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Abstract. We introduce a straightforward but useful method for computing
indefinite rational matrix products. The method is used to prove a certain
identity involving definite sums and a definite integral.

1. Introduction

Matrix products such as (2) arise in certain problems of applied mathematics.
Our object is to show that indefinite rational matrix products, i.e. indefinite prod-
ucts of square matrices with entries being rational functions, have P-recursive [5]
entries. A function (or sequence) f from N to a field F is said to be P-recursive

over F if there exist polynomials p0(n), . . . , pd(n) ∈ F[n], not all zero, such that

pd(n)f(n + d) + · · · + p0(n)f(n) = 0.

Such sequences are closed under various operations like addition and multiplication.
In the following we show how to compute recurrences for (the entries of) indefinite
rational matrix products algorithmically.

Theorem 1. Let F be a field and let M(x) be a d × d matrix over F(x). Let

A(n) :=
n

∏

k=0

M(k) := M(0)M(1) · · ·M(n)

be its indefinite product. Fix indices 1 ≤ i, j ≤ d. Then aij(n) is P-recursive over F.

For computable F it is possible to compute such a recurrence algorithmically.

Proof. Since

A(n + 1) = A(n)M(n + 1), (1)

the d2 entries of A(n) satisfy a coupled system of linear recurrence equations with
polynomial coefficients. Such a system can always be decoupled [1, 2, 8]. Therefore
each entry satisfies a recurrence in n with coefficients in F[n]. �

It is easy to see that system (1) splits into d independent subsystems consisting
of d equations in d variables. Each subsystem may be decoupled separately.
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2. A Simple Example

Consider the integral
∫

∞

0

e(ir−m)x(1 − e−x)n dx =: u(n) + iv(n),

say, where i2 = −1, n is a natural number, and m and r are real numbers with
m > 0. By expanding the term (1 − e−x)n binomially, it is easy to show that the
integral has real and imaginary parts

u(n) =

n
∑

j=0

(−1)j

(

n

j

)

m + j

(m + j)2 + r2

and

v(n) =

n
∑

j=0

(−1)j

(

n

j

)

r

(m + j)2 + r2
.

On the other hand, integrating the given integral by parts and uncoupling the
resulting recurrences for u(n) and v(n) leads eventually to the following theorem.
Note that these lengthy analytic procedures yield only the first column of A(n) in
Eq. (3). We conjecture the full form of A(n), and use our computer-based method
to prove the entries stated.

Theorem 2. Let n, m, r, u(n), and v(n) be as above. Define

P (n) :=

n
∏

j=0

(

m + n − j r
−r m + n − j

)

. (2)

Then P (n) is invertible and its inverse A(n) := P (n)−1 satisfies

A(n) =
1

n!

(

u(n) −v(n)
v(n) u(n)

)

. (3)

Proof. We prove a11(n) = u(n)/n! only; the proofs of the remaining three parts
of Eq. (3) are analogous. We proceed by induction on n. Clearly, the identity is
true for n = 0 and n = 1. It remains to show that both sides satisfy the same
second-order recurrence.

First, we try to compute a recurrence for a11(n) by Theorem 1. Unfortunately,
the product in (2) is not indefinite: the multiplicand involves the upper bound n.
To make the product indefinite we reparametrize (2) by j = n − k. Then we pull
matrix inversion into the product. Since the matrices in (2) commute, we eventually
obtain the indefinite product

A(n) =

n
∏

k=0

(

m + k r
−r m + k

)

−1

.

By inverting the multiplicand we arrive at

A(n) =

n
∏

k=0

1

(m + k)2 + r2

(

m + k −r
r m + k

)

,

which fits Theorem 1 with d = 2 and F = Q(m, r). In this case recurrence (1) reads

A(n + 1) = A(n)
1

(m + n + 1)2 + r2

(

m + n + 1 −r
r m + n + 1

)

. (4)
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Equation (4) is made up of two independent systems of two recurrences at each
case. Here we have to consider only the one containing the sequences a11(n) and
a12(n):

In[1]:= sys =
�
a11[n + 1] ==

a11[n] (m + n + 1)

(m + n + 1)2 + r2
+

a12[n] r

(m + n + 1)2 + r2
,

a12[n + 1] ==
−a11[n] r

(m + n + 1)2 + r2
+

a12[n] (m + n + 1)

(m + n + 1)2 + r2 � ;

We uncouple this system by Stefan Gerhold’s [3] Mathematica implementation
OreSys1 of Zürcher’s [8] algorithm:

In[2]:= <<OreSys.m

OreSys Package by Stefan Gerhold — c© RISC Linz — V 1.1 (12/02/02)

In[3]:= UncoupleDifferenceSystem[sys, {a11[n], a12[n]}, {a11[n], a12[n]}, n,
Method → Zuercher][[1, 1]]

Out[3]= −
a11[n]

4 + 4m + m2 + 4n + 2mn + n2 + r2
+

(3 + 2m + 2n) a11[1 + n]

4 + 4m + m2 + 4n + 2mn + n2 + r2
− a11[2 + n] == 0

It suffices to show that u(n)/n! satisfies the same recurrence. Indeed, Peter
Paule’s and Markus Schorn’s [4] Mathematica implementation FastZeil2 of Zeil-
berger’s algorithm [6, 7] finds:

In[4]:= <<zb.m

Fast Zeilberger Package by Peter Paule, Markus Schorn, and Axel Riese —
c© RISC Linz — V 3.39 (03/14/03)

In[5]:= Zb � (−1)j(m + j)

j!(n − j)!((m + j)2 + r2)
, {j, 0, n}, n, 2 �

If ‘n’ is a natural number, then:

Out[5]= {− SUM[n] + (3 + 2m + 2n) SUM[1 + n] −
(4 + 4m + m2 + 4n + 2mn + n2 + r2) SUM[2 + n] == 0}

By clearing denominators both recurrences agree. Since our assumption on n, m,
and r guarantees that the leading coefficient

(4 + 4m + m2 + 4n + 2mn + n2 + r2) = (m + n + 2 + ir)(m + n + 2 − ir)

of the recurrence does not vanish for any critical n, the recurrence uniquely de-
termines a sequence for given initial values for n = 0 and n = 1. This proves
a11(n) = u(n)/n! by induction on n. �

Finally, we want to remark that uncoupling the two recurrence equations in our
proof could have been done also by hand without much effort. However, for d > 2,
uncoupling is usually no longer a simple task without computer algebra.

Acknowledgments. We would like to thank Stefan Gerhold for helpful comments.

1available at http://www.risc.uni-linz.ac.at/research/combinat/risc/software/OreSys
2available at http://www.risc.uni-linz.ac.at/research/combinat/risc/software/PauleSchorn
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