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Abstract

The aim of this paper is to construct a modified greedy algorithm

applicable for an ill-posed function approximation problem in presence of

data noise. This algorithm, coupled with a suitable stopping rule, can be

interpreted as an iterative regularization method. We provide a detailed

convergence analysis of the algorithm in presence of noise, and discuss

optimal choices of parameters. As a consequence of this analysis, we also

obtain results on the optimal choice of the network size in presence of

noise.

Finally, we discuss the application of the modified greedy algorithm

to sigmoidal neural networks and radial basis functions, and supplement

the theoretical results by numerical experiments.
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1 Introduction

Function approximation by neural networks and similar techniques has received
growing attention in the last decade, in particular due to its (almost) dimension-
independent approximation properties (cf. [2, 11]). These nonlinear approxi-
mation techniques are not only able to approximate large classes of functions
arbitrarily well as the number of nodes (respectively parameters) tends to infin-
ity, but also yield a sequence of functions fn approximating the original function
f , such that

‖f − fn‖ ≤ Cn− 1
2 , (1.1)
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where n denotes the number of nodes in the network (cf. [2, 7]) and C is a
constant depending on the function f to be approximated only.

The pay off for this nice convergence behaviour is the necessity to compute
global minimizers of rather high-dimensional nonlinear optimization problems
(in particular for large n) in order to obtain the approximating functions fn.
In the context of neural networks, the so-called backpropagation algorithm is
the most popular approach to solve the arising optimization problems (called
training), mainly due to its simple realization. But since the backpropagation
algorithm is a version of the gradient method steepest descent one cannot expect
global convergence.

Moreover, the performance of such iterative algorithms is limited by the
inherent ill-posedness of the training problem (cf. [4]). It has been demonstrated
recently that mainly two sources of ill-posedness exist in the training of neural
networks and similar nonlinear approximation techniques in presence of noise:

• Asymptotic instability: this type of instability arises with number of nodes
tending to infinity. Under typical conditions, data noise can be modelled
as an L2-perturbation, so that (due to compact embedding) the problem
of approximation with respect to Sobolev norms or the supremum norm
is ill-posed (cf. [4] for a detailed discussion).

• Nonlinear instability: this type of instability arises even if the number of
nodes is kept fixed. Due to the nonlinearity it is possible to construct
objective functions which are arbitrary small but correspond to arbitrary
large parameters. We refer to [3] for an illustration of this instability in
the context of fuzzy control and to [10] for sigmoidal neural networks.

In typical applications, the noise is caused by two main reasons, namely by out-
put measurement error and by partially missing measurements in some regions.
The error introduced by the latter effect is usually called generalization error

and analyzed by stochastic methods. In this paper we focus on the first type
of error (output noise), leaving a generalization of our approach to the second
type for future research.

The ill-posedness of the approximation problem raises several key questions,
which are only answered in part at the current stage of research:

• Applicability of standard regularization methods: Tikhonov-type regu-
larization methods have been analysed recently (cf. [6, 3]), but they still
require the solution of nonlinear optimization problems similar to the orig-
inal problem in the training of neural networks.

• Regularizing properties of iterative methods: general results on iterative
methods for ill-posed problems (cf. [8] and the references therein) show
that it is fundamental to choose the stopping index of any iterative method
in dependence of the noise level in order to obtain regularizing effects.
Stopping rules and convergence properties for iterative methods have not
been obtained so far in the context of neural networks and nonlinear ap-
proximation.

• Choice of the number of nodes: the data noise clearly limits the approxi-
mation capabilities and therefore it seems reasonable that the number of
nodes in the network should be chosen in dependence of noise, a topic
hardly treated so far.
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In this paper we investigate an interesting form of iterative methods, so-
called greedy algorithms (also called projection pursuit or convex approximation

techniques, cf. [7, 12]), and investigate there regularizing properties. The main
idea of such algorithms is to increase the number of nodes in the network step
by step (by using suitable convex combination) and to optimize only over the
parameters of the new node, which yields a sequence of low-dimensional opti-
mization problems. The original motivation for such methods is the possibility
to maintain the convergence rate n− 1

2 with low computational effort. As we
shall see below, such methods can also be considered as iterative regularization
methods if an appropriate stopping rule in dependence of the noise is used.
Since the iteration index in greedy algorithms is directly related to the number
of nodes in the network, this also provides an answer to the optimal choice of
the network size in dependence of the noise level.

The paper is organized as follows: first of all some results about convex ap-
proximation are presented in a very general and abstract setting in Section 2,
where we also present the original greedy algorithm. In Section 3 we investi-
gate the influence of noise in the data and present a modification of the greedy
algorithm together with a stopping rule, which leads to convergence of the reg-
ularized approximations. In Section 4, we apply this algorithm to the training
of neural networks and to radial basis function networks, and give results about
convergence properties in stronger Sobolev norms. Finally, the results of nu-
merical experiments are given in Section 5.

2 Greedy Approximation

In this section we give a short review on greedy algorithms for function approxi-
mation and sketch some of the main ideas in their analysis in the noise-free case,
in order to provide some insight fundamental for the later convergence analysis
in presence of noise.

Greedy approximation denotes an iterative algorithm for training a neural
network, which realizes the dimension-independent convergence properties and
can be implemented efficiently. The greedy algorithm we shall present increases
the size of the network step by step by one neuron . In each step of the iteration
we will seek for a neuron that approximates the objective almost optimally (with
respect to the accuracy that can be obtained with the current number of nodes),
therefore we will call this procedure greedy algorithm.

2.1 Preliminaries

In the following let G be a subset of an inner product space H with induced
norm ‖·‖. Furthermore let the elements of G be bounded in the norm by some
constant B, which may be abbreviated as G ⊂ B(0; B), and let co(G) denote
the closure of the convex hull of G.

We assume that the function f to be approximated is an element of co(G).
For the further analysis we define the constant γ via

γ = inf
v∈H

sup
g∈G

(

‖g − v‖2 − ‖f − v‖2
)

. (2.1)

This value is in some sense a measure for the number of different elements of G
that are needed to represent f . If the norm of f is close to the bound B and
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Figure 1: Interpretation of condition (2.1). The objective function is the differ-
ence of the radii of the two dashed circles. In this symmetric case the infimum
is attained for v lying in the center of G.

therefore f is close to the boundary of co(G) the value of γ will be very small.
In this case f can be represented by few different elements of G (cf. Figure 1).

Note that the value of γ can be bounded from above by B2 −‖f‖2
since 0 ∈ H.

The constant γ provides an estimate for the rate of convex approximation,
as we will see in the following lemma [7, Lemma 2]:

Lemma 2.1. Let G ⊂ B(0; B), f ∈ co(G), h ∈ co(G) and let γ be defined

via (2.1). Then the estimate

inf
g∈G

‖f − λh − (1 − λ)g‖2 ≤ λ2 ‖f − h‖2
+ (1 − λ)2γ

holds for λ ∈ [0, 1].

2.2 The Greedy Algorithm

The greedy algorithm in the noise-free case is defined iteratively by the following
procedure (cf. [7]):

Algorithm 2.2 (Greedy Algorithm). Greedy approximation in the noise
free case

Initialization:

Choose a constant M , such that M > γ (as defined in (2.1)).
Choose a positive sequence εk, tending to zero that fulfills

εk ≤ M − γ

k2
for k = 1, 2, . . .

Set f0 = 0.

Iteration:

for k := to maxit do

Find an element gk ∈ G such that

∥

∥

∥

∥

f − k − 1

k
fk−1 −

1

k
gk

∥

∥

∥

∥

2

≤ inf
g∈G

∥

∥

∥

∥

f − k − 1

k
fk−1 −

1

k
g

∥

∥

∥

∥

2

+ εk

4



is fulfilled and define fk as

fk =
k − 1

k
fk−1 +

1

k
gk .

end for

Note that in each step only one element of G is chosen, the other components
of fk are fixed. Nevertheless with the greedy algorithm still the dimension
independent convergence rate is obtained, as can be seen in the next theorem (cf.
[7]):

Theorem 2.3. Let the conditions of Lemma 2.1 be satisfied. Then the ap-

proximating functions fk generated by Algorithm 2.2 fulfill the error estimate

‖f − fk‖2 ≤ M

k
. (2.2)

Proof. The proof is based on an induction argument, using Lemma 2.1 and can
be found in [7]. In Section 3.2 we present a modified version of this proof,
dealing with noisy data.

If instead of f , we only know a perturbed function fδ ∈ L2(Ω) (with noise
of level δ), then Algorithm 2.2 and Theorem 2.3 cannot be applied to the ap-
proximation problem since the perturbation fδ is not necessarily an element of
co(G) anymore. In the next section we shall modify the greedy algorithm so
that data noise can be handled, and investigate the convergence properties of
the modified method.

3 Greedy Algorithms in Presence of Noise

Now we modify the greedy algorithm such that it can be applied also for noisy
data. Since we cannot guarantee that fδ also lies in the closed convex hull of
G, we have to introduce the projection of fδ onto co(G).

The modification that we will finally find for the greedy algorithm from
the section before is a stopping rule, i. e., a rule that tells us after how many
iterations k we have to terminate the algorithm. This is a typical result for
iterative regularization methods (see [8, Chap. 6]), here the iteration index plays
the same role as the regularization parameter α in Tikhonov regularization, the
stopping rule corresponds to the parameter selection method.

In general the stopping rule is a function of the noise level δ, but it may also
depend on the noisy data fδ. The rule we present is an a-posteriori stopping

rule and is a function of the noise level δ and the projection Pfδ.

3.1 Projection onto the Closed Convex Hull

The projection is defined as the element in co(G) which is closest to fδ. Since
co(G) is by definition convex, this element is unique. We denote the (nonlinear)
operator that maps a function to its projection with P and have the equation

∥

∥fδ − Pfδ
∥

∥ = inf
h∈co(G)

∥

∥fδ − h
∥

∥.
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For function approximation the projection has useful properties which will be
needed later. It should be mentioned that we will need all these properties only
inside the proofs but not in the algorithm. The projection itself never has to be

computed, only the related value γPfδ

(see below) must be estimated.
The orthogonality of fδ − Pfδ (cf. e. g. [15, Chapter 5.3]) to co(G) implies

that elements fδ
n of co(G) that approximate fδ are even better approximations

to Pfδ, i.e.
∥

∥Pfδ − fδ
n

∥

∥ ≤
∥

∥fδ − fδ
n

∥

∥ . (3.1)

As in the noise free case we now define

γPfδ

= inf
v∈H

sup
g∈G

(

‖g − v‖2 −
∥

∥Pfδ − v
∥

∥

2
)

, (3.2)

which is a measure for how many different elements of G have to be used to

represent Pfδ. The value of γPfδ

can be estimated in terms of the constant B,
the norm of f , and the noise level δ via

γPfδ ≤ B2 − (‖f‖ − δ)2. (3.3)

Lemma 2.1 together with an application of the triangle inequality yields:

Corollary 3.1. Let G be as above, γPfδ

defined by equation (3.2) and h be an

element of the convex hull of G. Moreover, let fδ be an arbitrary element of the

Hilbert space H and Pfδ denote its projection onto co(G).
Then the estimate

inf
g∈G

∥

∥fδ − λh − (1 − λ)g
∥

∥

2 ≤ δ2 + λ2
∥

∥Pfδ − h
∥

∥

2
+ (1 − λ)2γPfδ

+ 2δ

√

λ2 ‖Pfδ − h‖2
+ (1 − λ)2γPfδ

(3.4)

holds for all λ ∈ [0, 1].

Observe that the element fδ does not necessarily belong to the closed convex
hull of G but can be chosen arbitrarily in H.

3.2 The Greedy Algorithm for Noisy Data

Now we investigate the behaviour of the algorithm when applied to a function
fδ that is not necessarily in the closed convex hull of G, but whose distance to
the convex hull is limited by the noise level δ. As we shall see below, for data
with noise of level δ the convergence rate O(M

k ) can be obtained if we modify
the choice

εk ≤ M − γ

k2

used in Algorithm 2.2 to

εk ≤ M

k
−
(

δ +

√

k − 1

k2
M +

1

k2
γPfδ

)2

. (3.5)

Note that for δ = 0 these two choices coincide. This yields Algorithm 3.2, where
the iteration is terminated when for the first time the right hand side of (3.5)
becomes negative.
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Algorithm 3.2. Greedy approximation in the case of noisy data

Initialization:

- Choose a positive constant M (see Method 3.4)

- Determine the index k∗ = k∗(M,γPfδ

, δ) at which for the
first time the right hand side of (3.5) becomes negative and
choose a positive sequence εk that fulfills condition (3.5) for
k = 1, . . . , k∗ − 1.

- Set fδ
0 := 0.

Iteration:

for k := 1 to k∗ − 1 do

Find an element gδ
k ∈ G such that

∥

∥

∥

∥

fδ − k − 1

k
fδ

k−1 −
1

k
gδ

k

∥

∥

∥

∥

≤ inf
g∈G

∥

∥

∥

∥

fδ − k − 1

k
fδ

k−1 −
1

k
g

∥

∥

∥

∥

+ εk

is fulfilled and define fk as

fδ
k =

k − 1

k
fδ

k−1 +
1

k
gδ

k .

end for

This modified algorithm maintains the convergence rate O(M
k ) up to the

iteration index where it is terminated, as we shall see in the next theorem.

Theorem 3.3. Let the conditions of Corollary 3.1 be satisfied. Then the ap-

proximating functions fδ
k generated by Algorithm 3.2 fulfill the error estimate

∥

∥f − fδ
k

∥

∥

2 ≤ M

k
for k = 1, . . . , k∗ − 1 . (3.6)

Proof. This proof is a modification of the proof of Theorem 2.3, and is based on
an induction argument, using Corollary 3.1. We first look at the initialization
step k = 1.

• For the step k = 1 we obtain using Corollary 3.1

∥

∥fδ − fδ
1

∥

∥

2 ≤ inf
g∈G

∥

∥fδ − g
∥

∥

2
+ ε1

≤ δ2 + γPfδ

+ 2δ

√

γPfδ + ε1

≤ M

since according to (3.5) ε1 is chosen such that

ε1 ≤ M −
(

δ +

√

γPfδ

)2

holds.
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• Now we inspect the case 1 < k < k∗. We assume that the convergence rate
was preserved up to this step of the iteration, this means that the estimate
∥

∥fδ − fδ
k−1

∥

∥

2
< M

k−1 holds. From (3.1) we know that this estimate remains

valid if we replace fδ with Pfδ.

∥

∥fδ − fδ
k

∥

∥

2 ≤ inf
g∈G

∥

∥

∥

∥

fδ − k − 1

k
fδ

k−1 −
1

k
g

∥

∥

∥

∥

2

+ εk

≤



δ +

√

(

k − 1

k

)2
∥

∥Pfδ − fδ
k−1

∥

∥

2
+

1

k2
γPfδ





2

+ εk

≤
(

δ +

√

k − 1

k2
M +

1

k2
γPfδ

)2

+ εk

≤ M

k

since εk is chosen such that

εk ≤ M

k
−
(

δ +

√

k − 1

k2
M +

1

k2
γPfδ

)2

.

For δ → 0, k∗ → ∞, which implies that the residual at the end of the iteration
tends to 0. On the other hand for k → ∞ the right hand side of (3.5) tends
to −δ2, it becomes negative. Since εk has to be chosen larger than zero, the
algorithm has to terminate after a number of steps, depending on the magnitude

of M , δ and γPfδ

. For a given function fδ also the values of δ and γPfδ

are
fixed, and consequently the iteration index k∗ for which εk becomes negative
and the iteration terminates, depends only on the magnitude of M . In the next
section we show how M can be chosen in an optimal way.

3.3 Optimal Parameter Choices

If we denote the index where ε becomes negative by k∗, then we can estimate
the residual with

∥

∥fδ − fδ
k∗−1

∥

∥

2 ≤ M

k∗ − 1
.

For this reason it is desired to find a combination of M and the corresponding
k∗ such that the right hand side of this equation becomes minimal.

To find this optimal combination (for given values of δ and γPfδ

) we can for
instance use the software system Mathematica. First we look at the zeroes of
equation (3.5) i. e., we investigate the equation

M

k
−
(

δ +

√

k − 1

k2
M +

1

k2
γPfδ

)2

= 0 .

Since this equation is of degree 6 with respect to k and only of degree 2 with
respect to M we will first look for solutions for M and search for the minimum
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with respect to k afterwards. This yields two solutions M1 > M2, of which only
M1 is of interest, since M2 is not a solution for k ≥ 1. The remaining solution
is given as

M1 = g + (2k − 1)δ2k2 + 2δk
3
2

√

g + (k − 1)k2δ2 . (3.7)

For the solution M1 we try to find the optimal value for k, this means we try
to solve the minimization problem

M1(γ
Pfδ

, δ, k)

k
→ min

k
. (3.8)

To find stationary points we differentiate the equation with respect to k and
search for zeroes. Mathematica finds 6 stationary points, from which one is
negative and two others are not real numbers. The remaining 3 stationary

points depend only on the ratio of γPfδ

and δ2, for this reason we define the
positive constant

ν :=

√

γPfδ

δ
(3.9)

to simplify the equations. For small values of ν (exactly for 0 ≤ ν < 2
3
√

3
) two

other solutions become complex numbers and so only a single solution remains.
In general the solution k3 seems to be a maximum of (3.8) and not a minimum,
but we could not prove this.

To abbreviate the formulas for k2 and k3 we define

a = −2 + 27ν2 + 3
√

3ν
√

27ν2 − 4

b =
ν√
6

√

√

√

√

√

−4 − 2 2
1
3

a
1
3

− 2
2
3 a

1
3 + 48 ν2 +

12
√

6 ν (8 ν2 − 1)
√

−2 + 2 2
1
3

a
1
3

+ 2
2
3 a

1
3 + 24 ν2

.

With these auxiliary values we can express the three stationary points as

k1 = ν (3.10a)

k2/3 = 2 ν2 +
ν√
6

√

−2 +
2 2

1
3

a
1
3

+ 2
2
3 a

1
3 + 24 ν2 ∓ b . (3.10b)

As long as ν ≥ 2
3
√

3
all these are positive and real valued. If ν decreases below

this bound then only the solution k1 remains.

Method 3.4. The results of this section lead to the following rule for deter-
mining the constant M in Algorithm 3.2:

- Calculate ν(δ, γPfδ

) as defined in (3.9).

- Compute the 3 different solutions for k and the corresponding values for
Mi via (3.10) and (3.7)

- Choose the index i for which M(ki)
ki

is minimal and set

Mopt := Mi, kopt := ki .
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Observe that the choice of k depends on δ and (via γPfδ

) also on fδ. There-
fore the parameter k = k(δ, f δ) describes an a-posteriori stopping rule. With the
choice for M and k proposed in Method 3.4 the greedy algorithm for noisy data,
Algorithm 3.2 is a regularization method as we will see in the next theorem.

Theorem 3.5. Let M and k be chosen according to Method 3.4. Then for

decreasing noise level also
Mopt

kopt
tends to zero. The convergence rate is given as

Mopt

kopt
= O

(

δ2/3
)

.

Furthermore the approximations fδ
kopt

obtained according to Algorithm 3.2 fulfill

the rates
∥

∥

∥fδ − fδ
kopt

∥

∥

∥ = O
(

δ1/3
)

and
∥

∥

∥f − fδ
kopt

∥

∥

∥ = O
(

δ1/3
)

.

Proof. The first rate can be shown by an asymptotic analysis of the solutions k1

to k3 and the corresponding values for M (see also Figure 10 and the correspond-
ing comments in Section 5.3). The rate for

∥

∥fδ − fδ
k

∥

∥ now follows immediately

from Theorem 3.3 and since
∥

∥f − fδ
∥

∥ ≤ δ the last rate is a consequence of the
triangle inequality.

The stopping rule presented in Method 3.4 cannot be improved if we use
the estimate (3.4), but for special architectures it might be possible to obtain
a sharper estimate than (3.4) and consequently a better stopping criterion.
Deriving such estimates is one focus of future work.

4 Applications

In this section we investigate applications to two important approximation
schemes, namely ridge construction type neural networks and radial basis func-
tions. Since many properties are similar for these two approximation schemes
we will state our results such, that they are valid for both methods. We do this
by introducing the activation function Φ. A “feed forward neural network with
one hidden layer” can be represented by

fn =
n
∑

i=1

ciσ(aT
i x + bi)

whereas an approximation scheme using radial basis functions is given as

fn =

n
∑

i=1

ciΞ(‖x − ti‖2
)

hence both methods can be written as

fn =
n
∑

i=1

ciΦ(x, ti)

with an appropriate function Φ. In Sections 4.2.1 and 4.3.1 we show explicitly
how the function Φ corresponds to these approximation schemes and impose
natural assumptions on this function.
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4.1 Notations

In order to apply the results of the previous sections we concretize the abstract
setting using the activation function Φ. The natural Hilbert-space H seems to
be the Lebesgue-space L2(Ω). As subset G we choose the set

GB = {cΦ(·, t) | |c| ≤ B, t ∈ P} ⊂ L2(Ω) ,

where Φ is the activation function of the network and P is the compact set of
parameters. The set GB can be interpreted as the set of all possible nodes of
the network. If the function Φ is scaled such that its L2-norm is bounded above
by 1 uniformly in t, i. e.,

∫

Ω

|Φ(x, t)|2d x ≤ 1 ∀t ∈ P , (4.1)

then GB is bounded and GB ⊂ B(0; B). For the sake of simplicity we as-
sume (4.1), otherwise one can use the bound B̃ = B/ supt∈P ‖Φ(·, t)‖L2(Ω) for

the factor c to bound the norm of the elements of GB by B. Observe that B̃
can not be zero because the set P is compact. The value γ is now given as

γ = inf
v∈L2

sup
|c|≤B, t∈P

‖cΦ(x, t) − v‖2 − ‖f − v‖2
. (4.2)

The convex hull of the set GB is defined as

co(GB) = {f ∈ L2(Ω) | f =
n
∑

i=1

ciΦ(·, ti),
∑

|ci| ≤ B, t ∈ P, n ∈ N},

the sign of the parameters ci does not matter, because the original set GB is
symmetric. Further the sum need not be equal to B but can also be smaller,
because the zero function is an element of GB . If we compute the closure of this
set the sums turn into integrals and we find

co(GB) = {f ∈ L2(Ω) | f =

∫

P

Φ(·, t)dµ(t), µ ∈ M1, ‖µ‖M1
≤ B}. (4.3)

Here M1 denotes the set of all Radon measures (see e. g. [13]). Note, that
co(GB) contains all functions having a representation of the form

∑n
ciΦ(·, ti)

and
∫

P
c(t)Φ(·, t) dt.

In order to apply Algorithm 2.2 to neural networks, it is necessary that
the function f that shall be approximated is an element of the closed convex
hull co(GB). For a given function f this can often be assured by choosing B
sufficiently large. Nevertheless, to obtain good convergence rates (i. e., a small
value for M) it is preferable that the norm of f is close to B. This can only
be ensured by a proper choice of the activation function Φ depending on the
specific structure of f .

In the following we present two typical choices for the activation function Φ,
namely ridge construction type neural networks and radial basis functions.

4.2 Sigmoidal Neural Networks

4.2.1 Assumptions

Standard Assumptions 4.1. In a ridge construction neural network the ac-
tivation function Φ fulfills the assumptions:
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• Φ(x, t) is a function of form

Φ(x, t) = σ(aT x + b) = σ(ζ1 + · · · + ζn), (4.4)

with the new variables ζ1 = a1x1 + b and ζi = aixi for i 6= 1.

The values ai and bi correspond to the parameters ti and are only intro-
duced to emphasize the different meanings of the various parameters.

• The factors ai are chosen such that the vector (a1, . . . , an) is an element
of some compact set that does not contain 0.

• the function σ does not have the form

σ(ξ) = Ceαξ or σ(ξ) = (αξ + β)γ

for any combination of real numbers α, β and γ.

• the function σ is twice continuously differentiable.

Remark 4.2. The activation function σ is not allowed to be a constant function.
This restriction is already contained in the forbidden special form for the choice
α = 0.

We defined an artificial correspondence between b1 and ζ1. It is no matter
to which of the ζi the variable b1 is associated, the goal is just to have as many
variables ζi as variables xi.

It is possible to choose some of the parameters ai equal to zero (this happens
when the ridge is orientated parallel to an axis), but the choice a = 0 is not
allowed.

4.2.2 Modified Ridge Constructions

According to the standard Assumptions 4.1 the parameters a and b must be
restricted to compact sets. Within the greedy algorithm only elements g ∈ GB

may be chosen, therefore also the parameter c has to be bounded. We now
present a method for implementing these bounds in the greedy algorithm if
an optimization method such as Landweber’s or Newton’s method is used to
determine the parameters of the individual nodes.

In the case of ridge constructions the parameter b describes the distance be-
tween the ridge and the origin. If during the iteration b becomes very large then
the ridge will be situated outside the domain Ω and the function will be (almost)
constant along the domain Ω. Its derivative will therefore be almost zero and
the updates for b computed by Landweber’s or Newton’s method vanish. So the
parameter b stays within a bounded interval, even if we do not implement any
bound for it.

For the vector a we propose to use a decomposition a = sa0 into a unit
vector a0 and a scaling factor s, and to represent a0 by use of angles in polar
coordinates. The angles need not be restricted to a compact set and so the
iteration can again be implemented without any additional cost. For the scaling
factor s we can use the same procedure as described below for the weight c.

Above we argued that even if b does not stay inside the interval P at least it
lies in a sufficiently large compact set P̃ ⊃ P . For the weight c we may not use
such arguments, because the corresponding bound B may not be enlarged to a
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different bound B̃, otherwise we lose the convergence statement of Theorem 2.3.
Nevertheless there is a simple possibility to bound the functions in the set GB ,
namely to modify the network operator and define it as

F (c, t) = κ(c)Φ(x, t), (4.5)

where κ(·) is an invertible, differentiable mapping of R to the interval [−B,B]
with the properties

lim
c→∞

κ(c) = B, lim
c→−∞

κ(c) = −B, and κ(0) = 0 .

Using this setting the value of c does not have to stay within a compact set, but
the norm of the elements of the set GB remains bounded by B.

4.2.3 The Greedy Algorithm for Ridge Constructions

Algorithm 4.3. Greedy approximation using ridge constructions.

Initialization:

- For the case of noise-free data choose a constant M , such
that M > γ (as defined in (4.2)), e. g., choose M equal to

M = 3
2 (B2 − ‖f‖2

) and set Mopt = M , kopt = ∞.

- For the case of noisy data determine the constants Mopt

and kopt according to Method 3.4.

- Set fδ
0 := 0.

Iteration:

for k := 1 to Min(kopt, maxit) do

if
∥

∥fδ − fδ
k−1

∥

∥

2 ≤ M
k then set fδ

k := fδ
k−1 and jump

to the next step of the iteration.
Find parameters a, b, and c such that

∥

∥

∥

∥

fδ − k − 1

k
fδ

k−1 −
1

k
cσ(aT x + b)

∥

∥

∥

∥

2

≤ Mopt

k
(4.6)

is fulfilled and define fδ
k as

fδ
k :=

k − 1

k
fδ

k−1 +
1

k
cσ(aT x + b) .

end for

Remark 4.4 (Feasibility). This algorithm looks slightly different than the
one presented in Section 2.2, the sequence εk and the search for infima are gone.
In practice we are usually not able to calculate the infimum formulated in the
original algorithm and therefore we are also not able to check if the difference
to this infimum is less than εk. Nevertheless Algorithm 2.2 in combination with
Theorem 2.3 ensures that there exists an element, which can give us the rate M

k .
This means that in each step of the iteration we are able to find an approximation
and the algorithm above is feasible. Furthermore, with this modified algorithm
we are able to check if the approximation we found is sufficiently good, we only
have to look if the estimate (4.6) is fulfilled.
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In the language of neural networks each step of Algorithm 4.3 can be in-
terpreted as an approximation of a function (e. g. fδ − k−1

k fδ
k−1) with a neural

network consisting of only a single node.
Note that we do not have to change fk in each step. If fk is already a good

approximation to f we increase the index k as much as possible. This can be
done without affecting the convergence rate, since for the induction argument
in the proof of Theorem 2.3 we only needed that the kth approximation fulfills
the rate ‖f − fk‖2 ≤ M/k, but not that it consists of k nodes.

Remark 4.5. Altogether we find the following advantages of Algorithm 4.3
compared to Algorithm 2.2:

• In each step there exists an element gk that fulfills (4.6), namely at least
one of those that fulfill the infimum-condition in Algorithm 2.2.

• We are able to check if the approximation we found is sufficiently good,
since everything in relation (4.6) can be computed, as opposed to the
infimum-condition which can not be checked in practice.

• If the stopping index k is chosen according to Method 3.4 then the algo-
rithm is stable under data-perturbations and according to Theorem 3.5 it

yields the convergence rate
∥

∥

∥
f − fδ

k(δ,fδ)

∥

∥

∥
= O(δ1/3).

4.3 Radial Basis Functions

4.3.1 Assumptions

Standard Assumptions 4.6. For radial basis functions the activation function
Φ fulfills the assumptions:

• Φ(x, t) is a function of form

Φ(x, t) = Ξ
(

(a1x1 + b1)
2 + · · · + (anxn + bn)2

)

= Ξ
(

ζ2
1 + · · · + ζ2

n

)

,
(4.7)

with the new variables ζi = aixi + bi

• the values of the parameters ai are chosen from a compact set that does
not contain 0.

• the function Ξ does not have the form

Ξ(ξ) = Cξα

for any combination of real numbers α and C

• the function Ξ is twice continuously differentiable.

Remark 4.7. The activation function Ξ is not allowed to be a constant function.
This restriction is already contained in the forbidden special form for the choice
α = 0.

Our definition of radial basis functions is more general than the usual one,
e. g. in [4] the “radius” of the function is fixed, in [9] the radius is a parameter
but the shape of the function is always radially symmetric. In this setting also
ellipsoidal shapes are allowed. If all the ai are equal (or especially fixed and
equal to one) then the original case is attained.

For radial basis functions it is not allowed to choose any parameter ai = 0.
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4.3.2 Modified Radial Basis Function

As before in Section 4.2.2 we will now discuss the implementation of the bounds
needed in the standard Assumptions 4.6 and within the greedy algorithm.

In the case of radial basis functions the parameter t describes the center of
the network function. The parameter set P is therefore chosen approximately
as the domain Ω. If t is chosen far outside from P then, for instance in the
case of Gaussian functions, the norm of Φ(x, t) will be very small, since only
the part inside Ω contributes to the norm. The corresponding functions Φ and
its derivative ∇tΦ are very close to the zero function and if t is sufficiently far
outside the domain they are numerically equal to the zero function. Therefore
also the operator F ′∗ will be zero and Landweber iteration as well as Newton’s
method will stop. Of course the corresponding approximation will be a bad one,
but the parameters t stay inside some compact set, even if we do not implement
any bound for them.

The bound for the parameter c can be implemented as before in Section 4.2.2

4.3.3 The Greedy Algorithm for Radial Basis Functions

Algorithm 4.8. Greedy approximation using radial basis functions.

Initialization:

- For the case of noise-free data choose a constant M , such
that M > γ (as defined in (4.2)), for example choose M

equal to M = 3
2 (B2 −‖f‖2

) and set Mopt = M , kopt = ∞.

- For the case of noisy data determine the constants Mopt

and kopt according to Method 3.4.

- Set fδ
0 := 0.

Iteration:

for k := 1 to Min(kopt, maxit) do

if
∥

∥fδ − fδ
k−1

∥

∥

2 ≤ M
k then set fδ

k := fδ
k−1 and jump

to the next step of the iteration.
Find parameters c and t such that

∥

∥

∥

∥

fδ − k − 1

k
fδ

k−1 −
1

k
cΞ(‖x − t‖)

∥

∥

∥

∥

2

≤ Mopt

k
(4.8)

is fulfilled and define fδ
k as

fδ
k :=

k − 1

k
fδ

k−1 +
1

k
cΞ(‖x − t‖) .

end for

The remarks which are given in Section 4.2.3 below Algorithm 4.3 are also
valid for this Algorithm.

4.4 Convergence in Stronger Norms

An interesting property of the greedy algorithm is that it leads to convergence
in stronger Sobolev norms. This seems surprising at a first glance, since during
the algorithm only the L2-norm of the elements is observed.

15



However, the set GB is compact in stronger topologies, which allows us to
show convergence and even convergence rates in stronger norms. In the following
we assume that

Φ(·, t) ∈ Hs(Ω) ∀t ∈ P

(for the definition of the Sobolev-space Hs(Ω) we refer to [1, 14]). Since the set
GB is compact we can find an upper bound for the Hs-norm of the elements of
GB , which is given via

Bs = sup
|c|≤B, t∈P

‖cΦ(·, t)‖Hs(Ω) < ∞ . (4.9)

Hence, GB is bounded in the Hs-topology.
In the first theorem we show that convergence in the L2-norm implies weak

convergence in the Hs-norm if the activation function Φ(·, t) belongs to Hs(Ω).
From this we can easily deduce strong convergence in the Hr-norm for r < s.
Finally we give rates for the convergence in spaces Hr(Ω).

Theorem 4.9. Let Φ(·, t) ∈ Hs(Ω) for all values t ∈ P , and let (fk) be the

sequence generated according to Algorithm 4.3. Then the sequence is bounded

in Hs(Ω) and converges weakly in Hs(Ω) with limit f , i. e., fk ⇀ f .

Proof. Using equation (4.9) we can conclude that the Hs-norm of any fk is
bounded by

‖fk‖Hs(Ω) =

∥

∥

∥

∥

1

k
g1 + · · · + 1

k
gk

∥

∥

∥

∥

Hs(Ω)

≤ 1

k

(

‖g1‖Hs(Ω) + · · · + ‖gk‖Hs(Ω)

)

≤ 1

k
k sup

1≤i≤k
‖gi‖Hs(Ω) ≤ Bs . (4.10)

Hence, the Hs-norm of the residual is also bounded and can be estimated via

‖f − fk‖Hs(Ω) ≤ ‖f‖Hs(Ω) + ‖fk‖Hs(Ω) ≤ ‖f‖Hs(Ω) + Bs .

Since the Sobolev space Hs(Ω) is reflexive and the sequence fk is bounded
we can find a subsequence fkl

which converges weakly to some function f∗.
Since there exists a compact embedding operator E from Hs(Ω) to L2(Ω) and
the sequence fk converges in L2(Ω) the relation Ef∗ = f must be fulfilled.
Furthermore f ∈ Hs(Ω), because co(G) ⊂ Hs(Ω), and thus, f∗ = f .

Hence, we found that the sequence (fk) has a weakly converging subsequence
fkl

and that the limit of fkl
is equal to f . Since analogous reasoning applies if

we start with a subsequence of (fk), we obtain that every subsequence of (fk)
contains a weakly converging subsequence whose limit is f . Consequently we
can conclude that the original sequence (fk) itself converges weakly to f and
the proof is completed.

We can use this result to prove strong convergence in spaces Hr(Ω) with
r < s.
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Corollary 4.10. Let Φ(·, t) ∈ Hs(Ω) for all values t ∈ P , and let (fk) be the

sequence generated according to Algorithm 4.3. Then for r < s the sequence

also converges in Hr(Ω), i. e.,

‖f − fk‖2
Hr(Ω) → 0 for k → ∞

holds.

Proof. From Theorem 4.9 we know that (fk) converges weakly to f in Hs(Ω).
For r < s there exists a compact embedding K from the Sobolev spaces Hs(Ω)
to Hr(Ω). Compact operators transfer weakly converging sequences to norm
converging sequences, and therefore fk converges to f in Hr(Ω).

Not only the functions fk remain bounded in stronger Sobolev-norms, but
also the approximations fδ

k which are obtained when a noisy version of f is
approximated. Since fδ

k → f in L2(Ω) for δ → 0 we can use similar arguments
as above to show convergence of the regularized solutions fδ

k in stronger norms.

Corollary 4.11. Let Φ(·, t) ∈ Hs(Ω) for all values t ∈ P , and let (fδ
k ) be

the sequence generated according to Algorithm 4.3. Moreover, let for δ > 0
the stopping index k∗ = k∗(δ, f δ) and the constant M be chosen according to

Method 3.4. Then for r < s the sequence converges to f also in Hr(Ω), i. e.,

∥

∥f − fδ
k∗

∥

∥

2

Hr(Ω)
→ 0 for δ → 0

holds.

Using the interpolation inequality we can even show convergence rates in
spaces Hr(Ω) with r < s.

Corollary 4.12. Let Φ ∈ Hs(Ω) and f ∈ co(G). Then for r < s the conver-

gence rate

‖f − fk‖2
Hr(Ω) = O

(

k
r−s

s

)

holds.

Proof. In equation (4.10) in the proof of Theorem 4.9 we have seen that the
Hs-norm of the approximating functions is bounded. Further we know that the
convergence rate in the L2-norm is given as O(k−1). If we combine these two
results the proof follows immediately using the interpolation inequality (see [8,
(2.49)] or [14, (2.43)]).

Using the convergence result
∥

∥f − fδ
k∗−1

∥

∥

L2
= O

(

δ1/3
)

(see Remark 3.5) and
the interpolation inequality we may also conclude a result on the convergence
of fδ

k∗−1 in stronger Sobolev-norms if the parameters M and k are chosen in an
optimal way:

Corollary 4.13. Let Φ ∈ Hs(Ω) and f ∈ co(G). Moreover, let for δ > 0
the stopping index k∗ = k∗(δ, f δ) and the constant M be chosen according to

Method 3.4. Then for r < s the convergence rate

∥

∥f − fδ
k∗−1

∥

∥

Hr(Ω)
= O

(

δ
s−r

3s

)

holds.
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A special situation arises if the activation function is of class C∞. In this case
we find the same rate of convergence in the Hr-norm as in the L2-norm, namely
O(k−1). Nevertheless, in practice this behaviour will not be visible, since the
constants in the convergence rates can be large, and therefore all these results
only hold for k sufficiently large. If we interpret Φ as an element of H2(Ω) we

obtain the weaker convergence rate O(k− 1
2 ), but the constants will be less. So

if we observe the H1-norm of the residual we will find that it decreases, but
not from the start with a high convergence rate, but remaining almost constant
at the beginning and then converging with gradually increasing speed (see also
Figure 6). A similar behaviour was observed also with Tikhonov regularization
in [6].

5 Numerical Examples

In this section we verify the theoretical results from Chapter 2 by numerical
examples. First of all, we investigate ridge constructions where we inspect the
qualitative and quantitative behaviour of the approximations in the L2- and
the H1-norm during the iteration. Next we examine the influence of noise in
the data and compare the numerical results with the prediction, provided by
the stopping rule in Section 3.3. Finally we investigate the qualitative behavior
of the algorithm when applied to radial basis function networks with Gaussian
activation functions.

All examples were computed using the software system Mathematica on an
SGI Origin 3800.

5.1 Ridge Constructions

In the first example we consider a neural network based on a ridge construction
for an approximation problem on the 2-dimensional domain Ω = [−1, 1]×[−2, 2].
As activation function we choose

Φ(x, t) = Φ(x1, x2, t1, t2) = σ
(

(sin(t1), cos(t1)) (x1, x2)
T

+ t2
)

,

where σ is given as

σ(ξ) =
1

1 + exp(−50ξ)
.

As proposed in Section 4.2.2 we implement the bound for the parameter c using
an auxiliary function κ. The neural network-operator is therefore defined via

F (c, t1, t2) = κ(c)Φ(·, t1, t2) ,

where the function κ is given as

κ(c) =
2

1 + e−c
− 1 .

To ensure that the function to be approximated is an element of co(GB) we
define it explicitly as a convex combination of three elements of GB namely as

f =
F (5, 1, 0.6) + F (−2, 3, 0.3) + F (5, 5, 0.4)

3
. (5.1)
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A plot of this function can be seen in the upper right corner of Figure 2. Using
this choice, the function f is an element of co(GB) for B = 2.45. Since ‖f‖ =
1.24 it suffices to choose M = 5 according to Algorithm 4.3.

To find parameters satisfying equation (4.6) we set c0 = 0 and take (t01, t
0
2)

randomly. Then we perform several iterations of Landweber’s and Newton’s
method until a convergence criterion is fulfilled or the maximal number of itera-
tions is exceeded. To ensure that the approximation we compute is an element of
co(GB) we implement the algorithm such that, as soon as the norm of Φ(·, tj1, tj2)
is greater than1 the value B = 2.45, the search is terminated and restarted with
a different initial value (t01, t

0
2).

5.2 Behaviour during the Algorithm

Figure 2 illustrates the qualitative behaviour of Algorithm 4.3 in dependence
of the iteration index k. Since the number of nodes need not be increased in
order to satisfy the estimate (4.6) in each step, the network size (denoted as
keff) has to be less than or equal to k. In our example k is always much larger
than keff. For instance in the third column the network consists of 17 nodes but
the error estimate (4.6) is fulfilled for k = 40. This means that the if -clause in
Algorithm 4.3 was true 23 times. This behaviour can be seen in more detail in
Figure 3. The ratio keff

k remains approximately constant during the iteration.
In Figure 4 the evolution of the residual, i. e., ‖f − fk‖L2(Ω), is shown. The

green (smooth) line represents the error estimate

‖f − fk‖ ≤
√

M

k
,

the red one represents the residual. Observe that every time the approximation
is improved and the red line moves downwards, the iteration index k is increased
(the red line is horizontal) as much as possible, such that the green line is not
hit.

Theorem 4.10 ensures convergence in stronger Sobolev-norms, if the activa-
tion function Φ is smooth. In our case the activation function is of class C∞,
hence we might expect the same convergence rate in the H1-norm as in the
L2-norm. Nevertheless, the norm of the derivatives of Φ grows fast, and so the
observed rate (i. e., the slope of the curve) for finite k will be less. Figure 5
shows the behaviour of the norm of the derivatives of f − fk. Both derivatives
are decreasing almost monotonically.

In Figure 6 the behaviour of the full H1-norm (blue line) and the L2-norm
(red line) of the error is plotted in a logarithmic scale. As we expected the
speed of convergence in the H1-norm is gradually increasing, and for k → ∞
the slope of the blue line approaches − 1

2 . For instance if only the values k ≥ 50
are taken into account, then the slope of the blue line is approximately −0.25,
i. e., we find numerically the rate ‖f − fk‖H1(Ω) = O(k−1/4). According to

Theorem 4.12 such a rate can be gained if Φ(·, t) ∈ H2(Ω) for all values t ∈ P .

1This is done only because we want to verify our theoretical results, otherwise it does not
matter if the iterates are elements of the set GB , or of a set G

B̃
⊃ GB .

19



k 10 20 40 100 original
keff 5 10 17 55

fk

-1
-0.5

0

0.5

1 -2

-1

0

1

2

-0.25
0

0.25
0.5

0.75

-1
-0.5

0

0.5

1

-1
-0.5

0

0.5

1 -2

-1

0

1

2

-0.25
0

0.25
0.5

0.75

-1
-0.5

0

0.5

1

-1
-0.5

0

0.5

1 -2

-1

0

1

2

-0.25
0

0.25
0.5

0.75

-1
-0.5

0

0.5

1

-1
-0.5

0

0.5

1 -2

-1

0

1

2

-0.25
0

0.25
0.5

0.75

-1
-0.5

0

0.5

1

-1
-0.5

0

0.5

1 -2

-1

0

1

2

-0.25
0

0.25
0.5

0.75

-1
-0.5

0

0.5

1

f − fk

-1
-0.5

0

0.5

1 -2

-1

0

1

2

-0.25
0

0.25
0.5

0.75

-1
-0.5

0

0.5

1

-1
-0.5

0

0.5

1 -2

-1

0

1

2

-0.25
0

0.25
0.5

0.75

-1
-0.5

0

0.5

1

-1
-0.5

0

0.5

1 -2

-1

0

1

2

-0.25
0

0.25
0.5

0.75

-1
-0.5

0

0.5

1

-1
-0.5

0

0.5

1 -2

-1

0

1

2

-0.25
0

0.25
0.5

0.75

-1
-0.5

0

0.5

1

Figure 2: Evolution of the approximation fk and the error fk − f during the greedy algorithm.
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Figure 3: Evolution of the network size during the greedy algorithm.
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Figure 4: Evolution of the L2-norm of the error f − fk.

21



20 40 60 80 100

0.5

1

1.5

2

2.5
Evolution of H1-Error (Seminorm)

k

Figure 5: Evolution of the H1-seminorm of the difference f − fk. The upper
line corresponds to ‖∂x1

(f − fk)‖L2(Ω), the lower one to ‖∂x2
(f − fk)‖L2(Ω).
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Figure 6: Logarithmic plot of the evolution of the L2-norm (red) and the H1-
norm (blue) of the difference f − fk. The right graph is a magnification of the
left one and shows interpolations of the H1-error (green). The slope is gradually
increasing.
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5.3 Influence of Noise

Now we investigate the influence of noise on the algorithm. Therefore we add
high frequency deterministic noise with variable amplitude to the data. From
Section 3.2 we know that the algorithm will fail to find new updates gk if noise
is present and k is too large.

We implement the algorithm as above, which means that in the kth step of
the iteration we choose a random value for the parameters (t1, t2), set c = 0 and
perform several Landweber and Newton steps. If the computed approximation
is not sufficiently good (i. e., equation (4.6) is not fulfilled), we repeat the same
procedure for a different starting value for (t1, t2). In the noise-free case this
procedure works well and we find a new update after around 2–4 steps. If noise
is present the algorithm encounters problems and fails to find a new update if
k is too large. For this reason, we terminate the iteration if no valid update
is found for 20 different initial values. So we did not implement the stopping
rule from Section 3.3, but looked for the point where the algorithm naturally
terminates.

Figure 7 illustrates the qualitative behaviour of this procedure. For instance
in column 3 the amplitude of the perturbation was set to 0.57 which results in
a noise level of 46%. The algorithm stopped after 12 iterations, at this time the
network consisted of 8 nodes. The first line shows the noisy function fδ, the
second one the approximation fδ

k found by the algorithm, line three shows the
difference fδ − fδ

k and the last one the difference between the approximation
and the original, undisturbed function f . One observes that the iterates fδ

k

are not sensitive to the noise, they are always smooth functions and better
approximations to f than to fδ. The reason for this is that the search for
elements fδ

k is restricted to the set co(G), which is a set of smooth functions
(see also Section 4.4).

In Figure 8 this behaviour is analyzed quantitatively. The blue line indicates
the norm of fδ − fδ

k , the red line corresponds to
∥

∥f − fδ
k

∥

∥. Although the blue
line is slightly steeper than the red one, the values for the blue line are always
above the red ones. The green line corresponds to the theoretical prediction
from the stopping rule from Section 3.3 for the error in dependence of δ. The
predicted values are always far above the measured ones, but the slope and
therefore the rate of convergence is approximately equal to the experimental
one. This indicates that the rate expected according to the stopping rule above
is obtained also numerically, but that the constants are possibly too large and
might be improved, in particular by using sharper estimates instead of (3.4).

Figure 9 shows the behaviour of the H1-norm of the error. Clearly, if the
noise level is high, it tends to zero much faster for fδ − fδ

k than for f − fδ
k . This

is due to the fact that the H1-norm of fδ is much larger than the H1-norm of
f . Since fδ

k is a smooth function, also the corresponding difference fδ − fδ
k is

larger than f − fδ
k in the H1-norm. As the noise level decreases also this effect

vanishes and the slope of the blue line decreases. Note that the blue line always
lies above the red one, i. e., fδ

k always fits better to f than to fδ.
Figure 10 illustrates the behaviour of the three different solutions given in

Section 3.3. For k1 the ratio M(k1)
k1

becomes constant for δ tending to zero. For
k3 the ratio increases, as mentioned before this solution seems to correspond to

a local maximum. Only for k2 the ratio M(k3)
k3

tends to zero, the slope of the

corresponding line is 2
3 , this means the convergence rate for noise level tending
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Noise 0.8 (65%) 0.57 (46%) 0.4 (32%) 0.2 (16%) 0.1 (8%)
k 24(7) 12(8) 18(5) 48(23) 72(41)

fδ

-1
-0.5

0

0.5

1 -2

-1

0

1

2

-0.25
0

0.25
0.5

0.75

-1
-0.5

0

0.5

1

-1
-0.5

0

0.5

1 -2

-1

0

1

2

-0.25
0

0.25
0.5

0.75

-1
-0.5

0

0.5

1

-1
-0.5

0

0.5

1 -2

-1

0

1

2

-0.25
0

0.25
0.5

0.75

-1
-0.5

0

0.5

1

-1
-0.5

0

0.5

1 -2

-1

0

1

2

-0.25
0

0.25
0.5

0.75

-1
-0.5

0

0.5

1

-1
-0.5

0

0.5

1 -2

-1

0

1

2

-0.25
0

0.25
0.5

0.75

-1
-0.5

0

0.5

1

fδ
k

-1
-0.5

0

0.5

1 -2

-1

0

1

2

-0.25
0

0.25
0.5

0.75

-1
-0.5

0

0.5

1

-1
-0.5

0

0.5

1 -2

-1

0

1

2

-0.25
0

0.25
0.5

0.75

-1
-0.5

0

0.5

1

-1
-0.5

0

0.5

1 -2

-1

0

1

2

-0.25
0

0.25
0.5

0.75

-1
-0.5

0

0.5

1

-1
-0.5

0

0.5

1 -2

-1

0

1

2

-0.25
0

0.25
0.5

0.75

-1
-0.5

0

0.5

1

-1
-0.5

0

0.5

1 -2

-1

0

1

2

-0.25
0

0.25
0.5

0.75

-1
-0.5

0

0.5

1

fδ − fδ
k

-1
-0.5

0

0.5

1 -2

-1

0

1

2

-0.25
0

0.25
0.5

0.75

-1
-0.5

0

0.5

1

-1
-0.5

0

0.5

1 -2

-1

0

1

2

-0.25
0

0.25
0.5

0.75

-1
-0.5

0

0.5

1

-1
-0.5

0

0.5

1 -2

-1

0

1

2

-0.25
0

0.25
0.5

0.75

-1
-0.5

0

0.5

1

-1
-0.5

0

0.5

1 -2

-1

0

1

2

-0.25
0

0.25
0.5

0.75

-1
-0.5

0

0.5

1

-1
-0.5

0

0.5

1 -2

-1

0

1

2

-0.25
0

0.25
0.5

0.75

-1
-0.5

0

0.5

1

f − fδ
k

-1
-0.5

0

0.5

1 -2

-1

0

1

2

-0.25
0

0.25
0.5

0.75

-1
-0.5

0

0.5

1

-1
-0.5

0

0.5

1 -2

-1

0

1

2

-0.25
0

0.25
0.5

0.75

-1
-0.5

0

0.5

1

-1
-0.5

0

0.5

1 -2

-1

0

1

2

-0.25
0

0.25
0.5

0.75

-1
-0.5

0

0.5

1

-1
-0.5

0

0.5

1 -2

-1

0

1

2

-0.25
0

0.25
0.5

0.75

-1
-0.5

0

0.5

1

-1
-0.5

0

0.5

1 -2

-1

0

1

2

-0.25
0

0.25
0.5

0.75

-1
-0.5

0

0.5

1

Figure 7: Qualitative behaviour of the algorithm for noise level tending to zero.
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Figure 8: Evolution of the L2-norm of the difference fδ − fδ
k (blue) and f − fδ

k

(red) for noise level tending to zero. The green line indicates the rate which is
obtained for the stopping rule.
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Figure 9: Evolution of the H1-norm of the difference fδ − fδ
k (blue) and f − fδ

k

(red) for noise level tending to zero.
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Figure 10: Behaviour of M(ki)
ki

corresponding to the three different choices for

k in Section 3.3. The lower curves correspond to the choice γ = 10−6, the top
ones to γ = 10−1.

to zero is δ2/3. Since M
k measures the squared norm we obtain

∥

∥fδ − fδ
k

∥

∥ = O(δ
1
3 ) .

As we have seen above, we find approximately the same rate in Figure 8.

5.4 Radial Basis Functions

In the second example we investigate the qualitative behaviour of the algo-
rithm when applied to radial basis function networks. Again we choose the
2-dimensional domain Ω = [−1, 1] × [−2, 2]. As activation function we use

Φ(x, t) = Φ(x1, x2, t1, t2) = Ξ
(

√

(x1 − t1)2 + (x2 − t2)2
)

,

where Ξ is given as a Gaussian function, namely

Ξ(ξ) = 5 exp(−10ξ2).

Using this choice the norm of Φ is bounded by the value 2 uniformly in t. The
bound for c is implemented as above via the function κ(c).

To ensure that the function to be approximated is an element of co(GB) we
again define it explicitly as a convex combination of elements of GB , but now
via an integral, namely

f =

∫

P

1[− 1
2
, 1
2
]×[−1,1](t1, t2)Φ(·, t1, t2) dt1 dt2 , (5.2)

where 1[·]×[·] is the characteristic function. A plot of this function can be seen
in the right upper corner of Figure 11. Using this choice, the function f is
an element of co(GB) for B = 2. We choose M = 3.83 which is equal to

1.2(B2 − ‖f‖2
).
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In Figure 11 the qualitative behaviour of Algorithm 4.3 is shown in depen-
dence of the iteration index k. Again the network size keff is far below the
iteration index k. Note that the ratio keff

k is even smaller than in the example
of Section 5.1. The network we computed for k = 150 effectively uses only
keff = 55 nodes, but yields a very good approximation. A possible reason for
the (optically) better performance in the second example is, that the function
being approximated fulfills an integral representation of the form

f =

∫

P

Φ(·, t)h(t) dt

(see also equation (4.3)) for a much smoother function h than in the first exam-
ple. For the function defined via equation (5.1) h is a distribution, whereas for
the one defined via equation (5.2) h ∈ L∞(P ).

Figure 12 shows the influence of noise on the algorithm for two different noise-
levels. Again the algorithm was terminated if no valid approximation was found
for 20 different initial values for (t1, t2). As in the case of ridge-construction the
approximations are smooth functions. They are better approximations to f
than to fδ.
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Figure 11: Evolution of the approximation fk and the difference fk − f during the greedy algorithm.
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Figure 12: Behaviour of the algorithm for noisy data and two different noise levels.
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