
Origami Theorem Proving
Bruno Buchberger1 , Tetsuo Ida2

�1 Research Institute for Symbolic Computation (RISC), Johannes Kepler University, Linz, Austria,
�2 Symbolic Computation Research Group (SCORE), University of Tsukuba, Japan.

Acknowledgement:  Sponsored  by  Austrian  FWF  (Österreichischer  Fonds  zur  Förderung  der
Wissenschaftlichen Forschung), Project 1302 in the frame of the SFB (Special Research Area) 013 "Scientific
Computing".

� Abstract

Origami paper folding has a long tradition in Japan’s culture and education. The second author has recently
developed  a  software  system,  based  on  functional  logic  programming  and  web|technology,  for  simulating
origami  paper  folding on  the computer (the "origami computing  problem" or  the "forward origami problem").
This system is  based on the implementation of the six fundamental origami folding steps ("origami axioms")
formulated by Huzita. In this paper, we consider the problem of automatically proving general theorems on the
result of origami folding sequences (the "origami proving problem") using algebraic methods, in particular the
first author’s Gröbner bases method. We also give some comments on finding origami folding steps that result
in a desired object (the "origami solving problem" or "inverse origami problem"). 

� Introduction

� The Forward Origami Problem

The  origami  software  system  developed  by  the  second  author  allows  to  study  the  effect  of  sequences  of
origami  folding  steps  on  the  computer,  see  [Ida  2003].  This  system  is  implemented  in  Mathematica,  see
[Wolfram 1999] and can also be accessed over the web.

Here is  a  typical  session, which illustrates part  of  a  sequence of  origami steps that construct an equilateral
triangle starting from a square. (In the interactive web|based version of the system, the input is driven by a
user−friendly menu,  which  is  not  shown here.)  The  input  commands and  the  respective  visualization of  the
folded 2−d object should be self−explanatory:

DefOrigami@4, 4, MarkPoints ® 8"A", "B", "C", "D"<, Context ® "MaxTriangle‘"D;
FoldBring@1, A, B, MarkCrease ® TrueD; ToStep@1, $markSymbolsD;
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ShowOrigami@More ® Graphics3D@8Hue@0.3D, GraphicsLine@A, DD, GraphicsLine@E, FD<DD
ShowOrigami::id :  1
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1

FoldBrTh@1, D, Segment@E, FD, A, 2, MarkCrease ® TrueD; ShowOrigami@D
ShowOrigami::id :  2
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� Graphics3D �

FoldByLine@2, SegmentToLine@Segment@A, DDD, G, Direction -> "Mountain"D;
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ShowOrigami@D;
ShowOrigami::id :  3
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etc.

� The Inverse Origami Problem and the Origami Proving Problem

As  we  have  seen,  the  current  origami  system  of  [Ida  2003]  can  simulate  and  visualize,  by  algebraic
calculations that correspond to the six  basic origami operations, the effect of  any origami folding sequence,
i.e. it solves what we call the "origami computing problem" or the "origami forward problem" (in analogy to
the "forward kinematics problem" in robotics). In contrast, in this paper, we would like to discuss (and partly
solve) the expansion of the capability of the system into the following two natural directions:

é The "origami solving problem" (or "inverse origami problem"): For a given initial origami shape
and a  final origami shape with certain desired properties, find a sequence of origami steps that
transforms the initial into the final shape (or report "not origami solvable" if such a sequence does
not exist).

é The "origami proving problem":   For  a  given sequence of  origami steps  and a  given property
(out  of  a  certain  class  of  properties),  prove  that  the  resulting shape will  satisfy  the  property  (or
disprove the property).

We will  give a  complete answer to  the origami proving problem (for  a  well|defined wide class of  theorems)
and some preliminary remarks on the origami solving problem.

The  algorithmics  of  origami,  in  itself,  is  an  interesting  research  area.  In  addition,  in  the  frame  of  the  SFB
(Sonderforschungsbereich  =  Special  Research  Area)  "Scientific  Computing"  of  the  Austrian  FWF  funding
agency, the algorithmics of origami is an excellent example of the fundamental and general three algorithmic
aspects  "computing  (simplifying,  forward  solving,  equivalence  transforming,  ...)",  "solving  (inverse  solving,
existential proving,...)", and "proving (universal proving, truth deciding, ...)",  which have been chosen as the
structuring principle for the various subprojects of the entire SFB.
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� An Example of an Origami Proving Problem and Its Solution by the Gröbner Bases 
Method

� A Simple Solve Problem and a Simple Prove Problem

We start with the following simple origami solving problem: Starting from a square A, B, C, D, find a sequence
of origami steps such that, finally, we arrive at an equilateral triangle. 

Here is a first solution to the problem (which, however, does not yield maximum edge length): We first fold the
square along the middle line EF. (This is a legal origami operation.)

A B

CD E

FA B

CD E

F

1

Then we fix the point A and fold so that point D will lie on line EF. (This is a legal origami operation.)
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Now we can do the analogous step with corner C, fixing B and bringing C onto the current position of D.  

Then  the  triangle  ADB  is  an  equilateral  triangle  with  edge  length  AB
�����

.  We  could  add  a  few  easy  origami
operations that would result in hiding the areas that extend over the triangle ADB but we do not show these
easy steps because we would like now to pose a simple proving problem: 

Prove that, for all squares ABCD, GD
������

 = 2 ED
�����

.

� The Translation into a Prove Problem on Equalities

For deciding whether, for all ABCD, GD
������

 = 2 ED
�����

, we first translate the question into a statement consisting of
equalities:
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First,  note that AB
�����

 =  BC
�����

 =  CD
�����

 =  DA
�����

,  since we start  from a square. Hence, whenever the length of  one of
these four edges occurs, we replace it by AB

�����
.

Now observe that

DF
�����2

= AD
�����2

- AF
�����2

= AB
�����2

- HAB
����� � 2L2

= 3 � 4 AB
�����2

.

and

GD
�����2

= GE
�����2

+ ED
�����2

= HDC
����� � 2 - GD

�����L2
+ HEF

����
- DF

�����L2
= HAB

����� � 2 - GD
�����L2

+ HAB
�����

- DF
�����L2

.

We want to decide whether, under these assumptions, 

GD
�����

= 2 ED
�����

= 2 HEF
����

- DF
�����L = 2 HAB

�����
- DF

�����L.
For abbreviation, let’s write

a = AB
�����

, b = GD
�����

, f = DF
�����

.

Then, what we want to prove is that

"
a,f,b

 
ikjjjjloomnoo f2 = 3 � 4 a2

b2 = Ha � 2 - bL2 + Ha - fL2 Þ Hb = 2 Ha - fLLy{zzzz
where the variables ’a’, ’f’, ’b’ range over the real numbers. However, in fact, we will prove that the theorem is
even true for all complex numbers (with the exception of a=0).

� A Proof by Gröbner Bases

In this easy example, it can be easily verified, by a sequence of simplification steps, that the conclusion is a
consequence  of  the  premises  (with  the  exception  of  the  case  a=0).  However,  for  proceeding  towards  a
general (and completely automatic) proving method for such theorems, let us formulate the proving steps in a
more general setting by saying that the theorem would be proved if we could show that the polynomial 

b - 2 Ha - fL
was in the ideal generated by the polyomials

f2 - 3 � 4 a2

and

b2 - Ha � 2 - bL2 - Ha - fL2 ,

because if this is true then the conclusion polynomial is a linear combination of the two premise polynomials
and, hence, the conclusion polynomial vanishes for all values a, b, f, for which the premise polynomials vanish.

Now,  questions about  polynomial  ideal  membership can  be  answered by  the  Gröbner  bases  method.  (The
Gröbner  bases  theory  and  method  was  introduced  in  [Buchberger  1970].  The  few  notions  and  facts  of
Gröbner bases theory needed in this paper can be found in [Buchberger 1998].)

The  Gröbner  bases  method  by  now  is  implemented  in  all  computer  algebra  systems.  For  example,  in
Mathematica we can execute the necessary steps in the following way: We first compute the Gröbner basis
for the two premise polynomials (w.r.t. to the lexical ordering of the variables ’b’, ’f’, ’a’)
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G = GroebnerBasis@8f2 - 3 � 4 a2 , b2 - Ha � 2 - bL2 - Ha - fL2 <, 8b, f, a<D8-3 a2 + 4 f2 , -2 a2 + a b + 2 a f<
Now, by Gröbner bases theory, for checking whether the conclusion polynomial is in the ideal generated by
the hypotheses polynomials, it suffices to check whether the conclusion polynomials can be reduced to zero
by using the polynomials in the Gröbner basis G. In fact, 

b - 2 Ha - fL
is irreducible modulo G because its leading power product b is neither a multiple of the leading power product
f2  of  the  polynomial  -3 a2 + 4 f2  nor  of  the  leading  power  product  ab  of  the  polynomial  -2 a2 + a b + 2 a f.
(Note that we are working over the pure lexical ordering determined by b>f>a.) 

This reduction could, in principle, also be executed within Mathematica. However, the current implementation of the reduction operation in  Mathematica has 
a bug that results in reporting, errouneously, that b|2(a|f) is reducible modulo the premise polynomials!

Hence,  the  conclusion polynomial  is  not  in  the  ideal  generated by  the  premise polynomials and  we  cannot
conclude that the theorem is true.

However, under the assumption that a¹0, the Gröbner basis G can be brought into the form

G0 = 8-3 a2 + 4 f2 , -2 a + b + 2 f<.
Now we see that, of course, the polynomial

b - 2 Ha - fL
can  be  reduced to  zero  modulo G0.  This  means that  we  have  proved the  following slightly  more  restricted
form of the theorem:

"
a¹0,f,b

 
ikjjjjloomnoo f2 = 3 � 4 a2

b2 = Ha � 2 - bL2 + Ha - fL2 Þ Hb = 2 Ha - fLLy{zzzz.

It is telling to analyze the original variant of the proposition

"
a,f,b

 
ikjjjjloomnoo f2 = 3 � 4 a2

b2 = Ha � 2 - bL2 + Ha - fL2 Þ Hb = 2 Ha - fLLy{zzzz
and to give account why it does not hold for a=0: If a=0 then f must be 0 by the first hypothesis but, since the
second hypothesis reduces to 

b2 = b2 ,

any b satifies the second hypothesis but, then, for a b¹0 the conclusion does not hold!

� A Decision by Gröbner Bases

The  approach in  the  previous  section  gave  us  a  sufficient  condition (expressed in  terms  of  Gröbner  bases
computation  and  reduction)  that  guaranteed  that  the  theorem  was  true.  One  can  go  one  step  further  for
obtaining a sufficient and necessary condition (expressed in terms of Gröbner bases) for deciding whether the
theorem is true. For this we transform the theorem in the following way:

"
a,f,b

 
ikjjjjloomnoo f2 = 3 � 4 a2

b2 = Ha � 2 - bL2 + Ha - fL2 Þ Hb = 2 Ha - fLLy{zzzz
is equivalent to
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Ø $
a,f,b

 

i
k
jjjjjjjjjj

loooomnooooo
f2 = 3 � 4 a2

b2 = Ha � 2 - bL2 + Ha - fL2

b ¹ 2 Ha - fL
y
{
zzzzzzzzzz,

which is equivalent to

Ø $
a,f,b,Ξ

 

i
k
jjjjjjjjjj

loooomnooooo
f2 = 3 � 4 a2

b2 = Ha � 2 - bL2 + Ha - fL2Hb - 2 Ha - fLL Ξ = 1

y
{
zzzzzzzzzz,

Now, by one of the fundamental properties of Gröbner bases, this question can be decided by computing the
(reduced) Gröbner basis

H = GroebnerBasis@8f2 - 3 � 4 a2 , b2 - Ha � 2 - bL2 - Ha - fL2 , Hb - 2 Ha - fLL Ξ - 1<, 8Ξ, b, f, a<D8a, f2 , -1 + b Ξ + 2 f Ξ<
and to check whether or not this Gröbner basis is equal to {1}. Since this is not the case, we know that the
above version of the theorem is not true. (Note that this is much more than saying that we cannot prove that
the above version of the theorem is true!)

Now we do the same for the slightly restricted version of the theorem:

"
a¹0,f,b

 
ikjjjjloomnoo f2 = 3 � 4 a2

b2 = Ha � 2 - bL2 + Ha - fL2 Þ Hb = 2 Ha - fLLy{zzzz
is equivalent to

Ø $
a,f,b

 

i
k
jjjjjjjjjjjjjjj

looooooom
nooooooo

a ¹ 0

f2 = 3 � 4 a2

b2 = Ha � 2 - bL2 + Ha - fL2

b ¹ 2 Ha - fL
y
{
zzzzzzzzzzzzzzz,

which is equivalent to

Ø $
a,f,b,Ξ,Η

 

i
k
jjjjjjjjjjjjjjj

looooooom
nooooooo

a Η = 1

f2 = 3 � 4 a2

b2 = Ha � 2 - bL2 + Ha - fL2Hb - 2 Ha - fLL Ξ = 1

y
{
zzzzzzzzzzzzzzz,

Now, again, this question can be decided by computing the (reduced) Gröbner basis

J = GroebnerBasis@8a Η - 1, f2 - 3 � 4 a2 , b2 - Ha � 2 - bL2 - Ha - fL2 , Hb - 2 Ha - fLL Ξ - 1<, 8Ξ, Η, b, f, a<D81<
and  to  check  whether  or  not  this  Gröbner  basis  is  equal  to  {1}.  Since  this  is  the  case,  we  know  that  the
restricted version of the theorem is true.

� Another Example of Origami Proving by Gröbner Bases

� An Alternative Construction of an Equilateral Triangle

We start the construction in the same way as in the first example:
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Now we do the same construction once more, this time starting from the edge AB
�����

, yielding a point H instead
of G.

Then the assertion is that AGH is an equilateral triangle, i.e. that AG
�����

= GH
������

. For this it suffices to prove that  

a2 + b2 = 2 Ha - bL2 .

� The Translation into a Prove Problem on Equalities

By translation into the algebraic language of equalities, the following theorem has to be proved:

"
a,f,b

 

i
k
jjjjjjjjjj

loooomnooooo
a ¹ 0

f2 = 3 � 4 a2

b2 = Ha � 2 - bL2 + Ha - fL2

Þ Ha2 + b2 = 2 Ha - bL2 Ly
{
zzzzzzzzzz

Here, we already added the restriction 

a ¹ 0.

� Decision of the Problem by the Gröbner Bases Method

"
a,f,b

 

i
k
jjjjjjjjjj

loooomnooooo
a ¹ 0

f2 = 3 � 4 a2

b2 = Ha � 2 - bL2 + Ha - fL2

Þ Ha2 + b2 = 2 Ha - bL2 Ly
{
zzzzzzzzzz

is equivalent to

Ø $
a,f,b

 

i
k
jjjjjjjjjjjjjjjj

loooooooom
noooooooo

a ¹ 0

f2 = 3 � 4 a2

b2 = Ha � 2 - bL2 + Ha - fL2

a2 + b2 ¹ 2 Ha - bL2

= y
{
zzzzzzzzzzzzzzzz,

which is equivalent to

Ø $
a,f,b,Ξ,Η

 

i
k
jjjjjjjjjjjjjjjj

loooooooom
noooooooo

a Η - 1 = 0

f2 = 3 � 4 a2

b2 = Ha � 2 - bL2 + Ha - fL2Ha2 + b2 - 2 Ha - bL2 L Ξ = 1

= y
{
zzzzzzzzzzzzzzzz.

Now, again, this question can be decided by computing the (reduced) Gröbner basis
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K = GroebnerBasis@8a Η - 1, f2 - 3 � 4 a2 , b2 - Ha � 2 - bL2 - Ha - fL2 , Ha2 + b2 - 2 Ha - bL2 L Ξ - 1<, 8Ξ, Η, b, f, a<D81<
K is {1}. This shows that the theorem is true.

� A General Decision Algorithm for the Origami Proving Problem and Its 
Implementation in Mathematica / Theorema 

� The Decision Problem

Once again we want to emphasize that, of course, for the two easy example theorems above the proof can be
established straightforwardly by high|school mathematics. Similarly, the proof of  many such theorems could
be  given  by  ad  hoc  invention  of  appropriate  proof  steps.  The  point  is  that  we  want  to  establish  a  general
algorithm which, for any such proposition about the result of a sequence of origami steps, decides whether or
not the proposition is true and, in case it is true, establishes a proof. The algorithm can already be read from
the two easy examples above. 

First of all, let us specify which class of propositions are in the scope of the decision algorithm:

It  is  clear  that  the  result  of  any  of  the  admissible  six  origami  operations  (according  to  the  origami  axiom
system by  Huzita)  can be described by  a  polynomial equality in  the coordinates of  the points in  an origami
construction. Now let O be the class of propositions of the following structure:

"
a,b,c,...

HC Þ Hp = qLL
where  C  is  a  conjunction  of  equalities  between  arithmetical  expressions  in  numerical  constants  and  the
variables  a,  b,  c,  ...  that  denote  coordinates  of  points  corresponding  to  the  operations  in  an  origami
construction and p and q are also arithmetical expressions.

Thus for example, the above two theorems are in O  but the proposition stating that the second construction
above yields the equilateral triangle of maximum length inscribed in the initial square is not in O because the
maximum  operation  cannot  be  described  in  a  purely  equational  theory.  Still,  O  is  a  very  big  class  of
statements that includes a huge class of interesting properties of the result of origami constructions.

In fact, it is known, see e.g. [Buchberger 1998]  that the following class B of statements that contains O as a
proper subclass admits a decision algorithm: B is the class of statements of the form

"
a,b,c,...

 M

or of the form

$
a,b,c,...

 M

where M is a Boolean combination of equalities between arithmetical expressions in numerical constants and
the variables a, b, c, ... We give a short summary of the decision algorithm for B in the next section.

� A Decision Algorithm for the Class B

ã The Algorithm

The decision algorithm, roughly, proceeds as follows:
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é Bring all equalities in M into the form p=0 where p is a polynomial.

é By de Morgan, bring the formula always into the form

"
a,b,c,...

 N.

é Then  bring  M  into  conjunctive  normal  form  and  distribute  "  over  the  conjunctive  parts.  Treat
each of the parts 

"
a,b,c,...

 P

separately. Note that P is now a disjunction 

E1 = 0 Þ ... Þ Ek = 0 Þ N1 ¹ 0 Þ ... Þ Nm ¹ 0

of equalities and negations of equalities.

é Now

"
a,b,c,...

HE1 = 0 Þ ... Þ Ek = 0 Þ N1 ¹ 0 Þ ... Þ Nm ¹ 0L
is transformed into

Ø $
a,b,c,...

HE1 ¹ 0 ß ... ß Ek ¹ 0 ß N1 = 0 ß ... ß Nm = 0L
and further on to

Ø $
a,b,c,...,Ξ1 ,¼,Ξk

HE1  Ξ1 - 1 = 0 ß ... ß Ek  Ξk - 1 = 0 ß N1 = 0 ß ... ß Nm = 0L
with new variables Ξ1 , ¼, Ξk  ("Rabinovich trick").

é Now,  the  latter  question  is  a  question  on  the  solvability  of  a  system  of  polynomial  equations,
which  can  be  decided  by  computing  the  reduced  Gröbner  basis  of
{E1  Ξ1 - 1, ... , Ek  Ξk - 1, N1 , ... , Nm }.  Namely,  one  of  the  fundamental  theorems  of  Gröbner
bases theory tells us that this Gröbner basis will be {1} iff the system is unsolvable (i.e. has no
common zeros), which was first proved in [Buchberger 1970], see also [Buchberger 1998].

ã The Implementation in Theorema 

The  decision  algorithm  is  already  implemented  within  Theorema  [Buchberger  et  al.  2000]  using  the
implementation  of  the  author’s  Gröbner  bases  algorithm in  Mathematica  [Wolfram  1999].  In  the  Theorema
implementation, one can call the algorithm by, first, specifying the formula which one wants to prove

FormulaA"Origami", any@a, f, bD,
"

b, f ,a
Ia ¹ 0 ì Ia2 - f2 - H a�����2 L2 = 0M ì Ib2 - H a�����2 - bL2 - Ha - f L2 = 0M Þ H2 * Ha - f L = bLM "H1L" E

and then calling the Gröbner bases prover by

Prove@Formula@"Origami Theorem"D, using ® 8<, by ® GroebnerBasesProverD.
The result will be the following proof (including the intermediate English explanations), which will be stored in
an extra Mathematica notebook:

Prove:
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(Formula (Origami): (1))

"
b, f ,a

Ia ¹ 0 ì Ia2 - f2 - H a�����2 L2 = 0M ì Ib2 - H a�����2 - bL2 - Ha - f L2 = 0M Þ H2 * Ha - f L = bLM ,

with no assumptions.

Proved.

The Theorem is proved by the Groebner Bases method.      

      The formula in the scope of the universal quantifier is transformed into an equivalent formula that is a 
conjunction of disjunctions of equalities and negated equalities. The universal quantifier can then be 
distributed over the individual parts of the conjunction. By this, we obtain:

Independent proof problems:

(Formula (Origami): (1).1)

"
a,b,f

 HHa = 0L ê H2 * a + H-bL + H-2L * f = 0L ê 3�����4 * a2 + H- f2 L ¹ 0 ê -5��������4 * a2 + a * b + 2 * a * f + H- f2 L ¹ 0L
 

We now prove the above individual problems separately:

Proof of (Formula (Origami): (1).1):

This proof problem has the following structure:

(Formula (Origami): (1).1.structure)

"
a,b,f

HPoly3@1D ¹ 0 Þ Poly3@2D ¹ 0 Þ HPoly3@3D = 0L Þ HPoly3@4D = 0LL ,

where

Poly3@1D = 3�����4 * a2 + H- f2 L
Poly3@2D = -5��������4 * a2 + a * b + 2 * a * f + H- f2 L
Poly3@3D = a
Poly3@4D = 2 * a + H-bL + H-2L * f

(Formula (Origami): (1).1.structure) is equivalent to

(Formula (Origami): (1).1.implication)

"
a,b,f

HHPoly3@1D = 0L ß HPoly3@2D = 0L Þ HPoly3@3D = 0L Þ HPoly3@4D = 0LL .

(Formula (Origami): (1).1.implication) is equivalent to

(Formula (Origami): (1).1.not−exists)

±
a,b,f

HHHPoly3@1D = 0L ß HPoly3@2D = 0LL ß HPoly3@3D ¹ 0 ß Poly3@4D ¹ 0LL .

By introducing the slack variable(s)

{Ξ7, Ξ8}

(Formula (Origami): (1).1.not|exists) is transformed into the equivalent formula
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(Formula (Origami): (1).1.not−exists−slack)

±
a,b,f,Ξ7,Ξ8

HHHPoly3@1D = 0L ß HPoly3@2D = 0LL ß 8-1 + Ξ7 Poly3@3D = 0, -1 + Ξ8 Poly3@4D = 0<L .

Hence, we see that the proof problem is transformed into the question on whether or not a system of 
polynomial equations has a solution or not. This question can be answered by checking whether or not 
the (reduced) Groebner basis of8Poly3@1D, Poly3@2D, -1 + Ξ7 Poly3@3D, -1 + Ξ8 Poly3@4D<
is exactly {1}.                  

Hence, we compute the Groebner basis for the following polynomial list:

9-1 + a Ξ7, -1 + 2 a Ξ8 + H-1L b Ξ8 + H-2L f Ξ8, 3 a2
�����������4 + H-1L f2 , -5 a2

��������������4 + a b + 2 a f + H-1L f2 =
The Groebner basis:81<
Hence, (Formula (Origami): (1).1) is proved.

Since all of the individual subtheorems are proved, the original formula is proved.

á

Note  that  the  proof  automatically  generated  by  the  Gröbner  bases  prover  of  Theorema  also  contains  the
explanation of  the method and does not only give the "yes" or  "no" decision. This is  desirable for didactical
purposes so that each call of the prover for a concrete example proposition also explains the general strategy
in  the  concrete  example.  We  do  not  show,  in  the  proof  text,  the  individual  steps  of  the  Gröbner  bases
computation, which corresponds to the didactic and logical principle that a proof in some area of mathematics
should only contain the proof steps on the highest level, specific to the particular area, and should leave out
the details on lower levels, which at this stage are considered to be "routine". In fact, in our case, the actual
computation of  the  Gröbner  basis  could  consist  of  thousands and  even  millions of  steps  depending on  the
proposition to be decided.

� An Implementation of Origami Proving in Theorema / Mathematica

Combining  the  Origami  Simulation  Software  by  [Ida  2003],  which  is  written  in  Mathematica,  the
implementation of the Gröbner bases algorithm of [Buchberger 1970] in Mathematica, the implementation of
the  above  decision  algorithm  in  Theorema  [Buchberger  et  al.  2000]  (which  is  also  implemented  in
Mathematica), and a new tool in Theorema, which can translate geometrical descriptions of configurations into
the  corresponding  polynomial  equalites,  developed  in  the  recent  PhD  thesis  [Robu  2002]  and  also
implemented in Mathematica, we will soon be able to offer a coherent tool written in Mathematica that can

é simulate arbitrary origami sequences both algebraically and graphically,

é translate  conjectures  about  properties  of  the  results  of  origami  sequences into  statements  in  the
form of universally quantified boolean combinations of polynomial equalities,

é decide  the  truth  of  such  conjectures  and  produce  a  proof  or  refutation  of  the  conjecture  fully
automatically.
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� Approaches to the Origami Solving Problem

We did not yet study the Origami solving problem, which asks for finding a sequence of origami steps that will
lead  to  a  origami  object  with  a  desired  property.  However,  it  is  clear  that  this  problem is  analogous to  the
problem of  finding geometric  objects  with  desired properties using  only  compass  and  ruler.  Note,  however,
that  the  two  problems  − origami  construction  and  compass  /  ruler  construction − are  not  equivalent.  In  fact
origami  operations are  more  powerful  than compass  /  ruler  operations. For  example,  trisection of  angles is
possible  by  origami  but  not  by  compass  /  ruler.  However,  in  analogy  to  the  compass  /  ruler  construction
problem, Galois theory suggests itself as the main approach to solving the origami construction problem.
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