over F and V is denoted by T (F ,V). An equation (over F and V) is a
pair {s, t}, denoted s ' t, where s, t ∈ T (F ,V) \ VSeq. If not otherwise stated,
the following symbols, with or without indices, are used as metavariables: x and
y – over individual variables; x, y and z – over sequence variables; v – over
(individual or sequence) variables; f , g and h – over function symbols; s, t, r, q
– over terms. We use some other denotations as well: Let Q be a term, a sequence
of terms, or a set of terms. Then we denote by

ivars(Q) – the set of all individual variables occurring in Q,

svars(Q) – the set of all sequence variables occurring in Q,

vars(Q) – the set ivars(Q) ∪ svars(Q),

fix(Q) – the set of all fixed arity function symbols occurring in Q,

flex(Q) – the set of all flexible arity function symbols occurring in Q.

We assume that the reader is familiar with the standard notions of unification
theory [4]. Here we generalize some of them for sequence variables and flexible
arity symbols.
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Definition 1. A binding is either a pair x 7→ s where x ∈ VInd and s is a term
with s /∈ VSeq, s 6= x, or an expression x 7→ ps1, . . . , snq

1 where x ∈ VSeq and
s1, . . . , sn is a (possibly empty) sequence of terms such that s1 6= x if n = 1.

A substitution is a finite set of bindings {x1 7→ s1, . . . , xn 7→ sn, x1 7→
pt11, . . . , t

1
k1
q, . . . , xm 7→ ptm1 , . . . , tmkm

q} where n,m ≥ 0 and x1, . . . , xn, x1, . . . , xm

are distinct variables.

Greek letters are used to denote substitutions. The empty substitution is
denoted by ε. Given a substitution θ, the notion of an instance of a term t with
respect to θ, denoted tθ, is defined recursively as follows:

– xθ =

{

s if x 7→ s ∈ θ,
x otherwise

– xθ =

{

s1, . . . , sm if x 7→ ps1, . . . , smq ∈ θ, m ≥ 0,
x otherwise

– f(s1, . . . , sn)θ = f(s1θ, . . . , snθ).

Example 1. Let θ = {x 7→ a, y 7→ f(x), x 7→ pq, y 7→ pa, f(x), bq}. Then
f(x, x, g(y, y), y))θ = f(a, g(f(x), f(x)), a, f(x), b).

Instance of an equation s ' t with respect to a substitution θ is defined as
(s ' t)θ = sθ ' tθ.

For a substitution σ, the domain is the set of variables dom(σ) = {v | vσ 6=
v}, the codomain is the set of terms cod(σ) = {vσ | v ∈ dom(σ)}2, and the range
is the set of variables ran(σ) = vars(cod(vσ)).

Definition 2. Let θ = {x1 7→ s1, . . . , xn 7→ sn, x1 7→ pt11, . . . , t
1
k1
q, . . . , xm 7→

ptm1 , . . . , tmkm
q} and λ = {y1 7→ r1, . . . , yn′ 7→ rn′ , y1 7→ pq1

1 , . . . , q1
k′

1
q, . . . , ym′ 7→

pqm′

1 , . . . , qm′

k′

m′
q} be two substitutions. Then the composition of θ and λ is the

substitution, denoted by θ ◦ λ, obtained from the set

{ x1 7→ s1λ, . . . , xn 7→ snλ, x1 7→ pt11λ, . . . , t1k1
λq, . . . , xm 7→ ptm1 λ, . . . , tmkm

λq,

y1 7→ r1, . . . , yn′ 7→ rn′ , y1 7→ pq1
1 , . . . , q1

k′
1
q, . . . , ym′ 7→ pqm′

1 , . . . , qm′

k′

m′
q}

by deleting

– all the bindings xi 7→ siλ (1 ≤ i ≤ n) for which xi = siλ,
– all xi 7→ pt

i
1λ, . . . , tiki

λq-s (1 ≤ i ≤ m) for which ki = 1 and xi = ti1λ,
– all the bindings yi 7→ ri (1 ≤ i ≤ n′) such that yi ∈ {x1, . . . , xn},
– all the bindings yi 7→ pq

i
1, . . . , q

i
k′

i
q (1 ≤ i ≤ m′) such that yi ∈ {x1, . . . , xm}.

An equational theory is defined by a set of equations E (called identities)
over F and V. It is the least congruence relation on T (F ,V) \ VSeq, that is closed
under substitution and contains E, and it will be denoted by 'E . If s 'E t, then

1 To improve the readability, we write sequences that bind sequence variables between
p and q.

2 Note that codomain is a set of terms, not a set of terms and sequences of terms, e.g.
cod({x 7→ f(a), x 7→ pa, a, bq}) = {f(a), a, b}.
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we say that the term s is equal modulo E to the term t. In the following, we
will often slightly abuse the notion of an equational theory by also calling a set
E an equational theory, or E-theory. For a given set of equations E, we denote
by sig(E) the set of all function symbols occurring in E. Solving equations in
an E-theory is called E-unification. The fact that the equation s ' t has to be
solved in an E-theory is written as s'?

Et.

Definition 3. Let E be an equational theory and F be a signature contain-
ing sig(E). An E-unification problem over F is a finite set of equations Γ =
{s1'

?
Et1, . . . , sn'

?
Etn}. A substitution θ is called an E-unifier of Γ iff siθ 'E tiθ

for all 1 ≤ i ≤ n. The set of all E-unifiers of Γ is denoted by UE(Γ ), and Γ is
E-unifiable (E-solvable) iff UE(Γ ) 6= ∅.

Definition 4. A substitution θ is more general than σ on a finite set of variables

X modulo a theory E, denoted θ≤�
X

Eσ, iff there exists a substitution λ such that

– for all x ∈ X , x 7→ pq /∈ λ; there exist terms t1, . . . , tn, s1, . . . , sn,n ≥ 0, such
that xσ = t1, . . . , tn, xθ ◦ λ = s1, . . . , sn, and for each 1 ≤ i ≤ n, either ti
and si are the same sequence variables, or ti 'E si;

– for all x ∈ X , xσ 'E xθ ◦ λ.

Example 2. Let θ = {x 7→ y}, σ = {x 7→ pa, bq, y 7→ pa, bq}, η = {x 7→ pq, y 7→

pq}, X = {x, y}, E = ∅. Then θ≤�
X

Eσ and θ��
X

E
η.

The strict part of ≤�
X

E is denoted by <�XE . The relation ≤�
X

E is a quasi-ordering.

Definition 5. A set of substitutions Σ is called minimal with respect to a set
of variables X modulo an equational theory E iff two distinct elements of Σ are

incomparable with respect to ≤�
X

E , i.e., for all σ, θ ∈ Σ, σ≤�
X

Eθ implies σ = θ.

Definition 6. Let Γ be a E-unification problem over F and let X = vars(Γ ).
The minimal complete set of E-unifiers of Γ , denoted mcuE(Γ ), is an mini-
mal set of substitutions with respect to X modulo E, satisfying E-correctness
(mcuE(Γ ) ⊆ UE(Γ )) and E-completeness (for each σ ∈ UE(Γ ) there exists

θ ∈ mcuE(Γ ) such that θ≤�
X

Eσ).

An E-unification problem Γ is called a general E-unification problem iff
sig(Γ )\sig(E) contains arbitrary (fixed or flexible arity) function symbols, where
sig(Γ ) is a set of all function symbols occurring in Γ .

Flat theory, or briefly F -theory, is defined as E = {f(x, f(y), z) ' f(x, y, z)},
and f is called a flat flexible arity symbol.

It should be noted that although (free or flat) unification with sequence
variables and flexible arity symbols looks similar to A-unification, there are es-
sential differences illustrated by the following example (even without sequence
variables). Let Γ = {f(x, f(y, z)) '?

E f(f(a, b), c)} be a unification problem,
where x, y, z are individual variables, and a, b, c are constants. First, assume E
is an associative theory with f the associative symbol. Then mcuE(Γ ) = {{x 7→
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a, y 7→ b, z 7→ c}}. Next, let E = ∅. Then f is a free function symbol and
mcuE(Γ ) = ∅. Finally, assume E is a flat theory with f the flat flexible arity
symbol. Then there are 23 substitutions in the minimal complete set of solu-
tions: mcuE(Γ ) = {{x 7→ f(), y 7→ f(), z 7→ f(a, b, c)}, {x 7→ f(), y 7→ a, z 7→
f(a, b, c)}, {x 7→ f(), y 7→ f(a), z 7→ f(a, b, c)} . . ., {x 7→ f(a, b, c), y 7→ f(), z 7→
f()}}.

3 Decidability

To show decidability of a general F -unification problem Γ , we first reduce it by
unifiability preserving transformation to a simpler unification problem, and then
show decidability of the reduced problem.

3.1 Reduction

First we define an operation on terms called flattening. It replaces a term of
the form f(t̃, f(s̃), r̃), where f is a flat flexible arity symbol and t̃, s̃ and r̃ are
(possibly empty) sequences of terms, with the term f(t̃, s̃, r̃). Given a term t,
we denote by flt(t) the term obtained from t by flattening all its subterms until
impossible. Obviously t 'F flt(t).

Let Γ be a general F -unification problem {s '?
F t}. Then we denote by ∆

the F -unification problem {flt(s)'?
F flt(t)}. It is easy to see that the following

theorem holds:

Theorem 1. Γ is solvable iff ∆ is solvable.

Now we reduce ∆ to another general F -unification problem Φ by introducing
a new flat symbol seq and a new unary symbol gh for each free flexible arity
symbol h in ∆, and replacing each term h(r1, . . . , rn) in ∆ by gh(seq(r1, . . . , rn)).

Sequence variables occur in Φ only as direct arguments of terms with the head
f1, . . . , fk, or seq, where f1, . . . , fk, k ≥ 1, are all flat flexible arity symbols in
∆. There are no free flexible arity function symbols in Φ. We impose individual
variable restrictions on Φ demanding that for a solution θ of Φ and for any
individual variable x, xθ must not have seq as the head.

Theorem 2. ∆ is solvable iff Φ with individual variable restrictions is solvable.

Remark. Note that solvability of Φ without individual variable restrictions
does not imply solvability of ∆: Let ∆ be f(h(x))'?

F f(h(a, b)), with flat f and
free flexible arity h. Then Φ is f(gh(seq(x)))'?

F f(gh(seq(a, b))), where gh is
introduced to replace h. It is clear that ∆ does not have a solution, while {x 7→
seq(a, b)} is a solution of Φ, because the flatness of seq implies seq(seq(a, b)) 'F

seq(a, b).
Next, we construct a general F -unification problem that is F -unifiable (with-

out restrictions) iff Φ with individual variable restrictions is F -unifiable.
Let T be a finite set of terms consisting of the following elements:
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1. a new constant c,
2. exactly one term of the form h(y1, . . . , yar(h)) for each h ∈ fix(Φ) such that

y1, . . . , yar(h) are distinct individual variables occurring neither in the other
terms from T nor in Φ, and

3. exactly one term of the form h(x) for each h ∈ flex(Φ) \ {seq} such that x
is a new sequence variable occurring neither in the other terms from T nor
in Φ.

Theorem 3. Let Φ be {s1 '?
F s2} with ivars(Φ) = {x1, . . . , xn} and g ∈ FFix be

a new (n+1)-ary symbol. Then Φ with individual variable restrictions is solvable
iff there exist r1, . . . , rn ∈ T such that the general F -unification problem Ψ of
the form {g(s1, x1, . . . , xn) '?

F g(s2, r1, . . . , rn)} is solvable.

3.2 Decidability of the Reduced Problem

We have to show that unifiability of an F -unification problem Ψ of the form
{g(s1, x1, . . . , xn) '?

F g(s2, t1, . . . , tn)} is decidable. Ψ has the following proper-
ties:

1. The signature of Ψ consists of fixed arity and flat flexible arity function
symbols. The set of all flat flexible arity function symbols of Ψ contains
seq and at least one other function symbol. There are no free flexible arity
function symbols in the signature of Ψ .

2. {x1, . . . , xn} = ivars(s1, s2) and for all 1 ≤ i, j ≤ n, if i 6= j then xi 6= xj .
3. For all 1 ≤ i ≤ n, the head of the term ti belongs to the set fix(s1, s2) ∪

{c} ∪ flex(s1, s2) \ {seq} .

We will use the combination method introduced by Baader and Schulz in [3]
to show that solvability of Ψ is decidable3.

Linear constant restrictions (lcr in short) are induced by a linear order < on
the set of variables and constants, demanding that, for a unifier θ, a constant d
and a variable v, d must not occur in vθ if d > v.

The combination method is formulated as follows:

Theorem 4 (Combination Method). Let E1, . . . , En be equational theories
over disjoint signatures such that solvability of Ei-unification problems with lin-
ear constant restriction is decidable for i = 1, . . . , n. Then unifiability is decidable
for the combined theory E1 ∪ . . . ∪ En.

Let {f1, . . . , fk, seq} = flex(Ψ), k ≥ 1. Let for all 1 ≤ i ≤ k, Fi be the set
{fi}, Fk+1 be {seq}, and Fk+2 be fix(Ψ). Let for all 1 ≤ i ≤ k + 1, Ei be an
equational theory with sequence variables over the signature Fi and Ek+2 be a
free theory (without sequence variables) over Fk+2. Then we can consider Ψ as a
unification problem in the combined theory E1 ∪ · · · ∪Ek+2. Since F1, . . . ,Fk+2

are pairwise disjoint, by Theorem 4, to prove decidability of Ψ in E1∪· · ·∪Ek+2

3 In [3] the combination method was introduced for theories without sequence vari-
ables, but it remains valid for theories with sequence variables as well.
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we need to show for each 1 ≤ i ≤ k+2 that solvability of Ei-unification problem
with lcr is decidable.

For each 1 ≤ i ≤ k + 1, solvability of Ei-unification with lcr is equivalent to
solvability of word equations with lcr that is decidable (see [2]).

The Ek+2-unification problem is a Robinson unification problem. Decidability
of Robinson unification with lcr is shown in [2].

Thus, solvability of Ψ is decidable, which by Theorem 1, Theorem 2 and
Theorem 3, implies the following result:

Theorem 5. Solvability of general flat unification is decidable.

4 Unification Procedure

In this section we design a general F -unification procedure based on projection,
flattening, and transformation rules. Each of the rules have one of the following
forms: Γ  ⊥ or Γ  〈〈∆1, σ1〉, . . . , 〈∆n, σn〉〉, where each of the successors ∆i

is either > or a new unification problem, and σ-s are substitutions.

4.1 Projection and Flattening Rules

The idea of projection [1] is to eliminate some sequence variables from the given
problem. Let Π(Γ ) be a set of substitutions such that π ∈ Π iff dom(π) ⊆
svars(Γ ) and cod(π) = ∅. Thus, Each π ∈ Π replaces some sequence variables
from Γ with the empty sequence. Flattening rule transforms a unification prob-
lem into its flattened from. The projection and flattening rules are shown in
Fig. 1.

Projection: s'?
F t  〈〈sπ1'

?
F tπ1, π1〉, . . . , where {π1, . . . , πk} = Π(s'?

F t).

〈sπk'
?
F tπk, πk〉〉

Flattening: s'?
F t  〈〈flt(s)'?

F flt(t), ε〉〉

Fig. 1. Projection and flattening rules.

4.2 Transformation

If Γ has a form s'?
F t, where s and t are either identical terms, terms with

different heads, or terms with non-flat heads, then Γ is transformed by one of
the transformation rules in Fig. 2 (note the usage of widening techniques similar
to, e.g., [10] in the elimination rules for sequence variables).

Otherwise (i.e., if s and t have the same flat heads, or one of them is a variable
and the other one has a flat head) we define transformation rules for Γ in Fig. 3,
Fig. 4, and Fig. 5.
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Success: t'?
∅t  〈〈>, ε〉〉.

x'?
F t  〈〈>, {x 7→ t}〉〉, if x /∈ vars(t).

t'?
F x  〈〈>, {x 7→ t}〉〉, if x /∈ vars(t).

Failure: c1'
?
F c2  ⊥, if c1 6= c2.

x'?
F t  ⊥, if t 6= x and x ∈ vars(t).

t'?
F x  ⊥, if t 6= x and x ∈ vars(t).

h1(t̃)'
?
F h2(s̃)  ⊥, if h1 6= h2.

h()'?
F h(t1, t̃)  ⊥.

h(t1, t̃)'
?
F h()  ⊥.

h(x, t̃)'?
F h(s1, s̃)  ⊥, if s1 6= x and x ∈ vars(s1).

h(s1, s̃)'
?
F h(x, t̃)  ⊥, if s1 6= x and x ∈ vars(s1).

h(t1, t̃)'
?
F h(s1, s̃)  ⊥, if t1'

?
F s1  ⊥.

Eliminate: h(t1, t̃)'
?
F h(s1, s̃)  〈〈g(t̃σ)'?

F g(s̃σ), σ〉〉, if t1'
?
F s1  〈〈>, σ〉〉.

h(x, t̃)'?
F h(x, s̃)  〈〈h(t̃)'?

F h(s̃), ε〉〉.

h(x, t̃)'?
F h(s1, s̃)  if s1 /∈ VSeq and x /∈ vars(s1),

〈〈h(t̃σ1)'
?
F h(s̃σ1), σ1〉, where σ1 = {x 7→ s1},

〈h(x, t̃σ2)'
?
F h(s̃σ2), σ2〉〉, σ2 = {x 7→ ps1, xq}.

h(s1, s̃)'
?
F h(x, t̃)  if s1 /∈ VSeq and x /∈ vars(s1),

〈〈h(s̃σ1)'
?
F h(t̃σ1), σ1〉, where σ1 = {x 7→ s1},

〈h(s̃σ2)'
?
F h(x, t̃σ2), σ2〉〉, σ2 = {x 7→ ps1, xq}.

h(x, t̃)'?
F h(y, s̃)  where

〈〈h(t̃σ1)'
?
F h(s̃σ1), σ1〉, σ1 = {x 7→ y},

〈h(x, t̃σ2)'
?
F h(s̃σ2), σ2〉, σ2 = {x 7→ py, xq},

〈h(t̃σ3)'
?
F h(y, s̃σ3), σ3〉 〉, σ3 = {y 7→ px, yq}.

Split: h(t1, t̃)'
?
F h(s1, s̃)  if t1, s1 /∈ V and

〈〈h(r1, t̃σ1)'
?
F h(q1, s̃σ1), σ1〉, . . . , t1'

?
F s1  〈〈r1'

?
F q1, σ1〉,

〈h(rk, t̃σk)'?
F h(qk, s̃σk), σk〉〉, . . . , 〈rk'

?
F qk, σk〉〉.

Fig. 2. Transformation rules. t̃ and s̃ are possibly empty sequences of terms. h ∈ F is
free. h1, h2 ∈ F can be free or flat. g ∈ FFlex is a new free symbol.
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SuccessF: x'?
F f(x)  〈〈>, {x 7→ f(x)}〉〉.

x'?
F t  〈〈>, {x 7→ t}〉〉, if x /∈ ivars(t) and t 6= f(x).

f(x)'?
F x  〈〈>, {x 7→ f(x)}〉〉.

t'?
F x  〈〈>, {x 7→ t}〉〉, if x /∈ ivars(t) and t 6= f(x).

FailureF: x'?
F t  ⊥, if t 6= x, t 6= f(x), x ∈ ivars(t).

t'?
F x  ⊥, if t 6= x, t 6= f(x), x ∈ ivars(t).

f()'?
F f(t1, t̃)  ⊥, if t1 /∈ V.

f(t1, t̃)'
?
F f()  ⊥, if t1 /∈ V.

f(x, t̃)'?
F f(s1, s̃)  ⊥, if s1 6= x, s1 6= g(x), x ∈ svars(s1).

f(s1, s̃)'
?
F f(x, t̃)  ⊥, if s1 6= x, s1 6= g(x), x ∈ svars(s1).

f(t1, t̃)'
?
F f(s1, s̃)  ⊥, if t1'

?
F s1  ⊥.

EliminateF: f()'?
F f(v, t̃)  where v ∈ V and

〈〈f()'?
F f(t̃)σ, σ〉〉, σ = {v 7→ f()}.

f(v, t̃)'?
F f()  where v ∈ V and

〈〈f(t̃σ)'?
F f(), σ〉〉, σ = {v 7→ f()}.

f(t1, t̃)'
?
F f(s1, s̃)  if t1, s1 /∈ V and

〈〈f(t̃σ)'?
F f(s̃σ), σ〉〉, t1'

?
F s1  〈〈>, σ〉〉.

f(v, t̃)'?
F f(v, s̃)  where v ∈ V.

〈〈f(t̃)'?
F f(s̃), ε〉〉.

f(x, t̃)'?
F f(y, s̃)  where x 6= y and

〈〈f(t̃σ1)'
?
F f(y, s̃σ1), σ1〉, σ1 = {x 7→ f()},

〈f(t̃σ2)'
?
F f(s̃σ2), σ2〉, σ2 = {x 7→ y},

〈f(t̃σ3)'
?
F f(s̃σ3), σ3〉, σ3 = {x 7→ f(y)},

〈f(x, t̃σ4)'
?
F f(s̃σ4), σ4〉, σ4 = {x 7→ f(y, x)},

〈f(x, t̃σ5)'
?
F f(s̃σ5), σ5〉, σ5 = {y 7→ f()},

〈f(t̃σ6)'
?
F f(s̃σ6), σ6〉, σ6 = {y 7→ f(x)},

〈f(t̃σ7)'
?
F f(y, s̃σ7), σ7〉〉, σ7 = {y 7→ f(x, y)}.

f(x, t̃)'?
F f(s1, s̃)  where s1 /∈ V and

〈〈f(t̃σ1)'
?
F f(s1, s̃σ1), σ1〉, σ1 = {x 7→ f()},

〈f(t̃σ2)'
?
F f(s̃σ2), σ2〉, σ2 = {x 7→ s1},

〈f(t̃σ3)'
?
F f(s̃σ3), σ3〉, σ3 = {x 7→ f(s1)},

〈f(x, t̃σ4)'
?
F f(s̃σ4), σ4〉〉, σ4 = {x 7→ f(s1, x)}.

f(t1, t̃)'
?
F f(x, s̃)  where t1 /∈ V and

〈〈f(t1, t̃σ1)'
?
F f(s̃σ1), σ1〉, σ1 = {x 7→ f()},

〈f(t̃σ2)'
?
F f(s̃σ2), σ2〉, σ2 = {x 7→ t1},

〈f(t̃σ3)'
?
F f(s̃σ3), σ3〉, σ3 = {x 7→ f(t1)},

〈f(t̃σ4)'
?
F f(x, s̃σ4), σ4〉〉, σ4 = {x 7→ f(t1, x)}.

Fig. 3. Transformation rules for the F -unification. t̃ and s̃ are possibly empty sequences
of terms. f, g ∈ FFlex are flat.

9



EliminateF f(x, t̃)'?
F f(y, s̃)  where

(continued): 〈〈f(t̃σ1)'
?
F f(y, s̃σ1), σ1〉, σ1 = {x 7→ f()},

〈f(t̃σ2)'
?
F f(s̃σ2), σ2〉, σ2 = {x 7→ y},

〈f(t̃σ3)'
?
F f(s̃σ3), σ3〉, σ3 = {x 7→ f(y)},

〈f(x, t̃σ4)'
?
F f(s̃σ4), σ4〉, σ4 = {x 7→ f(y, x)},

〈f(x, t̃σ5)'
?
F f(y, s̃σ5), σ5〉, σ5 = {x 7→ pf(), xq},

〈f(x, t̃σ6)'
?
F f(s̃σ6), σ6〉, σ6 = {x 7→ py, xq},

〈f(x, t̃σ7)'
?
F f(s̃σ7), σ7〉, σ7 = {x 7→ py, f(x)q},

〈f(x, t̃σ8)'
?
F f(s̃σ8), σ8〉, σ8 = {x 7→ pf(y), xq},

〈f(x, t̃σ9)'
?
F f(s̃σ9), σ9〉, σ9 = {x 7→ pf(y), f(x)q},

〈f(x, t̃σ10)'
?
F f(s̃σ10), σ10〉, σ10 = {y 7→ f()},

〈f(t̃σ11)'
?
F f(s̃σ11), σ11〉, σ11 = {y 7→ f(x)},

〈f(t̃σ12)'
?
F f(y, s̃σ12), σ12〉〉, σ12 = {y 7→ f(x, y)}.

f(y, t̃)'?
F f(x, s̃)  where

〈〈f(y, t̃σ1)'
?
F f(s̃σ1), σ1〉, σ1 = {x 7→ f()},

〈f(t̃σ2)'
?
F f(s̃σ2), σ2〉, σ2 = {x 7→ y},

〈f(t̃σ3)'
?
F f(s̃σ3), σ3〉, σ3 = {x 7→ f(y)},

〈f(t̃σ4)'
?
F f(x, s̃σ4), σ4〉, σ4 = {x 7→ f(y, x)},

〈f(y, t̃σ5)'
?
F f(x, s̃σ5), σ5〉, σ5 = {x 7→ pf(), x)q},

〈f(t̃σ6)'
?
F f(x, s̃σ6), σ6〉, σ6 = {x 7→ py, xq},

〈f(t̃σ7)'
?
F f(x, s̃σ7), σ7〉, σ7 = {x 7→ py, f(x)q},

〈f(t̃σ8)'
?
F f(x, s̃σ8), σ8〉, σ8 = {x 7→ pf(y), xq},

〈f(t̃σ9)'
?
F f(x, s̃σ9), σ9〉, σ9 = {x 7→ pf(y), f(x)q},

〈f(t̃σ10)'
?
F f(x, s̃σ10), σ10〉, σ10 = {y 7→ f()},

〈f(t̃σ11)'
?
F f(s̃σ11), σ11〉, σ11 = {y 7→ f(x)},

〈f(y, t̃σ12)'
?
F f(s̃σ12), σ12〉〉, σ12 = {y 7→ f(x, y)}.

f(x, t̃)'?
F f(y, s̃)  where x 6= y and

〈〈f(t̃σ1)'
?
F f(y, s̃σ1), σ1〉, σ1 = {x 7→ f()},

〈f(t̃σ2)'
?
F f(s̃σ2), σ2〉, σ2 = {x 7→ y},

〈f(t̃σ3)'
?
F f(s̃σ3), σ3〉, σ3 = {x 7→ f(y)},

〈f(x, t̃σ4)'
?
F f(s̃σ4), σ4〉, σ4 = {x 7→ f(y, x)},

〈f(x, t̃σ5)'
?
F f(y, s̃σ5), σ5〉, σ5 = {x 7→ pf(), x)q},

〈f(x, t̃σ6)'
?
F f(s̃σ6), σ6〉, σ6 = {x 7→ py, xq},

〈f(x, t̃σ7)'
?
F f(s̃σ7), σ7〉, σ7 = {x 7→ py, f(x)q},

〈f(x, t̃σ8)'
?
F f(s̃σ8), σ8〉, σ8 = {x 7→ pf(y), xq},

〈f(x, t̃σ9)'
?
F f(s̃σ9), σ9〉, σ9 = {x 7→ pf(y), f(x)q},

〈f(x, t̃σ10)'
?
F f(s̃σ10), σ10〉, σ10 = {y 7→ f()},

〈f(t̃σ11)'
?
F f(s̃σ11), σ11〉, σ11 = {y 7→ f(x)},

〈f(t̃σ12)'
?
F f(y, s̃σ12), σ12〉, σ12 = {y 7→ f(x, y)},

〈f(x, t̃σ13)'
?
F f(y, s̃σ13), σ13〉, σ13 = {y 7→ pf(), yq},

〈f(t̃σ14)'
?
F f(y, s̃σ14), σ14〉, σ14 = {y 7→ px, yq},

〈f(t̃σ15)'
?
F f(y, s̃σ15), σ15〉, σ15 = {y 7→ px, f(y)q},

〈f(t̃σ16)'
?
F f(y, s̃σ16), σ16〉, σ16 = {y 7→ pf(x), yq},

〈f(t̃σ17)'
?
F f(y, s̃σ17), σ17〉〉, σ17 = {y 7→ pf(x), f(y)q}.

Fig. 4. Transformation rules for the F -unification (continued). t̃ and s̃ are possibly
empty sequences of terms. f ∈ FFlex is flat.

10



EliminateF f(x, t̃)'?
F f(s1, s̃) s1 /∈ V, x /∈ svars(s1)

(continued):  or s1 = g(x), and

〈〈f(t̃σ1)'
?
F f(s1, s̃σ1), σ1〉, σ1 = {x 7→ f()},

〈f(t̃σ2)'
?
F f(s̃σ2), σ2〉, σ2 = {x 7→ s1},

〈f(t̃σ3)'
?
F f(s̃σ3), σ3〉, σ3 = {x 7→ f(s1)},

〈f(x, t̃σ4)'
?
F f(s̃σ4), σ4〉, σ4 = {x 7→ f(s1, x)},

〈f(x, t̃σ5)'
?
F f(s1, s̃σ5), σ5〉, σ5 = {x 7→ pf(), x)q},

〈f(x, t̃σ6)'
?
F f(s̃σ6), σ6〉, σ6 = {x 7→ ps1, xq},

〈f(x, t̃σ7)'
?
F f(s̃σ7), σ7〉, σ7 = {x 7→ ps1, f(x)q},

〈f(x, t̃σ8)'
?
F f(s̃σ8), σ8〉, σ8 = {x 7→ pf(s1), xq},

〈f(x, t̃σ9)'
?
F f(s̃σ9), σ9〉〉, σ9 = {x 7→ pf(s1), f(x)q}.

f(t1, t̃)'
?
F f(x, s̃) t1 /∈ V, x /∈ svars(t1)

 or t1 = g(x), and

〈〈f(t1, t̃σ1)'
?
F f(s̃σ1), σ1〉, σ1 = {x 7→ f()},

〈f(t̃σ2)'
?
F f(s̃σ2), σ2〉, σ2 = {x 7→ t1},

〈f(t̃σ3)'
?
F f(s̃σ3), σ3〉, σ3 = {x 7→ f(t1)},

〈f(t̃σ4)'
?
F f(x, s̃σ4), σ4〉, σ4 = {x 7→ f(t1, x)},

〈f(t1, t̃σ5)'
?
F f(x, s̃σ5), σ5〉, σ5 = {x 7→ pf(), xq},

〈f(t̃σ6)'
?
F f(x, s̃σ6), σ6〉, σ6 = {x 7→ pt1, xq},

〈f(t̃σ7)'
?
F f(x, s̃σ7), σ7〉, σ7 = {x 7→ pt1, f(x)q},

〈f(t̃σ8)'
?
F f(x, s̃σ8), σ8〉, σ8 = {x 7→ pf(t1), xq},

〈f(t̃σ9)'
?
F f(x, s̃σ9), σ9〉〉, σ9 = {x 7→ pf(t1), f(x)q}.

SplitF: f(t1, t̃)'
?
F f(s1, s̃)  if t1, s1 /∈ V and

〈〈f(r1, t̃σ1)'
?
F f(q1, s̃σ1), σ1〉, t1'

?
F s1  

. . . , 〈〈r1'
?
F q1, σ1〉, . . .

〈f(rk, t̃σk)'?
F f(qk, s̃σk), σk〉〉 〈rk'

?
F qk, σk〉〉.

Fig. 5. Transformation rules for the F -unification (continued). t̃ and s̃ are possibly
empty sequences of terms. f, g ∈ FFlex are flat.

4.3 Tree Generation

We design the unification procedure for the flat theory with sequence variables
and flexible arity symbols as a tree generation process. The single steps in this
process are projection, flattening, and transformation for the flat theory.

Each node of the tree is labeled either with a unification problem, > or ⊥.
The edges are labeled by substitutions. The nodes labeled with > or ⊥ are
terminal nodes. The nodes labeled with unification problems are non-terminal
nodes. The children of a non-terminal node are constructed in the following way:
Let ∆ be a unification problem attached to a non-terminal node. First, we decide
whether ∆ is unifiable. If the answer is negative, we replace ∆ with the new label
⊥. Otherwise, we apply flattening, projection, or transformation on ∆ and get
〈〈Φ1, σ1〉, . . . , 〈Φn, σn〉〉. Then the node ∆ has n children, labeled respectively
with Φ1, . . . , Φn, and the edge to the Φi node is labeled with σi for all 1 ≤ i ≤ n.
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We design the general unification procedure for a general flat unification
problem Γ as a breadth first (level by level) tree generation process. We label
the root of the tree with Γ (zero level). First level nodes of the tree are obtained
from the original problem by projection. Starting from the second level, we apply
only flattening and transformation steps to a unification problem of each node,
first flattening it and then transforming the flattened problem, thus getting new
successor nodes. The branch which ends with a node labeled by > is called a
successful branch. The branch which ends with a node labeled by ⊥ is a failed
branch. For each node in the tree, we compose substitutions (top-down) displayed
on the edges of the branch that leads to this node, flatten all the terms in the
codomain of the composition, and attach the obtained substitution to the node
together with the unification problem the node was labeled with. The empty
substitution is attached to the root. For a node N , the substitution attached to
N in such a way is called the associated substitution of N . Let Σ(Γ ) be the set
of all substitutions associated with the > nodes. We call the tree a unification
tree for Γ and denote it utree(Γ ).

The following lemma plays the key role in proving that Σ(Γ ) is a complete
set of F -unifiers of Γ .

Lemma 1. Let Γ be a general flat unification problem and let X = vars(Γ ).
Then for every γ ∈ UF (Γ ) there exists a branch β in utree(Γ ) with the follow-
ing property: if Φ is a unification problem occurring in β with the associated

substitution φ, then φ≤�
X

F γ.

Using this lemma, the following theorem can be easily proved:

Theorem 6 (Completeness). Σ(Γ ) is a complete set of F -unifiers for Γ .

The next example shows that the unification procedure is not minimal:

Example 3. Let Γ be f(x)'?
F f(y), f ∈ FFlex being flat. Then, among the other

solutions, the procedure returns the unifiers σ = {x 7→ y} and θ = {x 7→

f(), y 7→ f()}. Obviously σ≤�
vars(Γ )
F θ.

The next example shows that F -matching is (at least) infinitary.

Example 4. Let Γ be f(x)'?
F f(a), f ∈ FFlex being flat. Then the procedure

computes infinitely many unifiers of Γ :

{x 7→ a}, {x 7→ f(a)}, {x 7→ pa, f()q}, {x 7→ pf(a), f()q}, {x 7→ pf(), aq},
{x 7→ pf(), f(a)q}, {x 7→ pf(), a, f()q}, {x 7→ pf(), f(a), f()q}, . . . .

The reason of such a behavior is that the term f() occurs in transformation
substitutions. Skipping any of the rules involving f() would lead to incomplete-
ness:

Example 5. The unique solution {x 7→ f()} of f(x, a)'?
F f(a) (f ∈ FFlex being

flat) can not be computed without the transformation substitution {x 7→ f()}.
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It can be proved that the minimal complete set of F -unifiers of a general flat
unification problem Γ exists (see [7]). Therefore, we can refine the unification
procedure to compute the minimal complete set of unifiers. Let X = vars(Γ ).
During the tree generation process, at each step when a new solution appears,
check whether the set of already computed solutions Ξ of Γ is minimal or not
(it is decidable). If Ξ is minimal, then continue the process, otherwise minimize
Ξ as follows: Let σ ∈ Ξ be a substitution such that for some other substitution
θ ∈ Ξ we have θ≤�

X

F σ. Let β be the branch in utree(Γ ) such that σ is attached
to the leaf of β. Let η1, . . . , ηn be the edges in β, starting from the root. Let k
be the number such that none of ηn, ηn−1, . . . , ηn−k have a sibling in utree(Γ ),
but ηn−(k+1) has. Then we delete ηn, ηn−1, . . . , ηn−k from utree(Γ ) and continue
the tree generation process. Let utreemin(Γ ) be the tree constructed in such a
manner and let Σmin(Γ ) denote the set of all substitutions that are associated
with > nodes in utreemin(Γ ). Then Theorem 6 and the construction of Σmin

imply the following result:

Theorem 7. Σmin(Γ ) = mcuF (Γ ).

Bürckert et al [5] investigated properties of equational theories important
for unification theory. These properties can easily be extended for theories with
sequence variables and flexible arity symbols (see [7]). It can be proved that the
flat theory is regular, collapse free, almost collapse free, Noetherian, and strongly
complete, but neither permutative, simple, finite, nor Ω-free.

5 Flat Functions in Mathematica

The Mathematica system [11] implements matching modulo flatness. It is not
hard to observe that the algorithm is not complete. It does not match, for in-
stance, f(x, a) to f(a), f(x, g(x)) to f(a, g(a)), or f(x, g(x)) to f(a, g(f(a))),
where f is flat and g is free.

The main difference between the F -matching procedure and the Mathe-

matica flat matching is that the latter does not consider transformation rules
involving f(). It makes Mathematica flat matching finitary.

Another difference is in the case where an individual variable x matches a
single argument s1 in a term with a flat head f . The F -matching procedure
returns four substitutions as it is shown in the sixth case of Eliminate in Fig. 3,
while the Mathematica matching algorithm chooses only the last two of those
four. If in the same situation we have a sequence variable x, the F -matching
procedure tries nine different ways to resolve the case (the first rule of Eliminate

in Fig. 5), while Mathematica would choose only the second and sixth.

On the other hand, Mathematica can verify that each solution computed
by the F -matching procedure is correct, e.g., it sees f(x, g(x)){x 7→ a} and
f(a, g(a)) as identical expressions, although, as it was already mentioned, the
Mathematica matching algorithm can not compute {x 7→ a}.
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6 Conclusion

We described a flat theory with sequence variables and flexible arity symbols. In
this theory solvability of the general unification problem is decidable, unification
and matching types are infinitary, and a minimal complete unification procedure
exists. A practically useful restriction of the procedure can be identified, which
describes the meaning of flatness implemented in the Mathematica system.
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