A Quasi-Static Boundary Value Problem in Multi-Surface Elastoplasticity: Part 1 - Analysis

Martin Brokate *, Carsten Carstensen ${ }^{\dagger}$, Jan Valdman ${ }^{\ddagger}$

Abstract

The quasi-static evolution of an elastoplastic body with a multi-surface constitutive law of linear kinematic hardening type allows the modeling of curved stress-strain relations. It generalizes classical small-strain elastoplasticity from one to various plastic phases. This paper presents the mathematical models and proves existence and uniqueness of the solution of the corresponding initial-boundary value problem. The analysis involves an explicit estimate for the effective ellipticity constant.

Keywords Variational inequalities, elastoplasticity, kinematic hardening, rate independence, multi-surface model, Prandtl-Ishlinskii model
AMS Subject Classification 47J40, 49J40, 74C05.

1 Introduction

In this two-part article we consider the quasi-static initial-boundary value problem for small strain elastoplasticity with a multi-surface constitutive law of linear kinematic hardening type. The main goal is the construction and error analysis of a discrete solution method which takes care of the multi-surface aspect of the constitutive law. This will be done in the second part. In the first part, we present the precise formulation of the initial-boundary value problem and prove existence and uniqueness of its solution. Indeed, the existence of such solutions in the quasi-static case has been obtained by Visintin [Vis94, chapter VII. He proves first that the dynamic problem has a unique solution, and then considers the quasi-static case as a singular limit. Our approach differs from his in that we use the functional framework of [HR99] which in the case of a single yield surface has been already used extensively for numerical approximation and analysis HR95, HR99. In particular, we also derive an estimate for the ellipticity constant whose size is critical for the performance of numerical methods based on the variational formulation.

[^0]
2 The Constitutive Law

The constitutive law furnishes the relationship between the stress tensor σ and the strain tensor ε. The classical law of kinematic hardening goes back to Melan Mel38 and Prager [Pra49]. It is local in the sense that any given material point x it involves only the time histories $\sigma=\sigma(t)$ and $\varepsilon=\varepsilon(t)$ at that point. It is given by the following system of equations and an evolution variational inequality:

$$
\begin{align*}
& \varepsilon=e+p \\
& \sigma=\sigma^{b}+\sigma^{p} \tag{1}\\
& \sigma=\mathbb{C} e \tag{2}\\
& \sigma^{b}=\mathbb{H} p \tag{3}\\
& \sigma^{p} \in Z, \quad \dot{p}:\left(\tau-\sigma^{p}\right) \leq 0 \quad \text { for all } \tau \in Z . \tag{4}
\end{align*}
$$

The equation (1) represents the additive decomposition of the strain ε into its elastic part e and its plastic part p as well as of the stress σ into the backstress σ^{b} and the plastic stress σ^{p}. The equation (2) denotes a linear elastic law, in the isotropic case one has

$$
\begin{equation*}
\mathbb{C} \varepsilon=2 \mu \varepsilon+\lambda(\operatorname{tr} \varepsilon) \mathbb{I}, \tag{5}
\end{equation*}
$$

where the (positive) coefficients μ and λ are called Lamé coefficients. Here \mathbb{I} denotes the second order identity tensor (an identity matrix) and $\operatorname{tr}: \mathbb{R}^{d \times d} \rightarrow \mathbb{R}$ defines the trace of a matrix, $\operatorname{tr} \varepsilon:=\sum_{j=1}^{d} \varepsilon_{j j}$, for $\varepsilon \in \mathbb{R}^{d \times d}$, where d is the problem dimension. Equation (3) couples the backstress σ^{b} and the plastic strain p through a linear mapping with a positive definite hardening matrix \mathbb{H}. For this reason, the model (1)-(4) is also called linear kinematic hardening. A typical choice will be $\mathbb{H}=h \mathbb{I}$, where $h>0$ is a hardening coefficient. Variational inequality (4) formalizes the Prandtl-Reuß normality rule, also called the principle of maximal dissipation. The set $Z \subset \mathbb{R}_{s y m}^{d \times d}$ describes the admissible (plastic) stresses, its boundary ∂Z is called the yield surface. We will exclusively use the standard von Mises cylinder with yield stress σ^{y}

$$
\begin{equation*}
Z=\left\{\sigma \in \mathbb{R}_{s y m}^{d \times d}:\|\operatorname{dev} \sigma\| \leq \sigma^{y}\right\} . \tag{6}
\end{equation*}
$$

Here,

$$
\begin{equation*}
\|a\|^{2}=a: a, \quad a: b=\sum_{i, j=1}^{d} a_{i j} b_{i j} \tag{7}
\end{equation*}
$$

defines the (Frobenius) norm and the corresponding scalar product, and the deviator of σ is defined as $\operatorname{dev} \sigma:=\sigma-\frac{1}{d}(\operatorname{tr} \sigma) \mathbb{I}$. The decomposition

$$
\begin{equation*}
\mathbb{R}_{s y m}^{d \times d}=X_{D} \times X_{I}, \quad X_{D}=\{\sigma: \operatorname{tr} \sigma=0\}, \quad X_{I}=\{t \mathbb{I}: t \in \mathbb{R}\} \tag{8}
\end{equation*}
$$

is orthogonal with respect to the scalar product (7) and, according to (8), dev : $\mathbb{R}_{s y m}^{d \times d} \rightarrow X_{D}$ represents the orthogonal projection. The following lemma reformulates the variational inequality (4) as a variational inequality with a dissipation function \mathcal{D} (see HR99, page 90).

Lemma 1. Let $\left(\dot{p}, \sigma^{p}\right) \in \mathbb{R}_{s y m}^{d \times d} \times \mathbb{R}_{s y m}^{d \times d}$. Then

$$
\begin{equation*}
\sigma^{p} \in Z, \quad \dot{p}:\left(\tau-\sigma^{p}\right) \leq 0 \quad \text { for all } \tau \in Z \tag{9}
\end{equation*}
$$

together with $\operatorname{tr} \dot{p}=0$ hold if and only if

$$
\begin{equation*}
\sigma^{p}:(q-\dot{p}) \leq \mathcal{D}(q)-\mathcal{D}(\dot{p}) \quad \forall q \in \mathbb{R}_{s y m}^{d \times d} \tag{10}
\end{equation*}
$$

where $\mathcal{D}: \mathbb{R}_{s y m}^{d \times d} \rightarrow \mathbb{R} \cup\{\infty\}$,

$$
\mathcal{D}(q)= \begin{cases}\sigma^{y}\|q\| & \text { if } \operatorname{tr} q=0 \tag{11}\\ +\infty & \text { otherwise }\end{cases}
$$

Proof. (\Rightarrow) We rewrite (9) as

$$
\sigma^{p}:(q-\dot{p}) \leq \sigma^{p}: q-\tau: \dot{p} \quad \forall q \in \mathbb{R}_{s y m}^{d \times d}, \forall \tau \in Z
$$

Setting $\tau=\sigma^{y} \frac{\dot{p}}{\|\dot{p}\|}$ if $\dot{p} \neq 0$, we obtain

$$
\begin{equation*}
\sigma^{p}:(q-\dot{p}) \leq \sigma^{p}: q-\mathcal{D}(\dot{p}) \quad \forall q \in \mathbb{R}_{s y m}^{d \times d} \tag{12}
\end{equation*}
$$

which obviously holds also for $\dot{p}=0$. Furthermore, if $\operatorname{tr} q=0$ then

$$
\sigma^{p}: q=\operatorname{dev} \sigma^{p}: q \leq\left\|\operatorname{dev} \sigma^{p}\right\|\|q\| \leq \sigma^{y}\|q\|=\mathcal{D}(q)
$$

which together with (12) proves (10).
(\Leftarrow) From (10) it immediately follows that $\operatorname{tr} \dot{p}=0$. Setting $q=2 \dot{p}$ in 10 it follows that $\operatorname{dev} \sigma^{p}: \dot{p}=\sigma^{p}: \dot{p} \leq \mathcal{D}(\dot{p})$, so for all q with $\operatorname{tr}(q)=0$ we have $\operatorname{dev} \sigma^{p}: q=\sigma^{p}: q \leq \mathcal{D}(q)$, thus $\left\|\operatorname{dev} \sigma^{p}\right\| \leq \sigma^{y}$, i.e. $\sigma^{p} \in Z$. On the other hand, $q=0$ yields $-\sigma^{p}: \dot{p} \leq-\mathcal{D}(\dot{p})$, so for any $\tau \in Z$ we get

$$
\dot{p}:\left(\tau-\sigma^{p}\right) \leq \tau: \dot{p}-\mathcal{D}(\dot{p}) \leq\left(\|\tau\|-\sigma^{y}\right)\|\dot{p}\| \leq 0
$$

The standard model of linear kinematic hardening as described above introduces essentially one additional internal state variable of tensor type, the plastic strain p, whose evolution is governed by (4). In particular, $\dot{p}(t) \neq 0$ only if $\sigma^{p} \in \partial Z$. More complicated models for the constitutive law involve additional surfaces and internal state variables. We treat here a specific model which goes back in the 1D case to Prandtl [Pra28] and Ishlinskii [Ish54 and in the multidimensional case to Besseling [Bes58] and Iwan [Iwa66]. The model discussed here is the one called Prandtl-Ishlinskii model of play type [Vis94, Kre96] with finitely many surfaces, whose rheological structure is depicted in Figure 1. The plastic strain p is decomposed as

$$
\begin{equation*}
p=\sum_{r \in I} p_{r}, \quad I=\{1, \ldots, M\} \tag{13}
\end{equation*}
$$

we have backstresses σ_{r}^{b},

$$
\sigma_{r}^{b}=\mathbb{H}_{r} p_{r}, \quad r \in I
$$

Figure 1: Prandtl-Ishlinskii model of play type.
and plastic stresses σ_{r}^{p}

$$
\sigma=\sigma_{r}^{b}+\sigma_{r}^{p}, \quad r \in I
$$

and a family of a variational inequalities

$$
\begin{equation*}
\sigma_{r}^{p} \in Z, \quad \dot{p}_{r}:\left(\tau_{r}-\sigma_{r}^{p}\right) \leq 0 \quad \forall \tau_{r} \in Z_{r}, r \in I, \tag{14}
\end{equation*}
$$

with convex restrictions $Z_{r}, r \in I$. If one wants to have infinitely many surfaces, a natural way to do this is to replace (13) by

$$
\begin{equation*}
p=\int_{I} p_{r} \mathrm{~d} \mu(r), \tag{15}
\end{equation*}
$$

where μ is a (finite) measure on some set I. In that case, (14) represents an infinite system of variational inequalities.

3 The Boundary Value Problem

The elastoplastic continuum is assumed to occupy a bounded domain $\Omega \subset \mathbb{R}^{d}$, with a Lipschitz boundary $\Gamma=\partial \Omega$. The boundary Γ is split into a Dirichlet boundary Γ_{D}, a closed subset of Γ with a positive surface measure, and the remaining (relatively open and possibly empty) Neumann part $\Gamma_{N}:=\Gamma \backslash \Gamma_{D}$. We pose essential and static boundary conditions, namely

$$
u=0 \quad \text { on } \Gamma_{D} \quad \text { and } \quad \sigma \cdot n=g \quad \text { on } \Gamma_{N},
$$

where g is a given applied surface force and n denotes the outer normal to the boundary Γ_{N}. Our analysis will be restricted to the study of a boundary value problem defined in these functional spaces:

$$
\begin{aligned}
& H_{D}^{1}(\Omega)=\left\{v \in H^{1}(\Omega)^{d} \mid v=0 \text { on } \Gamma_{D}\right\}, \\
& Q=\left\{q: q \in \operatorname{dev} \mathbb{R}_{s y m}^{d \times d}, q_{i j} \in L^{2}(\Omega)\right\},
\end{aligned}
$$

where $H^{1}(\Omega)$ and $L^{2}(\Omega)$ are the usual Sobolev and Lebesgue spaces. The equilibrium between external and internal forces in the quasi-static case is given by

$$
\begin{equation*}
\operatorname{div} \sigma(x, t)+f(x, t)=0, \quad x \in \Omega, t \in(0, T) \tag{16}
\end{equation*}
$$

With the relation

$$
\begin{equation*}
\varepsilon(v)=\frac{1}{2}\left(\frac{\partial v_{i}}{\partial x_{j}}+\frac{\partial v_{j}}{\partial x_{i}}\right), \tag{17}
\end{equation*}
$$

the variational formulation of (16) becomes

$$
\begin{equation*}
\int_{\Omega} \sigma: \varepsilon(v) \mathrm{d} x=\int_{\Omega} f \cdot v \mathrm{~d} x+\int_{\Gamma_{N}} g \cdot v \mathrm{~d} S(x), \tag{18}
\end{equation*}
$$

valid for all $t \in[0, T]$ and all $v \in H_{D}^{1}(\Omega)$. According to Lemma 1 , we express the constitutive law by the form given in (10)

$$
\begin{equation*}
\sigma_{r}^{p}:\left(q_{r}-\dot{p}_{r}\right) \leq \mathcal{D}_{r}\left(q_{r}\right)-\mathcal{D}_{r}\left(\dot{p}_{r}\right) \quad \forall q_{r} \in Q, r \in I, \tag{19}
\end{equation*}
$$

where (note that we only consider arguments with zero trace here)

$$
\begin{equation*}
\mathcal{D}_{r}\left(q_{r}\right)=\sigma_{r}^{y}\left\|q_{r}\right\| . \tag{20}
\end{equation*}
$$

The integral form of (19) over Ω is given by

$$
\begin{equation*}
\int_{\Omega} \sigma_{r}^{p}:\left(q_{r}-\dot{p}_{r}\right) \mathrm{d} x \leq \int_{\Omega} \mathcal{D}_{r}\left(q_{r}\right) \mathrm{d} x-\int_{\Omega} \mathcal{D}_{r}\left(\dot{p}_{r}\right) \mathrm{d} x . \tag{21}
\end{equation*}
$$

We equivalently replace v by $v-\dot{u}$ in the force equilibrium (18), sum the inequalities (21) over r and subtract (18) to obtain

$$
\begin{align*}
& \left.\int_{\Omega} \sigma:\left(\varepsilon(v)-\sum_{r \in I} q_{r}\right)\right) \mathrm{d} x-\int_{\Omega} \sigma:\left(\varepsilon(\dot{u})-\sum_{r \in I} \dot{p}_{r}\right) \mathrm{d} x \\
& +\sum_{r \in I} \int_{\Omega} \sigma^{b}:\left(q_{r}-\dot{p}_{r}\right) \mathrm{d} x+\sum_{r \in I} \int_{\Omega} \mathcal{D}_{r}\left(q_{r}\right) \mathrm{d} x-\sum_{r \in I} \int_{\Omega} \mathcal{D}_{r}\left(\dot{p}_{r}\right) \mathrm{d} x \tag{22}\\
& -\int_{\Omega} f \cdot(v-\dot{u}) \mathrm{d} x-\int_{\Gamma_{N}} g \cdot(v-\dot{u}) \mathrm{d} S(x) \geq 0 .
\end{align*}
$$

In the case of a single yield surface, i.e. $I=\{1\}$, this corresponds to the primal variational formulation discussed in Section 7.1 of HR99]. Next, we eliminate $\sigma=$ $\mathbb{C} e=\mathbb{C}(\varepsilon(u)-p), \sigma^{b}=\mathbb{H}_{r} p_{r}$ and collect the remaining unknowns as a vector of functions

$$
w=\left(u,\left(p_{r}\right)_{r \in I}\right) .
$$

We consider w as an element of the Hilbert space (the scalar product will be defined below)

$$
\begin{equation*}
\mathcal{H}=H_{D}^{1}(\Omega) \times \prod_{r \in I} Q \tag{23}
\end{equation*}
$$

Writing $z=\left(v,\left(q_{r}\right)_{r \in I}\right)$, we define a bilinear form $a(\cdot, \cdot)$, a linear functional $\ell(\cdot)$ and a nonlinear functional $\psi(\cdot)$ by

$$
\begin{align*}
a: \mathcal{H} \times \mathcal{H} \rightarrow \mathbb{R}, \quad a(w, z)= & \int_{\Omega} \mathbb{C}\left(\varepsilon(u)-\sum_{r \in I} p_{r}\right):\left(\varepsilon(v)-\sum_{r \in I} q_{r}\right) \mathrm{d} x+ \\
& +\sum_{r \in I} \int_{\Omega} \mathbb{H} p_{r}: q_{r} \mathrm{~d} x \\
\ell(t): \mathcal{H} \rightarrow \mathbb{R}, \quad\langle\ell(t), z\rangle= & \int_{\Omega} f(t) \cdot v \mathrm{~d} x+\int_{\Gamma_{N}} g(t) \cdot v \mathrm{~d} S(x) \tag{24}\\
\psi: \mathcal{H} \rightarrow \mathbb{R}, \quad \psi(z)= & \sum_{r \in I} \int_{\Omega} \mathcal{D}_{r}\left(q_{r}\right) \mathrm{d} x .
\end{align*}
$$

From (22) we thus obtain the time-dependent variational inequality

$$
\begin{equation*}
a(w(t), z-\dot{w}(t))+\psi(z)-\psi(\dot{w}(t)) \geq\langle\ell(t), z-\dot{w}(t)\rangle, \quad \text { for all } z \in \mathcal{H} \tag{25}
\end{equation*}
$$

We assume zero initial conditions

$$
\begin{equation*}
w(0)=0 . \tag{26}
\end{equation*}
$$

We thus have arrived at the following formulation of the boundary value problem of quasi-static elastoplasticity.

Problem 1 (BVP of quasi-static multi-surface elastoplasticity).
For given $l \in H^{1}\left(0, T ; \mathcal{H}^{*}\right)$ with $\ell(0)=0$, find $w \in H^{1}(0, T ; \mathcal{H})$ with $w(0)=0$, such that (25) holds for almost all $t \in(0, T)$.

The case of infinitely many surfaces (15) again leads to Problem 1, see Val02. We set

$$
\begin{equation*}
\mathcal{H}=H_{D}^{1}(\Omega) \times L_{\mu}^{2}(I ; Q) \tag{27}
\end{equation*}
$$

where

$$
L_{\mu}^{2}(I ; Q):=\left\{f \mid f: I \rightarrow Q, \int_{r \in I}\left\|f_{r}\right\|_{L^{2}}^{2} \mathrm{~d} \mu(r)<\infty\right\}
$$

The linear functional $\ell(\cdot)$ is defined as in (24). The bilinear form $a(\cdot, \cdot)$, and the nonlinear functional $\psi(\cdot)$ are given by

$$
\begin{align*}
a: \mathcal{H} \times \mathcal{H} \rightarrow \mathbb{R}, \quad a(w, z)= & \int_{\Omega}\left(\mathbb{C}\left(\varepsilon(u)-\int_{I} p_{r} \mathrm{~d} \mu(r)\right):\left(\varepsilon(v)-\int_{I} q_{r} \mu(r)\right) \mathrm{d} x+\right. \\
& +\int_{\Omega} \int_{I} \mathbb{H}_{r} p_{r}: q_{r} \mathrm{~d} \mu(r) \mathrm{d} x \tag{28}\\
\psi: \mathcal{H} \rightarrow \mathbb{R}, \quad \psi(z)= & \int_{\Omega} \int_{I} \mathcal{D}_{r}\left(q_{r}\right) \mathrm{d} \mu(r) \mathrm{d} x .
\end{align*}
$$

4 Existence and Uniqueness

In this section, we will prove the unique solvability of Problem 1. We pose the natural assumption that the elastic and hardening tensors are symmetric and positive definite,

$$
\begin{align*}
& \xi: \mathbb{C} \lambda=\mathbb{C} \xi: \lambda \quad \text { for all } \xi, \lambda \in \mathbb{R}^{d}, \\
& \xi: \mathbb{H}_{r} \lambda=\mathbb{H}_{r} \xi: \lambda \quad \text { for all } \xi, \lambda \in \mathbb{R}^{d}, r=1, \ldots, M, \tag{29}
\end{align*}
$$

and there exist constants $c, h_{r}>0$ such that

$$
\begin{align*}
& \mathbb{C} \xi: \xi \geq c\|\xi\|^{2} \quad \text { for all } \xi \in \mathbb{R}^{d}, \tag{30}\\
& \mathbb{H}_{r} \xi: \xi \geq h_{r}\|\xi\|^{2} \quad \text { for all } \xi \in \mathbb{R}^{d}, r=1, \ldots, M .
\end{align*}
$$

We now state the main theorem of this paper.
Theorem 1. Assume that (29) and (30) hold, let $l \in H^{1}\left(0, T ; \mathcal{H}^{*}\right)$ with $\ell(0)=0$. Then there exists a unique solution $w \in H^{1}(0, T ; \mathcal{H})$ of Problem 1.

We will prove that Theorem 1 is implied by the following theorem, which in turn constitutes a special case of Theorem 7.3 in [HR99].

Theorem 2 ([HR99]). Let \mathcal{H} be a Hilbert space, $a: \mathcal{H} \times \mathcal{H} \rightarrow \mathbb{R}$ be a bilinear form that is symmetric, bounded, and \mathcal{H}-elliptic; $l \in H^{1}\left(0, T ; \mathcal{H}^{*}\right)$ with $\ell(0)=0$; and $\psi: \mathcal{H} \rightarrow \mathbb{R}$ nonnegative, convex, positively homogeneous, and Lipschitz continuous. Then there exists a unique $w \in H^{1}(0, T ; \mathcal{H})$ with $w(0)=0$ which satisfies the variational inequality (25) for almost all $t \in(0, T)$.

In order to prove Theorem 1, we have to prove that the assumptions of Theorem 2 are satisfied. As mentioned above, for a finite index set $I=\{1, \ldots, M\}$ we set

$$
\begin{equation*}
\mathcal{H}=H_{D}^{1}(\Omega) \times \prod_{r=1}^{M} Q \tag{31}
\end{equation*}
$$

The scalar product and the induced norm are given by

$$
(w, z)_{\mathcal{H}}:=(u, v)_{H^{1}}+\sum_{r=1}^{M}\left(p_{r}, q_{r}\right)_{L^{2}}, \quad\|w\|_{\mathcal{H}}^{2}:=(u, u)_{H^{1}}^{2}+\sum_{r=1}^{M}\left(p_{r}, p_{r}\right)_{L^{2}}^{2},
$$

where

$$
\left(p_{r}, q_{r}\right)_{L^{2}}=\int_{\Omega} p_{r}: q_{r} d x, \quad\left\|p_{r}\right\|_{L^{2}}^{2}=\left(p_{r}, p_{r}\right)_{L^{2}}
$$

Proposition 1 (Boundedness of the bilinear form $a(\cdot, \cdot)$).
The bilinear form $a(\cdot, \cdot)$ is bounded in the space \mathcal{H},

$$
\begin{equation*}
|a(w, z)| \leq\left((M+1)\|\mathbb{C}\|+\max _{r=1, \ldots, M}\left\|\mathbb{H}_{i}\right\|\right)\|w\|_{\mathcal{H}}\|z\|_{\mathcal{H}} \tag{32}
\end{equation*}
$$

Proof. We have

$$
\begin{align*}
\mid \int_{\Omega}\left(\mathbb{C}\left(\varepsilon(u)-\sum_{r=1}^{M} p_{r}\right)\right):(\varepsilon(v) & \left.-\sum_{r=1}^{M} q_{r}\right) \mathrm{d} x \mid \\
& \leq\|\mathbb{C}\| \cdot\left\|\varepsilon(u)-\sum_{r=1}^{M} p_{r}\right\|_{L^{2}} \cdot\left\|\varepsilon(v)-\sum_{r=1}^{M} q_{r}\right\|_{L^{2}} . \tag{33}
\end{align*}
$$

Because $\left(\sum_{r=0}^{M} a_{r}\right)^{2} \leq(M+1) \sum_{r=1}^{M} a_{r}^{2}$ in \mathbb{R}, and because $\|\varepsilon(u)\|_{L^{2}} \leq\|u\|_{H^{1}}$, we have

$$
\begin{align*}
\left\|\varepsilon(u)-\sum_{r=1}^{M} p_{r}\right\|_{L^{2}}^{2} \leq & \left(\|\varepsilon(u)\|_{L^{2}}+\sum_{r=1}^{M}\left\|p_{r}\right\|_{L^{2}}\right)^{2} \\
& \leq(M+1)\left(\|\varepsilon(u)\|_{L^{2}}^{2}+\sum_{r=1}^{M}\left\|p_{r}\right\|_{L^{2}}^{2}\right) \leq(M+1)\|w\|_{\mathcal{H}}^{2} \tag{34}
\end{align*}
$$

likewise for the rightmost term in (33). Moreover, we have

$$
\begin{equation*}
\left|\sum_{r=1}^{M} \int_{\Omega} \mathbb{H}_{r} p_{r}: q_{r} \mathrm{~d} x\right| \leq\left(\max _{r=1, \ldots, M}\left\|\mathbb{H}_{r}\right\|\right) \sum_{r=1}^{M}\left\|p_{r}\right\|_{L^{2}}\left\|q_{r}\right\|_{L^{2}} \tag{35}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{r=1}^{M}\left\|p_{r}\right\|_{L^{2}}\left\|q_{r}\right\|_{L^{2}} \leq\left(\sum_{r=1}^{M}\left\|p_{r}\right\|_{L^{2}}^{2}\right)^{\frac{1}{2}}\left(\sum_{r=1}^{M}\left\|q_{r}\right\|_{L^{2}}^{2}\right)^{\frac{1}{2}} \leq\|w\|_{\mathcal{H}}\|z\|_{\mathcal{H}} \tag{36}
\end{equation*}
$$

Putting together (33) - (36), we obtain the assertion.
We now turn to the problem to find an ellipticity constant $c_{e}>0$ satisfying

$$
a(w, w) \geq c_{e}\|w\|_{\mathcal{H}}^{2} \quad \text { for all } w \in \mathcal{H}
$$

We first determine the largest constant $k(M), M \in \mathbb{N}$, such that

$$
\begin{equation*}
\left(x_{0}-\sum_{r=1}^{M} x_{r}\right)^{2}+\sum_{r=1}^{M} x_{r}^{2} \geq k(M) \sum_{r=0}^{M} x_{r}^{2} \tag{37}
\end{equation*}
$$

holds for all $x_{0}, x_{1}, \ldots, x_{M} \in \mathbb{R}$. Indeed, we have

$$
\begin{equation*}
\left(x_{0}-\sum_{r=1}^{M} x_{r}\right)^{2}+\sum_{r=1}^{M} x_{r}^{2}=x^{T} A x \tag{38}
\end{equation*}
$$

where

$$
\begin{equation*}
A=D+a \otimes a, \quad D=\operatorname{diag}(0,1, \ldots, 1), \quad a=(1,-1, \ldots,-1) . \tag{39}
\end{equation*}
$$

Thus, the optimal constant $k(M)$ in (37) is equal to the smallest eigenvalue of A, which we will compute with the aid of the following Lemma.

Lemma 2. Let $D \in \mathbb{R}^{N \times N}$ be a diagonal matrix $D=\operatorname{diag}\left(d_{1}, \ldots, d_{N}\right), d_{j} \neq 0$ for $j=1, \ldots, N$, let $a \in \mathbb{R}^{N}$. Then there holds

$$
\begin{equation*}
\operatorname{det}(D+a \otimes a)=\left(\prod_{j=1}^{N} d_{j}\right)\left(1+\sum_{j=1}^{N} a_{j}^{2} / d_{j}\right) \tag{40}
\end{equation*}
$$

Proof. The assertion follows from the identity

$$
\begin{align*}
\operatorname{det}(D+a \otimes a) & =\operatorname{det}\left(\begin{array}{cc}
D+a \otimes a & -a \\
0 & 1
\end{array}\right)=\operatorname{det}\left(\begin{array}{cc}
D & -a \\
a^{T} & 1
\end{array}\right) \\
& =\operatorname{det}\left(\begin{array}{cc}
D & -a \\
0 & 1+\sum_{j=1}^{N} a_{j}^{2} / d_{j}
\end{array}\right) . \tag{41}
\end{align*}
$$

To see that the second equality holds, for $j=1, \ldots, N$ we multiply the last column

$$
\binom{-a}{1} \quad \text { of } \quad B:=\left(\begin{array}{cc}
D & -a \\
a^{T} & 1
\end{array}\right)
$$

by $-a_{j}$ and added it to the j-th column of B. Similarly, we obtain the third inequality in (41), if for $j=1, \ldots, N$ we multiply the j-th row of B by $-a_{j} / d_{i}$ and add it to the last row of B.

We now determine the smallest eigenvalue $\lambda_{\text {min }}$ of A in (39). By (38), we obviously have $\lambda_{\text {min }}>0$. By Lemma 2 we have, if $\lambda \neq 0,1$,

$$
\begin{equation*}
\operatorname{det}(A-\lambda I)=-\lambda(1-\lambda)^{M}\left(1+\frac{1}{-\lambda}+\frac{M}{1-\lambda}\right) \tag{42}
\end{equation*}
$$

Besides 0 and 1 , the zeroes of 42 are given by $\lambda_{1,2}=1+\frac{M}{2} \pm \frac{1}{2} \sqrt{4 M+M^{2}}$. Thus,

$$
\begin{equation*}
k(M)=\lambda_{\min }=1+\frac{M}{2}-\frac{1}{2} \sqrt{4 M+M^{2}} . \tag{43}
\end{equation*}
$$

Table 1 displays some values of k.

M	k
1	0.3819
2	0.2679
3	0.2087
4	0.1715
5	0.1458
10	0.0839
100	0.0098
1000	$9.9810 \mathrm{e}-4$

Table 1: Values of k for different values of M.
Now we prove the ellipticity of the bilinear form $a(\cdot, \cdot)$. By Korn's inequality,

$$
\begin{equation*}
\int_{\Omega}\|\varepsilon(u)\|^{2} \mathrm{~d} x \geq K\|u\|_{H^{1}} \quad \text { for all } u \in H_{D}^{1}(\Omega) \tag{44}
\end{equation*}
$$

holds for some constant $K=K(\Omega, d)$.

Proposition 2 (Ellipticity of the bilinear form $a(\cdot, \cdot)$).
The bilinear form $a(\cdot, \cdot)$ is \mathcal{H}-elliptic,

$$
\begin{equation*}
a(w, w) \geq\left(k(M) \min \left\{c, h_{1}, \ldots, h_{M}\right\} \min \{1, K(\Omega, d)\}\right)\|w\|_{\mathcal{H}}^{2}, \tag{45}
\end{equation*}
$$

where $k(M)$ is given in (43) and c, h_{r} are given in (30).
Proof. We can bound the integrand in the scalar product $a(w, w)$ from below as

$$
\begin{align*}
& \mathbb{C}\left(\varepsilon(u)-\sum_{r=1}^{M} p_{r}\right):(\varepsilon(u)\left.-\sum_{r=1}^{M} p_{r}\right)+\sum_{r=1}^{M} \mathbb{H}_{r} p_{r}: p_{r} \geq c\left\|\varepsilon(u)-\sum_{r=1}^{M} p_{r}\right\|^{2}+\sum_{r=1}^{M} h_{r}\left\|p_{r}\right\|^{2} \\
& \geq \min \left\{c, h_{1}, \ldots, h_{M}\right\}\left(\left\|\varepsilon(u)-\sum_{r=1}^{M} p_{r}\right\|^{2}+\sum_{r=1}^{M}\left\|p_{r}\right\|^{2}\right) \tag{46}
\end{align*}
$$

The assertion now follows from (37) and Korn's inequality. Note that, if (37) is valid for all scalars $x_{r} \in \mathbb{R}$, it is also valid for all tensors $x_{r} \in \mathbb{R}^{d \times d}$.

The functional

$$
\begin{equation*}
\psi(z)=\sum_{r=1}^{M} \int_{\Omega} \mathcal{D}_{r}\left(q_{r}\right) \mathrm{d} x, \quad \mathcal{D}_{r}\left(q_{r}\right)=\sigma_{r}^{y}\left\|q_{r}\right\|, \tag{47}
\end{equation*}
$$

is a convex, nonnegative and positively homogeneous functional, because \mathcal{D}_{r} has those properties.
Proposition 3 (Lipschitz continuity of the functional $\psi(\cdot)$).
The functional $\psi(\cdot)$ is a Lipschitz continuous functional in the space \mathcal{H} with the Lipschitz constant

$$
\begin{equation*}
L=\left(\max _{r=1, \ldots, M} \sigma_{r}^{y}\right) \operatorname{meas}(\Omega)^{\frac{1}{2}} M^{\frac{1}{2}} . \tag{48}
\end{equation*}
$$

Proof. Let us define $z^{1}=\left(v^{1}, q_{1}^{1}, \ldots, q_{M}^{1}\right), z^{2}=\left(v^{2}, q_{1}^{2}, \ldots, q_{M}^{2}\right)$. Then

$$
\begin{align*}
&\left|\psi\left(z^{1}\right)-\psi\left(z^{2}\right)\right|=\sum_{r=1}^{M}\left|\int_{\Omega} \sigma_{r}^{y}\left(\left\|q_{r}^{1}\right\|-\left\|q_{r}^{2}\right\|\right) \mathrm{d} x\right| \\
& \leq\left(\max _{r=1, \ldots, r} \sigma_{r}^{y}\right) \sum_{r=1}^{M} \int_{\Omega}\left\|q_{r}^{1}-q_{r}^{2}\right\| \mathrm{d} x \tag{49}
\end{align*}
$$

Moreover,

$$
\begin{align*}
\sum_{r=1}^{M} \int_{\Omega}\left\|q_{r}^{1}-q_{r}^{2}\right\| \mathrm{d} x \leq \operatorname{meas}(\Omega)^{\frac{1}{2}} \sum_{r=1}^{M} & \left\|q_{r}^{1}-q_{r}^{2}\right\|_{L^{2}} \\
& \leq \operatorname{meas}(\Omega)^{\frac{1}{2}} M^{\frac{1}{2}}\left(\sum_{r=1}^{M}\left\|q_{r}^{1}-q_{r}^{2}\right\|_{L^{2}}^{2}\right)^{\frac{1}{2}} \tag{50}
\end{align*}
$$

Putting (49) and (50) together, the assertion follows.
We now have shown that all assumptions of Theorem 2 are satisfied in Problem 1. Thus, Theorem 1 is proved.

5 The Case of Infinitely Many Surfaces

The main existence and uniqueness theorem (Theorem 1) can be extended to the case of infinitely many surfaces given by (27) and (28). We present the results corresponding to Propositions 1, 2 and 3 and sketch the changes in the arguments, more details are given in Val02.

Firstly, note that the estimate (34) in the proof of the boundedness of $a(\cdot, \cdot)$ can be modified to

$$
\begin{align*}
\left\|\varepsilon(u)-\int_{I} p_{r} \mathrm{~d} \mu(r)\right\|_{L^{2}}^{2} & \leq 2\left(\|\varepsilon(u)\|_{L^{2}}^{2}+\mu(I) \cdot \int_{I}\left\|p_{r}\right\|_{L^{2}}^{2} \mathrm{~d} \mu(r)\right) \tag{51}\\
& \leq 2 \max \{1, \mu(I)\}\left(\|\varepsilon(u)\|_{L^{2}}^{2}+\|p\|_{L_{\mu}^{2}(I ; Q)}^{2} .\right.
\end{align*}
$$

and consequently the constant $(M+1)$ in Proposition 1 is replaced by $2 \max \{1, \mu(I)\}$, i.e., the following proposition holds.

Proposition 4 (Boundedness of the bilinear form $a(\cdot, \cdot)$, case of infinitely many surfaces).
The bilinear form $a(\cdot, \cdot)$ is bounded in the space \mathcal{H},

$$
\begin{equation*}
a(w, z) \leq\left(2 \max \{1, \mu(I)\}\|\mathbb{C}\|+\sup _{r \in I}\left\|\mathbb{H}_{r}\right\|\right)\|w\|_{\mathcal{H}}\|z\|_{\mathcal{H}} . \tag{52}
\end{equation*}
$$

Secondly, in order to prove the ellipticity of the bilinear form $a(\cdot, \cdot)$ we will determine a constant $k(\mu)$ such that

$$
\begin{equation*}
\left(x_{0}-\int_{I} x_{r} \mathrm{~d} \mu(r)\right)^{2}+\int_{I} x_{r}^{2} \mathrm{~d} \mu(r) \geq k(\mu)\left(x_{0}^{2}+\int_{I} x_{r}^{2} \mathrm{~d} \mu(r)\right) . \tag{53}
\end{equation*}
$$

holds for all $x_{0}, x_{r} \in \mathbb{R}, r \in I, \int_{I} x_{r}^{2} \mathrm{~d} \mu(r)<\infty$. Indeed, applying the argument from [HR99], page 168, the left side of (53) can be bounded from below as follows,

$$
\begin{align*}
& \left(x_{0}-\int_{I} x_{r} \mathrm{~d} \mu(r)\right)^{2}+\int_{I} x_{r}^{2} \mathrm{~d} \mu(r) \\
& =x_{0}^{2}+\left(\int_{I} x_{r} \mathrm{~d} \mu(r)\right)^{2}-2 x_{0}\left(\int_{I} x_{r} \mathrm{~d} \mu(r)\right)+\int_{I} x_{r}^{2} \mathrm{~d} \mu(r) \\
& \geq x_{0}^{2}+\left(\int_{I} x_{r} \mathrm{~d} \mu(r)\right)^{2}-d x_{0}^{2}-\frac{1}{d}\left(\int_{I} x_{r} \mathrm{~d} \mu(r)\right)^{2}+\int_{I} x_{r}^{2} \mathrm{~d} \mu(r) \tag{54}\\
& \geq(1-d)\left(x_{0}\right)^{2}+\left[\left(1-\frac{1}{d}\right) \mu(I)+1\right] \int_{I} x_{r}^{2} \mathrm{~d} \mu(r) .
\end{align*}
$$

Here $d \in(0,1)$ is arbitrary, and we have used the inequality $2 a b \leq d a^{2}+\frac{1}{d} b^{2}$ for all $a, b \in$ \mathbb{R} and the Cauchy-Schwarz inequality

$$
\left(\int_{I} x_{r} \mathrm{~d} \mu(r)\right)^{2} \leq \int_{I} 1 \mathrm{~d} \mu(r) \cdot \int_{I} x_{r}^{2} \mathrm{~d} \mu(r)=\mu(I) \int_{I} x_{r}^{2} \mathrm{~d} \mu(r) .
$$

Now, for all $d \in\left(\frac{\mu(I)}{1+\mu(I)}, 1\right)$ we have $\min \left\{1-d, 1-\mu(I) \frac{1-d}{d}\right\}>0$. Consequently, 53 holds if we set

$$
\begin{align*}
k(\mu) & =\max _{d \in\left(\frac{\mu(I)}{1+\mu(I)}, 1\right)} \min \left\{1-d, 1-\mu(I) \frac{1-d}{d}\right\} \tag{55}\\
& =\frac{1}{2}\left(\sqrt{(\mu(I))^{2}+4 \mu(I)}-\mu(I)\right) .
\end{align*}
$$

The following proposition holds.

Proposition 5 (Ellipticity of the bilinear form $a(\cdot, \cdot)$, case of infinitely many

 surfaces).The bilinear form $a(\cdot, \cdot)$ is \mathcal{H}-elliptic,

$$
\begin{equation*}
a(w, w) \geq\left(k(\mu) \min \left\{c, \inf _{r \in I}\left\{h_{r}\right\}\right\} \min \{1, K(\Omega, d)\}\right)\|w\|_{\mathcal{H}}^{2}, \tag{56}
\end{equation*}
$$

where $k(\mu)$ is given in (55) and c, h_{r} are given in (30).
The extension of the proof of Proposition 3 is straightforward.
Proposition 6 (Lipschitz continuity of the functional $\psi(\cdot)$, case of infinitely many surfaces).
The functional $\psi(\cdot)$ is Lipschitz continuous on \mathcal{H} with the Lipschitz constant

$$
\begin{equation*}
L=\sup _{r \in I}\left\{\sigma_{r}^{y}\right\} \operatorname{meas}(\Omega)^{1 / 2} \mu(I)^{1 / 2} . \tag{57}
\end{equation*}
$$

6 Acknowledgement

The authors are pleased to acknowledge support by the German Research Foundation (DFG) through the Graduiertenkolleg 357 "Effiziente Algorithmen und Mehrskalenmethoden" in Kiel, Germany. The third author would also like to thank the Austrian Science Fund 'Fonds zur Förderung der wissenschaftlichen Forschung (FWF)' for his support under grant SFB F013/F1306 in Linz, Austria.

References

[Bes58] J.F. Besseling. A theory of elastic, plastic and creep deformations of an initially isotropic material showing anisotropic strain-hardening, creep recovery and secondary creep. J. Appl. Mech., 25:529-536, 1958.
[HR95] W. Han and B.D. Reddy. Computational plasticity: the variational basis and numerical analysis. Computer methods in applied mechanics and engineering, pages 283-400, 1995.
[HR99] W. Han and B. Reddy. Plasticity: Mathematical Theory and Numerical Analysis. Springer-Verlag New York, 1999.
[Ish54] A. Ju. Ishlinskii. The general theory of plasticity with linear hardening (in russian). Ukrainian mathematical journal, 6(3), 1954.
[Iwa66] W.D. Iwan. A distributed-element model for hysteresis and its steady state dynamic response. J. Appl. Mech., 33:893-900, 1966.
[Kre96] P. Krejčí. Hysteresis, Convexity and Dissipation in Hyperbolic Equations. GAKUTO International Series, Mathematical Sciences and Applications, 1996.
[Mel38] E. Melan. Zur Plastizität des räumlichen Kontinuums. Ingenieur-Archiv, 9:116-126, 1938.
[Pra28] L. Prandtl. Ein Gedankenmodell zur kinetischen Theorie der festen Körper. ZAMM, 8:85-106, 1928.
[Pra49] W. Prager. Recent developments in the mathematical theory of plasticity. J. Appl. Phys., 9:235-241, 1949.
[Val02] J. Valdman. Mathematical and Numerical Analysis of Elastoplastic Material with Multi-Surface Stress-Strain Relation. PhD thesis, Christian-AlbrechtsUniversität zu Kiel, 2002. published at www.dissertation.de in Berlin, Germany, 2002, ISBN 3-89825-501-8, download: http://www.sfb013.unilinz.ac.at/~jan/plasticity.pdf.
[Vis94] A. Visintin. Differential models of hysteresis. Springer, 1994.

[^0]: *Zentrum Mathematik, TU Munich, Boltzmannstrasse 3, D-85747 Garching, Germany
 ${ }^{\dagger}$ Institute for Applied Mathematics and Numerical Analysis, TU Vienna, Wiedner Hauptstrasse 8-10, A-1040 Vienna, Austria
 ${ }^{\ddagger}$ Special Research Program SFB F013 'Numerical and Symbolic Scientific Computing', Johannes Kepler University Linz, Altenbergerstrasse 69, A-4040 Linz, Austria, email: Jan.Valdman@sfb013.uni-linz.ac.at

