
Theorem Proving with Sequence Variables and

Flexible Arity Symbols?

Temur Kutsia

Research Institute for Symbolic
Computation

Johannes Kepler University Linz
A-4040, Linz, Austria

kutsia@risc.uni-linz.ac.at

Software Competence Center
Hagenberg

Hauptstrasse, 99
A-4232, Hagenberg, Autsria

teimuraz.kutsia@scch.at

Abstract. An ordering for terms with sequence variables and flexible
arity symbols is presented. The ordering coincides with the lexicographic
extension of multiset path ordering on terms without sequence variables.
It is shown that the classical strict superposition calculus with ordering
and equality constraints can be used as a refutationally complete proving
method for well-constrained sets of clauses with sequence variables and
flexible arity symbols.

1 Introduction

Sequence variables are variables which can be instantiated by an arbitrary finite,
possibly empty, sequence of terms. Flexible arity symbols are not assigned unique
arity. Sequence variables and flexible arity symbols add flexibility and expres-
siveness into a language1, which makes them a useful tool in many applications:
knowledge engineering and artificial intelligence (Knowledge Interchange Format
KIF [GF92] and its version SKIF [HM01]), databases (Sequence Datalog [MB95],
Sequence Logic [GW92]), programming (programming language of Mathematica
[Wol99]), term rewriting (rewriting with sequences [Ham97], [WB01]). However,
theorem proving with sequence variables and flexible arity symbols is not well-
studied. The simplifier prover [BM97] of the Theorema system [BDJ+00] and the
Epilog [Gen95] package are probably the only provers with (restricted) features
for sequence variables.

Buchberger ([Buc96], [Buc01]) proposed to study usage of sequence variables
in proving, solving and rewriting context, which, among the other results, lead
to development of unification procedure for equational theories with sequence
variables and flexible arity symbols ([Kut02c], [Kut02a], [Kut02b]). It was shown
that although (general) unification is decidable, its type is infinitary, even for the
free theory with sequence variables and flexible arity symbols. It suggests to use

? Supported by the Austrian Science Foundation (FWF) under Project SFB F1302
and by Software Competence Center Hagenberg (Austria) under ForMI project.

1 In fact, unrestricted quantification over sequence variables takes the language even
beyond first-order expressiveness, but there is an useful sublanguage which is strictly
first-order, see [HM01]. In this paper we stick to this sublanguage.

“proving with constraints” approach ([NR92], [NR95], [Rub95], [NR01]): instead
of unifying the terms, keeping the unification problem in an equality constraint.
One can detect unsatisfiability of a constraint using efficient incomplete methods,
which would allow to remove clauses with unsatisfiable constraints. Only the
constraint of the empty clause should be checked on solvability, to know whether
inconsistency was derived or not.

In order to use this approach efficiently, another ingredient – a term ordering
with sequence variables and flexible arity symbols – is needed. In this paper we
present an ordering which is total on ground terms, is stable under substitutions
and for terms without sequence variables coincides with the lexicographic ex-
tension of multiset path ordering [Der82]. It is, to our knowledge, the first such
ordering on terms with sequence variables and flexible arity symbols. Moreover,
it can be shown that the ordering is, in fact, a reduction ordering. However, for
our purposes the stability property is sufficient.

Finally, it is shown that the classical strict superposition calculus with or-
dering and equality constraints (see e.g. [NR95] or [NR01]) is a refutationally
complete proving method for theories with sequence variables and flexible arity
symbols.

2 Preliminaries

2.1 Syntax

We consider an alphabet A consisting of the following pairwise disjoint sets of
symbols: the set of individual variables VInd, the set of sequence variables VSeq,
the set of fixed arity function constants FFix and the set of flexible arity function
constants FFlex.

The set of terms (over A) is the smallest set of strings over A that satisfies
the following conditions:

– If t ∈ VInd ∪ VSeq then t is a term.
– If f ∈ FFix, f is n-ary, n ≥ 0 and t1, . . . , tn are terms such that for all

1 ≤ i ≤ n, ti /∈ VSeq, then f(t1, . . . , tn) is a term.
– If f ∈ FFlex and t1, . . . , tn (n ≥ 0) are terms, then so is f(t1, . . . , tn).

f is called the head of f(t1, . . . , tn).
An equation (over A) is a multiset {s, t}, denoted s ' t, where s and t are

terms (over A) such that s /∈ VSeq and t /∈ VSeq.
A clause (over A) is a pair of finite multisets of equations (over A) Γ (the

antecedent) and ∆ (the succedent), denoted by Γ → ∆. The empty clause � is
a clause Γ → ∆ where both Γ and ∆ are empty.

If not otherwise stated, the following symbols, with or without indices, are
used as metavariables: x and y – over individual variables, x, y, z and u – over
sequence variables, a and b – over constants, f and g – over (fixed or flexible
arity) function symbols, s, t and r – over terms.

We generalize standard notions of unification theory ([BS01]) for a theory
with sequence variables and flexible arity symbols.

2

Definition 1 (Substitution). A substitution is a finite set {x1 ← s1, . . . ,
xn ← sn, x1 ← t11, . . . , t

1
k1

, . . . , xm ← tm1 , . . . , tmkm
} where

– n ≥ 0, m ≥ 0 and for all 1 ≤ i ≤ m, ki ≥ 0,

– x1, . . . , xn are distinct individual variables,

– x1, . . . , xm are distinct sequence variables,

– for all 1 ≤ i ≤ n, si is a term, si /∈ VSeq and si 6= xi,

– for all 1 ≤ i ≤ m, ti1, . . . , t
i
ki

is a sequence of terms and if ki=1 then tiki
6= xi.

Greek letters are used to denote substitutions. The empty substitution is
denoted by ε.

Given a substitution θ, the notion of an instance of a term t with respect to
θ, denoted tσ is defined recursively as follows:

– xθ =

{

s if x← s ∈ θ,
x otherwise

– xθ =

{

s1, . . . , sm if x← s1, . . . , sm ∈ θ, m ≥ 0,
x otherwise

– f(s1, . . . , sn)θ = f(s1θ, . . . , snθ).

Instances of an equation and a clause are defined as usual. By L we denote
the equational language with the alphabet A and terms, equations and clauses
defined as above. A substitution σ is called a grounding substitution for an
expression Q of L iff Qσ contains no variables.

2.2 Semantics

We define semantics of L. To interpret sequence variables and flexible arity sym-
bols we choose an approach similar to the semantics of SKIF language [HM01].
First we adopt some notions from [HM01] with a slight modification:

For any set A, let An be the set of sequences of length n of members of A, i.e.
functions from the set {0, 1, . . . , n− 1} of ordinals less then n into A (it follows
that A0 = {∅} since the set of ordinals less than 0 is empty). We call the members
of An n-tuples over A. We will write the n-tuple {〈0, a0〉, 〈1, a1〉, . . . 〈n−1, an−1〉}
as 〈a0, a1, . . . , an−1〉. In particular, we will sometimes refer to ∅ as ′〈〉′ when
thinking of it as a 0-tuple. Let A∗ be the set of all n-tuples over A, for all n,
i.e. A∗ = ∪n<ωAn. We will call the members of A∗ tuples over A. We want to
consider n-tuples in which there is no distinction between 1-tuple and its (sole)
member, so we define an equivalence relation ≈ on A ∪A∗ by 〈x〉 ≈ x. Let [a]≈
denote an equivalence class of a on A ∪ A∗ with respect to ≈. Then we define
A∗∗ = {[t]≈ | t ∈ A ∪ A∗}. We call the members of A∗∗ rows over A or A-rows.
Notice that any element of A constitutes a singleton row.

3

The operation of concatenation cc on A∗∗ is defined as follows:

cc() = [〈〉]≈.
cc([a]≈) = [〈a〉]≈, a ∈ A.
cc([〈t1, . . . , tn〉]≈) = [〈t1, . . . , tn〉]≈, 〈t1, . . . , tn〉 ∈ A∗.
cc([a]≈, [b]≈) = [〈a, b〉]≈, a ∈ A, b ∈ A.
cc([a]≈, [〈t1, . . . , tn〉]≈) = [〈a, t1, . . . , tn〉]≈, a ∈ A, 〈t1, . . . , tn〉 ∈ A∗.
cc([〈t1, . . . , tn〉]≈, [a]≈) = [〈t1, . . . , tn, a〉]≈, 〈t1, . . . , tn〉 ∈ A∗, a ∈ A.
cc([〈t1, . . . , tn〉]≈, [〈s1, . . . , sm〉]≈) = [〈t1, . . . , tn, s1, . . . , sm〉]≈,

〈t1, . . . , tn〉 ∈ A∗, 〈s1, . . . , sm〉 ∈ A∗.

It can be easily shown that cc is associative. Therefore we will use cc in the
flattened form.

We say that a set of rows S satisfies functional condition iff for any two rows
[〈e1, . . . , en, s〉]≈ ∈ S and [〈e1, . . . , en, t〉]≈ ∈ S, n ≥ 0, we have s = t. It implies
that if a set of rows satisfies functional condition then it contains exactly one
singleton row.

An interpretation I for the language L consists of

– a non-empty set D called a domain of I,
– an assignment for each constant c in L of an element cI ∈ D∗∗ such that

cI = [〈d〉]≈, where d ∈ D.
– an assignment for each n-ary function symbol f in L a set fI ⊆ D∗∗ of

the form {[〈d1, . . . , dn, dn+1〉]≈ | d1, . . . , dn, dn+1 ∈ D}, satisfying functional
condition,

– an assignment for each flexible arity function symbol f in L a set fI ⊆ D∗∗

of the form {[〈d1, . . . , dk〉]≈ | k ≥ 0, d1, . . . , dk ∈ D}, satisfying functional
condition.

A state σI (over I) is defined as follows:

– σI(x) = [〈d〉]≈ ∈ D∗∗, for an individual variable x,
– σI(x) = [〈d1, . . . , dn〉]≈ ∈ D∗∗, for a sequence variable x,
– σI(c) = cI , for a constant c,
– σI(f(t1, . . . , tn)) = [〈s〉]≈ ∈ D∗∗ for a term f(t1, . . . , tn) with fixed or flexible

arity head f , where s is the unique element of D such that cc(σI(t1), . . . ,
σI(tn), [〈s〉]≈) ∈ fI .

Let true and false be truth values. Truth value in a state σI over I of an
equation t1 ' t2 in L, written Iσ(t1 ' t2), is defined as follows: Iσ(t1 ' t2) = true
iff σI(t1) = σI(t2), otherwise Iσ(t1 ' t2) = false.

Truth value in I of an equation t1 ' t2 in L, written I(t1 ' t2), is defined
as follows: I(t1 ' t2) = true iff Iσ(t1 ' t2) = true for all σI over I, otherwise
I(t1 ' t2) = false.

We say that I is a model of t1 ' t2, or I satisfies t1 ' t2, and write I |= t1 ' t2
iff I(t1 ' t2) = true. An interpretation I is a model for a set of equations E
(written I |= E) iff I is a model for each equation in E. An equation t1 ' t2 is

4

a semantic consequence of a set of equations E, written E |= t1 ' t2, iff every
model of E is a model of t1 ' t2.

Truth value in I of a clause Γ → ∆ in L, written I(Γ → ∆), is defined
as follows: I(Γ → ∆) = true iff I(Γ) = false or I(∆) = true, otherwise
I(Γ → ∆) = false. We write I |= Γ → ∆ iff I(Γ → ∆) = true.

2.3 Rewriting and Orderings

We assume that the reader is familiar with the basics of rewriting [DJ90], [BN98].
In this section we give some notions adapted for terms with sequence variables
and flexible arity symbols.

Let F ⊆ FFix ∪ FFlex and V ⊆ VInd ∪ VSeq. The set of terms over F and V
is denoted by T (F ,V). The set of ground terms over F is denoted by T (F). We
call F a signature and assume that it contains at least one constant.

A rewrite rule is an ordered pair (s, t), written s⇒ t, where s, t ∈ T (F ,V) \
VSeq. A set of rewrite rules R is a rewrite system. The rewrite relation with R
on T (F ,V) \ VSeq, denoted ⇒R, is the smallest monotonic relation such that
lσ ⇒R rσ for all l ⇒ r ∈ R and all σ. A term s is called reducible by R if there
is t such that s⇒R t, otherwise s is irreducible by R.

A (strict partial) ordering � is a transitive and irreflexive binary relation.
We say that an ordering � on T (F ,V) \ VSeq

– is stable under (grounding) substitutions if s � t implies sσ � tσ for all
s, t ∈ T (F ,V) \ VSeq and σ (grounding for s and t).

– fulfills the subterm property if u[s]p � s for all s, u ∈ T (F ,V) \ VSeq and p is
not the top position.

– fulfills the deletion property if f(. . . s . . .) � f(.) for f ∈ F ∩ FFlex and
all s ∈ T (F ,V).

– is total up to a congruence ∼= on T (F) if for all s, t ∈ T (F), either s ∼= t, or
s � t or t � s.

A rewrite ordering is a monotonic ordering stable under substitutions. A
reduction ordering is a well-founded rewrite ordering. A simplification ordering
is a rewrite ordering with the subterm property and the deletion property.

2.4 Constraints and Constrained Clauses

An (ordering and equality) constraint is a quantifier-free first-order formula over
the binary predicate symbols � and

.
= relating terms in T (F ,V). The constraints

are interpreted in T (F),
.
= is interpreted as a syntactic equality ' on T (F) and

� is interpreted as a given reduction ordering on T (F) that is total up to '.
Logical connectives are interpreted in the usual way.

We denote by

– ivars(Q) - the set of all individual variables occurring in Q;
– svars(Q) - the set of all sequence variables occurring in Q;
– vars(Q) - ivars(Q) ∪ svars(Q);

5

where Q can be a term, an equation, a clause or a constraint.
A solution of a constraint T is a ground substitution σ with domain vars(T)

and such that Tσ evaluates to true for ' and a given reduction ordering. If a
solution of T exists, then T is called satisfiable. If every ground substitution with
domain vars(T) is a solution of T then T is a tautology.

A constrained clause is a pair (C ‖ T) where C is a clause and T is a
constraint. A ground instance of (C ‖ T) is a ground clause Cσ where σ is
a solution of T . We say that an interpretation I satisfies (C ‖ T) if I |= Cσ
for every ground instance Cσ of (C ‖ T). Therefore, clauses with unsatisfiable
constraints are tautologies.

3 Ordering for Terms with Sequence Variables and

Flexible Arity Symbols

The goal of this section is to define an ordering on T (F ,V)\VSeq. Let us assume
that a well-founded ordering �F is given on the set F . Here �F is called the
precedence. Furthermore, let 'mul denote the equality on T (F ,V)\VSeq defined
as follows: s 'mul t iff

– s, t ∈ VInd and s ' t, or
– s = f(s1, . . . , sn), t = f(t1, . . . , tn), f ∈ FFix ∪FFlex and for all i, 1 ≤ i ≤ n,

sπ(i) 'mul ti or sπ(i) and ti are the same sequence variables, where π is a
permutation of 1, . . . , n.

For example, f(x, g(a, y, y), b) 'mul f(b, x, g(y, a, y)).
In the subsections below, first we define an ordering �mposvm on T (F ,V) \

VSeq, which is stable, and total on ground terms up to 'mul, when the precedence
is total. For the terms without sequence variables (i.e. on T (F ,V\VSeq))�mposvm

coincides with the multiset path ordering �mpo (also called the recursive path
ordering without status [KL80], [Der82]). After that, we extend �mposvm to
a stable ordering �mposv which is total on ground terms up to ', when the
precedence is total.

3.1 The Ordering �mposvm

Let � be an ordering on T (F ,V)\VSeq and ∼= be a congruence on T (F ,V)\VSeq.
We will need two extensions of � with respect to ∼=: the lexicographic extension
and the multiset extension.

The lexicographic extension of � with respect to ∼= is the relation �lex,∼= on
n-tuples over T (F ,V) defined by 〈s1, . . . , sn〉 �

lex,∼= 〈t1, . . . , tn〉, if there exists
k, 1 ≤ k ≤ n, such that

1. for all i, 1 ≤ i ≤ k, si
∼= ti or si and ti are the same sequence variables and

2. sk � tk, or tk ∈ svars(sk) and sk and tk are not the same sequence variables.

The multiset extension of� with respect to ∼= is the relation�mul,∼= on the set
M(T (F ,V)) of all multisets over T (F ,V) such that for all M,N ∈M(T (F ,V))
M �mul,∼= N iff

6

1. M and N are not equal up to ∼= and
2. for all n ∈ N \ M there exists m ∈ M \ N such that m � n, or n ∈

svars(m) and n and m are not the same sequence variables (the operation
\ is performed modulo ∼=).

First, we define a binary relation �mposvm (mposvm stands for multiset path
ordering with sequence variables ground total up to 'mul).

Definition 2. Let s, t ∈ T (F ,V)\VSeq and �F be a precedence. Then s �mposvm

t iff

1. t ∈ ivars(s) and s 6= t, or
2. s = f(s1, . . . , sm), m ≥ 0, t = g(t1, . . . , tn), n ≥ 0 and

(a) si �mposvm t or si 'mul t for some i with 1 ≤ i ≤ m or
(b) f �F g, and for all j with 1 ≤ j ≤ n, either s �mposvm tj or tj ∈

svars(s) or
(c) f = g, and
{s1, . . . , sm} �

mul,'mul

mposvm {t1, . . . , tn} and

{s1, . . . , sm} \ VSeq �
mul,'mul

mposvm {t1, . . . , tn} \ VSeq.

For better readibility we omit 'mul from the superscript of �mul,'mul

mposvm and

write �mul
mposvm.

It is easy to see that on T (F ,V \ VSeq) the relation �mposvm coincides with
�mpo: since on T (F ,V \ VSeq) we have {s1, . . . , sm} \ VSeq = {s1, . . . , sm} and
{t1, . . . , tn} \ VSeq = {t1, . . . , tn}, the case 2c) of the Definition 2 can be formu-
lated as “f = g, and {s1, . . . , sm} �

mul,'mul

mposvm {t1, . . . , tn}”, which gives exactly
the definition of �mpo (see, e.g. [Der82]).

In the next sections we will use the following property of �mposvm:

Theorem 1. �mposvm is stable under grounding substitutions.

Proof. We have to show that s �mposvm t implies sσ �mposvm tσ for all s, t ∈
T (F ,V) \ VSeq and a substitution σ grounding for s and t. We use well-founded
induction on |s|+ |t|.

1. s �mposvm t by the case 1) of the Definition 2. Then t ∈ ivars(s) and t 6= s.
Since σ is grounding for t, tσ is a strict ground subterm of sσ. By the subterm
property of �mpo we have sσ �mpo tσ. Since on ground terms the relations
�mposvm and �mpo coincide, we get sσ �mposvm tσ.

2. s �mposvm t by the case 2a) of the Definition 2. Then s = f(s1, . . . , sm),
m ≥ 0, and for some i, 1 ≤ i ≤ m, si �mposvm t or si 'mul t. If si �mposvm t,
then by the induction hypothesis siσ �mposvm tσ. Since σ is grounding for s
and t, sσ and tσ are ground terms. On the ground terms �mposvm and �mpo

coincide, therefore siσ �mpo tσ. By the subterm property of �mpo, sσ �mpo

siσ. By transitivity of �mpo, sσ �mpo tσ. If si 'mul t, then siσ 'mul tσ.
Therefore, by the subterm property of �mpo and compatibility of �mpo with
'mul, we get sσ �mpo tσ. Since on the ground terms �mpo and �mposvm

coincide, we get sσ �mposvm tσ.

7

3. s �mposvm t by the case 2b) of the Definition 2. Then s = f(s1, . . . , sm),
m ≥ 0, t = g(t1, . . . , tn), n ≥ 0, f �F g, and for all j with 1 ≤ j ≤ n,
either s �mposvm tj or tj ∈ svars(s). Then for an arbitrary but fixed j, if
s �mposvm tj , then by the induction hypothesis sσ �mposvm tjσ and, thus,
sσ �mpo tjσ. Therefore, sσ �mpo tσ and since on the ground terms �mpo

and �mposvm are the same relations, sσ �mposvm tσ. If tj ∈ svars(s) then
let the sequence r1, . . . , rk, k ≥ 0, be tjσ. Since σ is grounding for t, each rl

is a ground term and by the subterm property of �mpo we have sσ �mpo rl,
1 ≤ l ≤ k. Thus, if we denote tσ by g(u1, . . . , uk), then we have for all i,
1 ≤ i ≤ k, sσ �mpo ui. Therefore, sσ �mpo tσ and, thus, sσ �mposvm tσ.

4. s �mposvm t by the case 2c) of the Definition 2. Then s = f(s1, . . . , sm),
m ≥ 0, t = f(t1, . . . , tn), n ≥ 0, {s1, . . . , sm} �

mul
mposvm {t1, . . . , tn} and

{s1, . . . , sm} \ VSeq �
mul
mposvm {t1, . . . , tn} \ VSeq. Let the set {s1, . . . , sp} be

{s1, . . . , sm}\{t1, . . . , tn} and {t1, . . . , tq} be {t1, . . . , tn}\{s1, . . . , sm}. Then
for all j, 1 ≤ j ≤ q, there exists i, 1 ≤ i ≤ p, such that si �mposvm

tj or tj ∈ svars(si). From si �mposvm tj by the induction hypothesis
we get siσ �mposvm tjσ and, thus, siσ �mpo tjσ. From tj ∈ svars(si)
we have that tjσ is either the empty sequence, or a sequence r1, . . . , rk,
k ≥ 1, of proper ground subterms of the ground term siσ. In the last
case, by the subterm property of �mpo, we have siσ �mpo rl for all l
with 1 ≤ l ≤ k. Let {s1σ, . . . , sp′σ} be {s1σ, . . . , smσ} \ {t1σ, . . . , tnσ}
and {t1σ, . . . , tq′σ} be {t1σ, . . . , tnσ} \ {s1σ, . . . , smσ}. Since {s1, . . . , sm} \
VSeq �

mul
mposvm {t1, . . . , tn} \ VSeq, the set {s1σ, . . . , sp′σ} can not be empty,

i.e. {s1σ, . . . , smσ} can not be equal to {t1σ, . . . , tnσ} up to 'mul. Assume
without loss of generality that s1σ is a maximal element of {s1σ, . . . , spσ}
with respect to �mpo. Then for all j, 1 ≤ j ≤ q′, if tjσ is a single term, we
have s1σ �mpo tjσ, and if tjσ is a sequence of terms r1, . . . , rk, k > 1, then
we have s1σ �mpo rl for all l with 1 < l ≤ k. It implies sσ �mpo tσ and,
thus, sσ �mposvm tσ.

ut

Note that the stability property would not hold if we would have extended
�mpo on T (F ,V) \ VSeq in a straightforward way, i.e. to have the case 2c) of
Definition 2 formulated as follows: f = g and {s1, . . . , sm} �

mul
mposvm {t1, . . . , tn}.

A counterexample is the following: by this definition we have f(x, a) �mul
mposvm

f(a), but for σ = {x←}, f(x, a)σ 6�mul
mposvm f(a)σ.

It can also be proved that �mposvm is a transitive, irreflexive, monotonic, and
well-founded relation, which does not fulfil the deletion property (counterexam-
ple: f(x, a) 6�mposvm f(a)). It implies that �mposvm is a reduction (but not
simplification) ordering on T (F ,V) \ VSeq, which is total on T (F) up to 'mul if
the precedence �F is total.

3.2 The Ordering �mposv

Now we extend the ordering �mposvm to the ordering �mposv which is total on
ground terms up to ', if the precedence is total.

8

Definition 3. Let s, t ∈ T (F ,V) \ VSeq. Then s �mposv t iff

– s �mposvm t or
– s 'mul t, s = f(s1, . . . , sn), t = f(t1, . . . , tn) and 〈s1, . . . , sn〉 �

lex
mposv

〈t1, . . . , tn〉.

On T (F ,V \ VSeq) the relation �mposvm coincides with the lexicographic
extension of �mpo.

The following theorem establishes the most important property of �mposv:

Theorem 2. The relation �mposv is stable under grounding substitutions.

Proof. We have to show that s �mposv t implies sσ �mposv tσ for all s, t ∈
T (F ,V) \ VSeq and a substitution σ grounding for s and t. We use well-founded
induction on |s| + |t|. Suppose s �mposv t. If s �mposvm t then by grounding
stability of �mposvm we have sσ �mposv tσ for any grounding σ. If s 'mul t,
then s = f(s1, . . . , sn), t = f(t1, . . . , tn) and 〈s1, . . . , sn〉 �

lex
mposv 〈t1, . . . , tn〉.

From s 'mul t, by definition of 'mul we get sσ 'mul tσ for any grounding
σ. Therefore, by the definition of lexicographic extension and the induction hy-
pothesis, 〈s1σ, . . . , snσ〉 �lex

mposv 〈t1σ, . . . , tnσ〉 for any grounding σ, which implies
sσ �mposv tσ. ut

It can be proved that �mposv is a reduction ordering on T (F ,V)\VSeq, which
is total on T (F) up to ' if the precedence �F is total. However, as we will see
in the next section, only stability under grounding substitutions is sufficient for
our purposes.

4 Inference System

The following inference system is the classical strict superposition calculus (see
[NR95], [NR01]), with the only difference that in clauses and constraints se-
quence variables and flexible arity symbols are allowed to occur. The ordering
� is a reduction ordering for terms with sequence variables and flexible arity
symbols, which is total on ground terms when the precedence is total. In par-
ticular, �mposv can be taken for �. The constraint gr(s ' t,∆) expresses that
for all equations l ' r in ∆, the equation s ' t, i.e. the multiset {s, t} is strictly
greater than the multiset {l, r} with respect to the multiset extension of �:
{s, t} �mul,' {l, r}. The constraint greq(s ' t,∆) expresses {s, t} �mul,' {l, r}
for all l ' r in ∆.

Definition 4. The inference rules of the inference system I of strict superposi-
tion calculus are the following:

1. Strict superposition right:

(Γ ′ → ∆′, s′ ' t′ ‖ T ′) (Γ → ∆, s ' t ‖ T)

(Γ ′, Γ → ∆′,∆, s[t′]p ' t ‖ T ′ ∧ s′ � t′ ∧ s′ � Γ ′ ∧ gr(s′ ' t′,∆′)∧
T ∧ s � t ∧ s � Γ ∧ gr(s ' t,∆) ∧ s|p

.
= s′)

where s|p /∈ vars(s).

9

2. Strict superposition left:

(Γ ′ → ∆′, s′ ' t′ ‖ T ′) (Γ, s ' t→ ∆ ‖ T)

(Γ ′, Γ, s[t′]p ' t→ ∆′,∆ ‖ T ′ ∧ s′ � t′ ∧ s′ � Γ ′ ∧ gr(s′ ' t′,∆′)∧
T ∧ s � t ∧ s � Γ ∧ greq(s ' t, Γ ∪∆)∧
s|p

.
= s′)

where s|p /∈ vars(s).
3. Equality resolution:

(Γ, s ' t→ ∆ ‖ T)

(Γ → ∆ ‖ T ∧ greq(s ' t, Γ ∪∆) ∧ s
.
= t)

4. Factoring

(Γ → ∆, s ' t, s′ ' t′ ‖ T)

(Γ, t ' t′,→ ∆, s ' t ‖ T ∧ s � t ∧ s′ � t′ ∧ greq(s ' t,∆ ∪ {s′ ' t′})∧
s � Γ ∧ s

.
= s′)

The model generation proof method ([BG90], [BG94]) used in the complete-
ness proof for the strict superposition calculus for general constrained clauses
without sequence variables in [NR95] or [NR01] apply as well to the case with
sequence variables. Completeness holds for so called well-constrained sets of
clauses, which can be defined in the same way as in [NR01], only a slight re-
finement is needed for the notion of irreducible ground substitution: Let R be a
ground rewrite system contained in the given ordering �. A ground substitution
σ is irreducible by R, if for every x ∈ dom(σ), xσ is irreducible by R and for
every x ∈ dom(σ) either xσ is the empty sequence or xσ = t1, . . . , tn, such that
for all i, 1 ≤ i ≤ n, ti is irreducible with respect to R. Furthermore, if S is a set
of constrained clauses, then irredR(S) is its set of irreducible instances, that is,
the set of ground instances Cσ of clauses (C ‖ T) in S such that σ is a solution
of T , for all x ∈ vars(C) the term xσ is irreducible by R and for all x ∈ vars(C)
either xσ is the empty sequence or xσ = t1, . . . , tn, such that for all i, 1 ≤ i ≤ n,
ti is irreducible by R. Then well-constrained set is defined as follows:

Definition 5. A set S of constrained clauses is well-constrained if either there
are no clauses with equality predicates in S or else for all R contained in � we
have irredR(S) ∪R |= S.

The completeness theorem is formulated as follows:

Theorem 3. The inference system I is refutationally complete for a well-con-
strained set of clauses.

Proof. By the model generation method, as the completeness proof for the strict
superposition calculus for general constrained clauses without sequence variables
in [NR95] or [NR01]. ut

10

Example 1. Let S be the following set of clauses: {(→ f(g(x, a, y)) ' f(g(x),
g(y)) ‖ true), (f(g(b, a), g()) ' f(g(b), g(a)) →‖ true)}. Obviously S is well-
constrained. Let the ordering � be �mposv with the precedence f �F g �F

a �F b. Then we have the following refutation of S by the inference system I
(the ordering constraints which evaluate to true are omitted):

1. (→ f(g(x, a, y)) ' f(g(x), g(y)) ‖ true).

2. (f(g(b, a), g()) ' f(g(b), g(a))→‖ true).

3. (→ f(g(x), g(y)) ' f(g(z), g(u)) ‖ f(g(x, a, y))
.
= f(g(z, a, u)))

strict superposition right of the clause 1 and the (renamed copy of) clause
1.

4. (f(g(z), g(u)) ' f(g(b), g(a))→ ‖ f(g(x, a, y))
.
= f(g(z, a, u)) ∧ f(g(x),

g(y)) � f(g(z), g(u)) ∧ f(g(x), g(y))
.
= f(g(b, a), g()))

strict superposition left of the clause 3 and the clause 2.

5. (� ‖ f(g(x, a, y))
.
= f(g(z, a, u)) ∧ f(g(x), g(y)) � f(g(z), g(u)) ∧ f(g(x),

g(y))
.
= f(g(b, a), g()) ∧ f(g(z), g(u))

.
= f(g(b), g(a)))

equality resolution in the clause 4.

The constraint in the clause 5 is satisfiable. The substitution {z ← b, u ←
a, x← b, a, y ←} is a solution of it. Therefore, by Theorem 3, S is unsatisfiable.

Note that in the inference system the ordering constraints do not affect sound-
ness and completeness. Their purpose is to prune the search space. Therefore, we
do not really need to decide the satisfiability of ordering constraints, but would
like to detect many cases of unsatisfiable constraints. Therefore, for instance,
given an atomic constraint s �mposv t, we would like to use the ordering �mposv

for detecting that sσ �mposv tσ for no grounding σ (on ground terms �mposv

coincides with the lexicographic extension of �mpo). For this purpose the ground
stability property is sufficient. This was the reason why in the previous section
we concentrated on the stability under grounding substitutions.

The notions of saturation and redundancy defined in [NR01], [NR95] applies
to the case with sequence variables as well, which leads to the following result:

Theorem 4. Let S be a well-constrained set of clauses saturated with respect to
I. Then S is satisfiable iff � /∈ S.

Finally, note that for a special subclass of pure equational theories with
sequence variables and flexible arity symbols unfailing completion is a refuta-
tionally complete proving method. The special subclass consists of unit uncon-
strained equations, where sequence variables can occur only as the last arguments
in the terms. It was shown in [Kut02b] that this restriction makes unification
type finitary and matching type unitary. Completeness of the unfailing comple-
tion can be shown in the same way as the completeness of the classical unfailing
completion [BDP89] for the theories without sequence variables.

11

5 Conclusion

We presented an ordering for terms with sequence variables and flexible arity
symbols, which is stable under grounding substitutions and coincides with the
lexicographic extension of multiset path ordering on terms without sequence
variables. We showed that the classical strict superposition calculus with equality
and ordering constraints can be used as a refutationally complete proving method
for well-constrained sets of clauses with sequence variables and flexible arity
symbols.

6 Acknowledgments

I am grateful to Bruno Buchberger for his supervision and support, to Robert
Nieuwenhuis for very helpful remarks and to Mircea Marin for interesting dis-
cussions.

References

[BDJ+00] B. Buchberger, C. Dupré, T. Jebelean, F. Kriftner, K. Nakagawa, D. Vasaru,
and W. Windsteiger. The Theorema project: A progress report. In M. Kerber
and M. Kohlhase, editors, Symbolic Computation and Automated Reasoning
(Proceedings of CALCULEMUS 2000), pages 98–113, St.Andrews, UK, 6–7
August 2000.

[BDP89] L. Bachmair, N. Dershowitz, and D. Plaisted. Completion without failure.
In H. Aı̈t-Kaci and M. Nivat, editors, Resolution of Equations in Algebraic
Structures, volume 2, pages 1–30. Elsevier Science, 1989.

[BG90] L. Bachmair and H. Ganzinger. On restrictions of ordered paramodulation
with simplification. In M. E. Stickel, editor, Proceedings of the 10th Interna-
tional Conference on Automated Deduction, volume 449 of Lecture Notes in
Artificial Intelligence, pages 427–441, Kaiserslautern, Germany, July 1990.
Springer Verlag.

[BG94] L. Bachmair and H. Ganzinger. Rewrite-based equational theorem prov-
ing with selection and simplification. Journal of Logic and Computation,
4(3):217–247, 1994.

[BM97] B. Buchberger and M. Marin. Proving by simplification. In Proceedings
of the First International Theorema Workshop, RISC-Linz Technical Report
97-20, Hagenberg, Austria, 9–10 June 1997.

[BN98] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge Uni-
versity Press, New York, 1998.

[BS01] F. Baader and W. Snyder. Unification theory. In A. Robinson and
A. Voronkov, editors, Handbook of Automated Reasoning, volume I, chap-
ter 8, pages 445–532. Elsevier Science, 2001.

[Buc96] B. Buchberger. Mathematica as a rewrite language. In T. Ida, A. Ohori,
and M. Takeichi, editors, Proceedings of the 2nd Fuji International Workshop
on Functional and Logic Programming, pages 1–13, Shonan Village Center,
Japan, 1–4 November 1996. World Scientific.

[Buc01] B. Buchberger. Personal communication, 2001.

12

[Der82] N. Dershowitz. Orderings for term-rewriting systems. Theoretical Computer
Science, 17(3):279–301, 1982.

[DJ90] N. Dershowitz and J.-P. Jouannaud. Rewriting systems. In J. van Leeuwen,
editor, Handbook of Theoretical Computer Science, pages 243–320. Elsevier
Science, Amsterdam, 1990.

[Gen95] M. R. Genesereth. Epilog for Lisp 2.0 Manual. Technical report, Epistemics
Inc., Palo Alto, California, US, 1995.

[GF92] M. R. Genesereth and R. E. Fikes. Knowledge Interchange Format, Ver-
sion 3.0 Reference Manual. Technical Report Logic-92-1, Computer Science
Department, Stanford University, Stanford, California, US, June 1992.

[GW92] S. Ginsburg and X. S. Wang. Pattern matching by Rs-operations: Toward a
unified approach to querying sequenced data. In Proceedings of the 11th ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems,
pages 293–300, San Diego, California, US, 2–4 June 1992.

[Ham97] M. Hamana. Term rewriting with sequences. In Proceedings of the First
International Theorema Workshop, RISC-Linz Technical Report 97-20, Ha-
genberg, Austria, 9–10 June 1997.

[HM01] P. Hayes and C. Menzel. Semantics of knowledge interchange format.
http://reliant.teknowledge.com/IJCAI01/HayesMenzel-SKIF-IJCAI2001.pdf,
2001.

[KL80] S. Kamin and J.-J. Lévy. Two generalizations of the recursive path ordering.
Unpublished note, Department of Computer Science, University of Illinois,
Urbana, Illinois, US, 1980.

[Kut02a] T. Kutsia. Pattern unification with sequence variables and flexible arity
symbols. In M. Ojeda-Asiego, editor, Proceedings of the Workshop on Uni-
fication in Non-Classical Logics, volume 66, issue 5 of Electronic Notes on
Theoretical Computer Science. Elsevier Science, 2002.

[Kut02b] T. Kutsia. Unification in a free theory with sequence variables and flexi-
ble arity symbols and its extensions. SFB Report 02-6, Johannes Kepler
University, Linz, Austria, 2002.

[Kut02c] T. Kutsia. Unification with sequence variables and flexible arity symbols
and its extension with pattern-terms. In Artificial Intelligence, Automated
Reasoning and Symbolic Computation. Proceedings of Joint AICS’2002 –
Calculemus’2002 conference, volume 2385 of Lecture Notes in Artificial In-
telligence, Marseille, France, 1–5 July 2002. Springer Verlag.

[MB95] G. Mecca and A. J. Bonner. Sequences, Datalog and transducers. In Pro-
ceedings of the Fourteenth ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, pages 23–35, San Jose, California, US, 22–25
May 1995.

[NR92] R. Nieuwenhuis and A. Rubio. Basic superposition is complete. In B. Krieg-
Brückner, editor, Proceedings of the European Symposium of Programming,
volume 582 of Lecture Notes in Computer Science, Rennes, France, 1992.
Springer Verlag.

[NR95] R. Nieuwenhuis and A. Rubio. Theorem proving with ordering and equality
constrained clauses. Journal of Symbolic Computation, 19:321–351, 1995.

[NR01] R. Nieuwenhuis and A. Rubio. Paramodulation-based theorem proving. In
A. Robinson and A. Voronkov, editors, Handbook of Automated Reasoning,
volume I, chapter 7, pages 371–443. Elsevier Science, 2001.

[Rub95] A. Rubio. Theorem proving modulo associativity. In Proceedings of the
Conference of European Association for Computer Science Logic, Lecture
Notes in Computer Science, Paderborn, Germany, 1995. Springer Verlag.

13

[WB01] M. Widera and C. Beierle. A term rewriting scheme for function symbols
with variable arity. Technical Report No. 280, Praktische Informatik VIII,
FernUniversität Hagen, Germany, 2001.

[Wol99] S. Wolfram. The Mathematica Book. Cambridge University Press and Wol-
fram Research, Inc., fourth edition, 1999.

14

