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Abstract

In this paper we consider five conjectured harmonic number identities similar to
those arising in the context of supercongruences for Apéry numbers. The general
object of this article is to discuss the possibility of automating not only the proof
but also the discovery of such formulas. As a specific application we consider two
different algorithmic methods to derive and to prove the five conjectured identities.
One is based on an extension of Karr’s summation algorithm in difference fields.
The other method combines an old idea of Newton (which has been extended by
Andrews) with Zeilberger’s algorithm for definite hypergeometric sums.
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1 Introduction

For a positive integer n let Hn = 1 + 1
2

+ · · · + 1
n

denote the nth harmonic
number. It will be convenient to define Hn = 0 whenever n is non-positive.
The object of this paper is the discussion of two new algorithmic approaches
which are used to prove the following family of identities for n ≥ 1:

n
∑

j=0

(1 − j Hj + j Hn−j)

(

n

j

)

= 1, (1)

n
∑

j=0

(1 − 2 j Hj + 2 j Hn−j)

(

n

j

)2

= 0, (2)

n
∑

j=0

(1 − 3 j Hj + 3 j Hn−j)

(

n

j

)3

= (−1)n, (3)

n
∑

j=0

(1 − 4 j Hj + 4 j Hn−j)

(

n

j

)4

= (−1)n

(

2 n

n

)

, (4)

n
∑

j=0

(1 − 5 j Hj + 5 j Hn−j)

(

n

j

)5

= (−1)n
n
∑

j=0

(

n

j

)2 (
n + j

j

)

. (5)

It will be convenient to rewrite the left sides of these identities in the form

R(α)
n + S(α)

n (6)

where for α ∈ {1, . . . , 5},

R(α)
n =

n
∑

j=0

(

n

j

)α

and S(α)
n = α

n
∑

j=0

(n − 2j)Hj

(

n

j

)α

. (7)

Binomial sums like that on the right side of (5) play a crucial role in Apéry’s
approach to prove the irrationality of ζ(2) and ζ(3); see, for instance, the in-
formal report [vdP79]. In an attempt to prove certain ‘supercongruences’ for
Apéry numbers which were conjectured by Beukers, certain harmonic number
identities popped up in [AO00,Ah02] (see also the recent works of Mortenson
[Mor02a,Mor02b]). In particular, these formulas arise out of computations in-
volving the p-adic gamma function. This motivated S. Ahlgren to do a heuristic
search in order to explore whether there are more harmonic number identi-
ties of a similar form. The result of this study was a family of conjectured

identities, namely (1)–(5) above.
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Until recently there has been no algorithm to derive definite summation iden-
tities involving harmonic numbers. For example, the solution to ‘bonus prob-
lem 69’ [GKP94, Chapt. 6],“Find a closed form for

∑n
k=1 k2 Hn+k”, ends with

the remark, “It would be nice to automate the derivation of formulas such
as this”. This situation changed due to work [Sch02a,Sch02b,Sch02c,Sch02d]
of one of the authors which extends Karr’s indefinite summation algorithm
[Kar81,Kar85] (Karr’s algorithm is based on the theory of difference fields
[Coh65]). Schneider extends Karr’s method to definite summation and to solv-
ing linear difference equations with polynomial coefficients not only of first but
of arbitrary order. These developments have been implemented in the form
of the Mathematica package Sigma [Sch00], which we have used in all of our
computations for the examples below.

Remark. Our emphasis in this article is on the problem of automating the
derivation of such formulas as (1)–(5). Concerning computer assistance in
proving such formulas there are other recent methods; see, e.g., Chyzak’s gen-
eralization of the Gosper-Zeilberger algorithm [CS98] or Wegschaider’s pack-
age Multisum [Weg97] for simplifying multiple hypergeometric sums.

In Section 3 we will demonstrate how identities such as (1)–(5) can be proved
— and found — with the Sigma package. We want to emphasize that the un-
derlying algebraic theory is quite complex but also very general. As a conse-
quence, the scope of applications of Sigma is much broader. Besides hyper- and
q-hypergeometric sums which could also involve harmonic numbers and their
q-analogues, it can also handle summation problems built by multiple nested
sums of very general kind [Sch01]. Therefore it is natural to ask whether there
is a more elementary algorithmic approach for proving identities like (1)–(5).

It turns out that this is indeed the case. In Section 2 we introduce a new
algorithmic approach to prove definite harmonic number identities such as (1)–
(5). The two building blocks of this approach are well-known. Its algorithmic
ingredient is Zeilberger’s algorithm [Zei90,PWZ96] which is implemented in all
major computer algebra systems. This is combined with an operator method
for rewriting harmonic numbers in terms of binomial coefficients which, as
explained below, traces back to Newton.

In Section 4 we compare the methods of Section 2 and Section 3, and draw
some conclusions.

2 An Algorithmic Version of the Newton-Andrews Method

Let L be the operator which evaluates functions f(x) at x = 0, i.e., Lf(x) :=
f(0). Let D be differentiation with respect to x, i.e., D f(x) := f ′(x). It is an
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easy exercise to verify that for all integers n,

LD

(

x + n

n

)

= Hn. (8)

This crucial observation in many cases allows us to handle harmonic number
identities by reducing them to a hypergeometric problem, a technique often
used by G.E. Andrews in his work. In [AU85] one finds the following statement:
“Richard Askey has pointed out to us that indeed Issac Newton was the first
to see that the partial sums of the harmonic series arise from differentiation
of a product [N60, p. 561].”

We illustrate the method by an elementary example, namely S(n) :=
∑n

j=0 Hj,
n ≥ 0. Using (8) and then the hypergeometric summation identity [GKP94,
(5.9)]

n
∑

j=0

(

x + j

j

)

=
(

1 +
n

1 + x

)

(

x + n

n

)

, (9)

the given sum becomes

S(n) = LD
n
∑

j=0

(

x + j

j

)

= LD
(

1 +
n

1 + x

)

(

x + n

n

)

. (10)

By applying the product rule for differentiation this simplifies further to

S(n) = Hn+L

(

−
n

(1 + x)2

)

·L

(

x + n

n

)

+L
(

n

1 + x

)

·Hn = Hn−n+n Hn, (11)

which in turn becomes the well-known fact [GKP94, (6.67)]

n
∑

j=0

Hj = (n + 1) Hn − n, n ≥ 0. (12)

In this particular example the given sum as well as the underlying hypergeo-
metric summation (9) are indefinite, but obviously the method extends also
to the definite case. However, applying the method in this classical fashion
will always lead to the problem of simplifying the hypergeometric sums which
arise. Hence, from algorithmic point of view, it is a natural step to link the
Newton-Andrews method with Zeilberger’s paradigm of ‘creative telescoping’.
How such a combination is turned into an effective algorithm becomes trans-
parent in the proof of identity (1).

Proof of Identity (1). It is convenient to prove (1) in the equivalent form

n
∑

j=0

(n − 2j) Hj

(

n

j

)

= 1 − 2n, n ≥ 0, (13)
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which is obtained from (1) by geometric summation and by reversing the order

of summation in the sum
∑n

j=0 j Hn−j

(

n

j

)

. The left side of (13) is nothing but

S(1)
n , and we obtain from (8) that

S(1)
n = LD tn(x) where tn(x) :=

n
∑

j=0

(n − 2j)

(

x + j

j

)(

n

j

)

. (14)

Applying Zeilberger’s algorithm (we used Sigma) returns the recurrence rela-
tion

2(n + 1) tn(x) − (x + 3n + 3) tn+1(x) + (n + 1) tn+2(x) = 0, n ≥ 0. (15)

The next step is to apply the differentiation operator D to both sides of (15)
which results in the mixed differential-difference equation

2(n+1) t
′

n(x)−tn+1(x)−(x+3n+3) t
′

n+1(x)+(n+1) t
′

n+2(x) = 0, n ≥ 0. (16)

Finally we apply the operator L to both sides of (16) which gives

2(n + 1) S(1)
n − (3n + 3) S

(1)
n+1 + (n + 1) S

(1)
n+2 = tn+1(0), n ≥ 0. (17)

Now it is an elementary fact that for all n ≥ 0,

tn(0) =
n
∑

j=0

(n − 2j)

(

n

j

)

= 0, (18)

which can be also found by Gosper’s algorithm [Gos78]. Therefore, in order
to find the right side of (13) one only needs to solve

2 S(1)
n − 3 S

(1)
n+1 + S

(1)
n+2 = 0, n ≥ 0, (19)

with initial conditions S
(1)
0 = 0 and S

(1)
1 = −1, which again can be done

algorithmically. 2

2.1 The Newton-Andrews-Zeilberger Algorithm

Before summarizing in the form of an algorithm description, we recall that
Sn is a hypergeometric sequence if there exists a rational function r(x) such
that Sn+1/Sn = r(n) for all sufficiently large n. Similarly, a term f(n, j) is
called hypergeometric in n and j, if the quotients f(n + 1, j)/f(n, j) and
f(n, j + 1)/f(n, j) are rational functions in n and j.

Newton-Andrews-Zeilberger Algorithm. Input: a term f(n, j) which is
hypergeometric in n and j; Output: a linear recurrence of type (22) or (24),
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respectively, for the sum Sn of the form

Sn :=
∑

j

Hjf(n, j) or Sn :=
∑

j

f(n, j)/Hj, respectively. (20)

The algorithm can be applied if Zeilberger’s algorithm succeeds in finding a
recurrence for the sum tn(x) of the form

tn(x) :=
n
∑

j=0

(

x + j

j

)

f(n, j) or tn(x) :=
n
∑

j=0

(

x + j

j

)

−1

f(n, j), respectively.

(21)
By (8) we have that Sn = LD tn(x). Consequently, by applying to the tn(x)-
recurrence successively the operators D and L (as described in the proof of
identity (1)), a recurrence for Sn can be derived in the form

ad(n) Sn+d + ad−1(n) Sn+d−1 + · · · + a0(n) Sn =
d
∑

i=0

pi(n)tn+i(0), (22)

where the al(n) and pi(n) are polynomials in n, and where ad(n) is non-zero.

In addition, by Zeilberger’s algorithm and by difference equation solvers like
[Pet92] and [vH99] we can decide algorithmically (see also [A02]) whether

tn(0) =
n
∑

j=0

f(n, j) (23)

is a hypergeometric sequence in n. If so, each tn+i(0) is a rational function
multiple of tn(0) and therefore also σn :=

∑d
i=0 pi(n)tn+i(0). Consequently, the

recurrence (22) simplifies to

ad(n) Sn+d + ad−1(n) Sn+d−1 + · · · + a0(n) Sn = σn, (24)

where σn is a hypergeometric sequence in n.

Applications. Suppose the Newton-Andrews-Zeilberger algorithm outputs
a recurrence of the form (24). Then difference equation solvers like [Pet92]
and [vH99] can be used to decide algorithmically whether Sn finds a closed
form representation as a linear combination of hypergeometric terms. But
even if Sn does not find a closed form representation as a linear combination
of hypergeometric terms, it might happen that for a given sequence Rn the
sequence Rn + Sn does have such a representation, which is the case for the
identities (3) and (4); see below.

In general, suppose a linear recurrence for Rn is available in the form

be(n) Rn+e + be−1(n) Rn+e−1 + · · · + b0(n) Rn = τn (25)
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where τn is a hypergeometric sequence and the bl(n) are polynomials in n, and
be(n) is non-zero. Then using procedures from the packages [SZ94] or [Mal96],
the recurrences (22) and (24) can be combined into a single homogeneous
linear recurrence

ch(n) Tn+h + ch−1(n) Tn+h−1 + · · · + c0(n) Tn = 0 (26)

where the cl(n) are polynomials in n with ch(n) non-zero, which is satisfied by
the sequence Tn := Rn + Sn. Finally by applying difference equation solvers
like [Pet92] or [vH99] one finds a closed form representation of Rn + Sn as a
linear combination of hypergeometric terms.

In principle, there are possibilities to extend the Newton-Andrews-Zeilberger
algorithm to the case where the summand of Sn involves products (or quotients
of products) of harmonic numbers, but then one has to consider many extra
conditions. Nevertheless, such methods could contribute to possible extensions
of computer algebra packages that rely only on Zeilberger’s algorithm. Due to
the fact that Schneider’s extension of Karr’s work described in Section 3 cov-
ers all these applications in a natural way, we refrain from presenting further
details. Only for comparing the two methods, we give short versions of the
Newton-Andrews-Zeilberger derivations of (2)–(4). Concerning identity (5),
we emphasize the well-known fact that its right side is not expressible as a hy-
pergeometric term in n, so the Newton-Andrews-Zeilberger algorithm cannot
derive this representation. However for the sake of completeness we will briefly
describe how a variation of this method can be used to prove identity (5).

2.2 Newton-Andrews-Zeilberger Proofs of (2)–(5)

Proof of Identity (2). We use the well-known Vandermonde evaluation
∑

j

(

n

j

)2
=
(

2n

n

)

to rewrite (2) in the form

n
∑

j=0

(n − 2j) Hj

(

n

j

)2

= −
1

2

(

2n

n

)

, n ≥ 1. (27)

The rewrite rule (8) gives that

S(2)
n = LD tn(x) where tn(x) :=

n
∑

j=0

(n − 2j)

(

x + j

j

)(

n

j

)2

, (28)

and the Newton-Andrews-Zeilberger algorithm applied as in the proof of iden-
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tity (1) leads to the recurrence relation

2n(2n + 1)(3n + 5) S(2)
n − (n + 1)(15n2 + 31n + 12) S

(2)
n+1

+ (n + 1)(n + 2)(3n + 2) S
(2)
n+2

= (3n + 5)(4n + 1)tn(0) + (6n2 + 13n + 4)tn+1(0), n ≥ 1. (29)

Now it is an elementary fact that for all n ≥ 0,

tn(0) =
n
∑

j=0

(n − 2j)

(

n

j

)2

= 0, (30)

which can be also found by Gosper’s algorithm [Gos78]. Therefore, in order
to find the right side of (27) one only needs to solve

2n(2n + 1)(3n + 5) S(2)
n − (n + 1)(15n2 + 31n + 12) S

(2)
n+1

+ (n + 1)(n + 2)(3n + 2) S
(2)
n+2 = 0, n ≥ 1, (31)

with initial conditions S
(2)
1 = −1 and S

(2)
2 = −3, which again can be done

algorithmically by applying difference equation solvers like [Pet92] or [vH99].

2

Next we present the

Proof of Identity (3). According to (6), identity (3) is of the form

R(3)
n + S(3)

n = (−1)n. (32)

Now R(3)
n does not have a representation as a hypergeometric term since the

Zeilberger output recurrence for R(3)
n is

(n + 2)2 R
(3)
n+2 − (7n2 + 21n + 16) R

(3)
n+1 − 8(n + 1)2 R(3)

n = 0, (33)

which does not have any hypergeometric solution. Nevertheless, since the right
side of (32) is hypergeometric, we can apply the Newton-Andrews-Zeilberger
algorithm to find this evaluation. With this procedure we find

8(1 + n)3(2 + n)2
(

1281 + 1245n + 398n2 + 42n3
)

S(3)
n

+ (1 + n) (2 + n)2
(

3600 + 19701n + 25952n2 + 13953n3 + 3332n4 + 294n5
)

S
(3)
n+1

− (1 + n) ×
(

367440 + 995280n + 1138190n2 + 714313n3

+266290n4 + 59081n5 + 7236n6 + 378n7
)

S
(3)
n+2

− (1 + n) (3 + n)2
(

31600 + 65268n + 52370n2 + 20491n3 + 3920n4 + 294n5
)

S
(3)
n+3

+ (1 + n) (3 + n)2(4 + n)2
(

392 + 575n + 272n2 + 42n3
)

S
(3)
n+4 = 0 (34)
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as the recurrence for S(3)
n . As described above, we apply the package Gener-

atingFunctions.m with input (33) and (34) to obtain the recurrence

8(1 + n)2(2 + n)2(1281 + 1245n + 398n2 + 42n3)S(3)
n

+(2 + n)2(3600 + 19701n + 25952n2 + 13953n3 + 3332n4 + 294n5)S
(3)
n+1

+(−367440 − 995280n − 1138190n2 − 714313n3

−266290n4 − 59081n5 − 7236n6 − 378n7)S
(3)
n+2

−(3 + n)2(31600 + 65268n + 52370n2 + 20491n3 + 3920n4 + 294n5)S
(3)
n+3

+(3 + n)2(4 + n)2(392 + 575n + 272n2 + 42n3)S
(3)
n+4 = 0 (35)

for Tn := R(3)
n + S(3)

n . Finally with the solvers [Pet92] or [vH99] one finds that
Tn = (−1)n, which completes the proof of (3). 2

Proof of Identity (4) — Sketch. According to (6), identity (4) is of the
form

R(4)
n + S(4)

n = (−1)n

(

2n

n

)

. (36)

Again, R(4)
n does not have a representation as a hypergeometric term, so one

proceeds completely analogously to the proof of (3). We refrain from giving
the details; however, we mention the fact that despite obtaining again an order
4 recurrence for Tn := R(4)

n + S(4)
n , the integer coefficients of the polynomials

involved become quite large. 2

Using the Newton-Andrews-Zeilberger algorithm, not only can we prove the
identities (1)– (4), but we can also find the corresponding closed forms on
their right sides. With the last identity the situation is slightly different.

Proof of Identity (5)—Sketch. According to (6), identity (5) is of the form

R(5)
n + S(5)

n = An (37)

where

An = (−1)n
n
∑

j=0

(

n

j

)2(
n + j

j

)

(38)

is a sequence of Apéry numbers. Again Zeilberger’s algorithm and the Newton-
Andrews-Zeilberger algorithm deliver a recurrence for R(5)

n and S(5)
n , respec-

tively. As described above, from these recurrences one obtains a homogeneous
linear recurrence for Tn := R(5)

n + S(5)
n which turns out to be of order 6 (and

big enough to fill one page). But this time the right side An is a definite sum
which does not simplify to a hypergeometric term, so we are not able to find

An as the solution to this recurrence since there is no algorithm available for
this task so far. However, the task of proving identity (5) can be completed
algorithmically, for instance, as follows. With Zeilberger’s algorithm compute
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the recurrence

(n + 2)2 An+2 − (11n2 + 33n + 25) An+1 − (n + 1)2 An = 0. (39)

Then using procedures from the packages [SZ94] or [Mal96] with input (39)
and the Newton-Andrews-Zeilberger recurrence for Tn := R(5)

n + S(5)
n , one

computes a homogeneous linear recurrence for Qn := R(5)
n + S(5)

n − An which
turns out to be of order 6. Finally, checking that Qi = 0 for i from 1 to 6
completes the proof of (5). 2

3 Sigma: A Summation Package for Discovering and Proving

Karr developed an algorithm for indefinite summation [Kar81,Kar85] based
on the theory of difference fields [Coh65]. He introduced so called ΠΣ-fields
in which first order linear difference equations can be solved in full gener-
ality. This algorithm deals not only with sums over hypergeometric terms,
like Gosper’s algorithm [Gos78,PP95], or over q-hypergeometric terms, like
[PR97], but also with summations over terms in which, for example, the har-
monic numbers can appear in the denominator. Generally speaking, Karr’s
algorithm is the summation counterpart of Risch’s algorithm [Ris70] for in-
definite integration.

Inspired by this algorithm, Schneider developed a significantly more general al-
gorithmic summation theory [Bro00,Sch02a,Sch02b,Sch02c,Sch02d] also based
on difference field theory. In addition, Schneider implemented his algorithms
in the computer algebra system Mathematica. The corresponding summation
package Sigma also provides a user interface that dispenses the user from
working explicitly with difference fields. Instead, the user can handle all sum-
mation problems conveniently in terms of usual sum and product expressions;
see [Sch00,Sch01].

An important aspect of Schneider’s work is his extension of Karr’s original
method in such a way that definite summation problems can be treated too.
For example, in [Sch02a] it is shown how the definite summation identity

n
∑

j=0

Hj

(

n

j

)

= 2n Hn − 2n
n
∑

j=1

1

j 2j
, n ≥ 0. (40)

can be derived automatically with the Sigma package. Note that identity (40)

expresses the first definite summation component
∑n

j=0 Hj

(

n

j

)

of S(1)
n as a linear

combination of 2n times the indefinite sums Hn and
∑n

j=1
1

j 2j , respectively.
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3.1 Introductory Example

The definite sum
∑n

j=0 j Hj

(

n

j

)

is the second component of the sum S(1)
n . So,

before turning to the other S(α)
n we will first demonstrate how one can derive

for this sum an evaluation similar to (40).

We start the Mathematica session by loading the package with

In[1]:= << Sigma‘

Sigma - A summation package by Carsten Schneider c© RISC-Linz

Then we set up the summation problem as follows:

In[2]:= mySum =

SigmaSum[j SigmaHNumber[j]SigmaBinomial[n, j], {j,0,n}]

Out[2]=
n
∑

j=0

j Hj

(

n

j

).

Remark. The basic functions SigmaSum and SigmaProduct are used to de-
scribe all nested sum and product epressions that can be formulated in ΠΣ-
fields. To facilitate this task there are numerous other functions available, like
SigmaHNumber, SigmaBinomial or SigmaPower. For instance, SigmaHNumber[j]
produces the jth harmonic number Hj which alternatively could be described
by SigmaSum[1/k,{k,1,j}]. Additionally, in order to enable the user to define
his/her own objects that can be formulated with nested sums and products,
various help functions are provided.

In the first step we ask Sigma to compute a recurrence that is satisfied by
mySum:

In[3]:= rec = GenerateRecurrence[mySum]

Out[3]=
{

− 4n(1 + n) SUM[n]+

2
(

− 2 + n + 2n2
)

SUM[1 + n] − (−1 + n)(1 + n) SUM[2 + n] == 1 + n
}

This means that SUM[n] =
∑n

j=0 j Hj

(

n

j

)

(=mySum) satisfies the output re-

currence Out[3].

Remark. To compute such recurrences Zeilberger’s creative telescoping [Zei90]
has been extended from hypergeometric expressions to terms in ΠΣ-fields; for
more information see [Sch01].

Secondly, we try to find solutions to this recurrence. In the given situation
it turns out that the algorithm does not find any solution in the underlying
difference field F which has been constructed internally by the objects given
in the recurrence rec. The Sigma package is designed in such a way that when
it fails to find a solution to a recurrence within a given difference field F, then
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it also indicates that there is no sum extension of F in which a solution exists.
Therefore we try to extend F by an appropriate product extension. Finding
such product extensions is assisted by the function FindProductExtensions

which uses M. Petkovšek’s package Hyper [Pet92,Pet94,PWZ96]. This package
is able to find all hypergeometric solutions of linear recurrences such as Out[3]
and has to be loaded first.

In[4]:= << Hyper‘

In[5]:= FindProductExtensions[rec[[1]],SUM[n]]

I use M. Petkovsek’s package Hyper to find product extensions!

Out[5]=
{

n
∏

i=1

2
}

This step was successful: the output tells us that if we extend the given differ-
ence field F by the new element 2n, then we will find at least one non-trivial
solution to Out[3]. But the Sigma package can do much more. Namely, with
the next function call we can find not only solutions in F(2n), but also solu-
tions in all difference fields which extend F(2n) by nested sums built from the
elements of F(2n).

In[6]:= recSol = SolveRecurrence[rec[[1]],SUM[n],

NestedSumExt → ∞,Tower → {2n.}]

Out[6]=
{

{0, n 2n.},
{

0, n 2n.

n
∑

ι1=2

−2 + ι1

(−1 + ι1) ι1

}

,
{

1, n 2n.

n
∑

ι1=2

1

(−1 + ι1)ι12ι1.

}}

In this example we have succeeded completely; the output describes two linear
independent solutions of the homogeneous variation of the recurrence Out[3],
namely n 2n and n 2n

∑n
ι1=2

−2+ι1
(−1+ι1) ι1

, and one particular solution of the inho-

mogeneous recurrence itself, namely n 2n
∑n

ι1=2
1

(−1+ι1) ι1
.

Remark. These kind of solutions are called d’Alembertian solutions and are
introduced in [AP94]; further results can be found in [HS99] and [Sch01].

Finally, the closed form of mySum is that linear combination of the homogeneous
solutions plus the inhomogeneous solution which has exactly the same initial
values as mySum. This is also computed automatically:

In[7]:= result = FindLinearCombination[recSol,

mySum,2,MinInitialValue → 1]

Out[7]=
1

2
2n. +

1

2
n 2n.

n
∑

ι1=2

−2 + ι1

(−1 + ι1)ι1
+ n 2n.

n
∑

ι1=2

1

(−1 + ι1)ι1 2ι1.

Note that we were only able to find this linear combination starting from
n ≥ 1. This closed form evaluation of mySum for n ≥ 1 can be rewritten as
follows. Applying partial fraction decomposition to the summands gives

−2 + ι1
(−1 + ι1)ι1

= −
1

−1 + ι1
+

2

ι1
and

1

(−1 + ι1)ι12ι1
=

1

(−1 + ι1)2ι1
−

1

ι12ι1
.
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This motivates us to simplify Out[7] further by asking Sigma for a representa-
tion of the expression result by the sums Hn and

∑n
j=1

1
j 2j . This is done by

the following command.

In[8]:= SigmaReduce
[

result,n,Tower →
{

Hk,

n
∑

j=1

1

j 2j.

}]

Out[8]=
1

2

(

− 1 + (1 + n Hn) 2
n. − n 2n.

n
∑

j=1

1

j 2j.

)

Summarizing, with Sigma we found that

n
∑

j=0

j Hj

(

n

j

)

=
1

2

(

− 1 + 2n
(

1 + n Hn − n
n
∑

j=1

1

j 2j

)

)

(41)

holds for all n ≥ 1; by inspection we see that (41) holds for n = 0 as well.

3.2 Automatic Discovery of (1) and (2)

Combining (40) and (41) we obtain

n
∑

j=0

(A Hj + B j Hj)

(

n

j

)

= A
n
∑

j=0

Hj

(

n

j

)

+ B
n
∑

j=0

j Hj

(

n

j

)

=
1

2

(

− B + 2n
(

B + (2 A + B n)
(

Hn −
n
∑

j=1

1

j 2j

)))

.

For the specific choice A = n and B = −2 this leads us immediately to (13)
which, as pointed out above, is equivalent to (1).

Applying Sigma as in Section 3.1 we can find automatically the following two
identities

n
∑

j=0

Hj

(

n

j

)2

= (2 Hn − H2 n)

(

2n

n

)

, n ≥ 0, (42)

n
∑

j=0

j Hj

(

n

j

)2

=
1

4
(1 + 4 n Hn − 2 n H2 n)

(

2n

n

)

, n ≥ 1, (43)

which combine to

n
∑

j=0

(A Hj + B j Hj)

(

n

j

)2

= −
1

4
(B − 2 (2 A − B n) (2 Hn − H2 n))

(

2n

n

)

.
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By choosing A = n and B = −2 we obtain (27) which is equivalent to equa-
tion (2).

Summarizing, by using the package Sigma we not only succeeded in discover-
ing and proving the first two identities of the family (1) to (5), but derived
additionally as a by-product the identities (40),(41), (42), and (43).

3.3 Proving and Finding Identities

In the following we consider the identities (3)–(5). We abbreviate their left
sides by T (α)

n ; recalling (6) this means that T (α)
n := R(α)

n +S(α)
n for α ∈ {3, 4, 5}.

We will use two different approaches; one direct and one more sophisticated.
These are described in the two subsections below. For each approach the gen-
eral strategy will be the same; namely, we first compute recurrences for the
given left sides T (α)

n .

More precisely, in the first attempt we will compute these recurrences in the
classical way; i.e. by creative telescoping as in the previous subsection. In
the second attempt we compute recurrences in a more sophisticated manner,
namely by introducing additional sum extensions. It is crucial that these ex-
tensions can be found automatically and also that these extensions produce
recurrences of smaller order than the direct approach. It turns out that for
the given identities these smaller orders are even minimal. In addition to prov-
ing the identities, this fact enables us to find the right hand sides of (3)–(5)
without any further computations.

3.3.1 The Direct Approach

As mentioned above we first compute recurrences for the sums T (α)
n for α ∈

{3, 4, 5}.

In[9]:= mySum3 =
n
∑

j=0

(

(1 − 3 jHj + 3 (−j + n)Hj)

((

n

j

).)3
)

;

In[10]:= rec3 = GenerateRecurrence[mySum3]

Out[10]= {(−1− n) SUM[n] + (−3− 2 n) SUM[1 + n] + (−2− n) SUM[2 + n] == 0}

In[11]:= mySum4 =
n
∑

j=0

(

(1 − 4 jHj + 4 (−j + n) Hj)

((

n

j

).)4
)

;

In[12]:= rec4 = GenerateRecurrence[mySum4]

Out[12]=
{

4 (1 + 2 n)2 (11 + 8 n) SUM[n] + 2
(

29 + 110 n + 108 n2 + 32 n3
)

SUM[1 + n] + (2 + n)2 (3 + 8 n) SUM[2 + n] == 0
}
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In[13]:= mySum5 =
n
∑

j=0

(

(1 − 5 jHj + 5 (−j + n) Hj)

((

n

j

).)5
)

;

In[14]:= rec5 = GenerateRecurrence[mySum5]

Out[14]=
{

(1 + n)3(2 + n)
(

41752 + 59264n + 31245n2 + 7250n3 + 625n4
)

SUM[n]−

(2 + n)
(

3007560 + 10401664 n + 15087509 n2 + 11895816 n3+

5506508 n4 + 1496890 n5 + 221375 n6 + 13750 n7
)

SUM[1 + n]+
(

66648040 + 240325672 n + 372720670 n2 + 325025288 n3+

174496185 n4 + 59121186 n5 + 12356530 n6 + 1457750 n7+

74375 n8
)

SUM[2 + n] + (3 + n)
(

6783960+

21058536 n + 27279834 n2 + 19134404 n3 + 7861553 n4+

1895640 n5 + 248875 n6 + 13750 n7
)

SUM[3 + n] + (3 + n) (4 + n)3
(

7108 + 16024 n + 13245 n2 + 4750 n3 + 625 n4
)

SUM[4 + n] == 0
}

One can easily verify that (−1)n is a solution of recurrence rec3 and that

(−1)n
(

2n

n

)

is a solution of rec4. Checking initial values of both sequences

proves identities (3) and (4). Note that by applying difference equation solvers
like [Pet92] and [vH99] one is even able to find the closed form solutions (−1)n

and (−1)n
(

2n

n

)

automatically.

Since the right side of identity (5) is a definite sum, we have to proceed in a
slightly different way. Namely, we compute a recurrence that contains all the
solutions of rec5 and the recurrence given in (39). Using one of the packages
[SZ94] or [Mal96] it turns out that the resulting recurrence is again rec5. Since
the right side An defined in (38) is a solution of (39), the expression T (5)

n −An

is a solution of rec5. Consequently, checking that the first four initial values
of T (5)

n −An are 0 implies that T (5)
n −An is zero for all n ≥ 1, which completes

the proof of identity (5).

Remark. A different approach would be to combine T (5)
n − An into a single

definite sum expression and to compute its defining linear recurrence by ap-
plying the Sigma function call GenerateRecurrence to it. Again it turns out
that the result is recurrence rec5.

We want to emphasize that both strategies only prove identity (5). They do
not find its right side; this situation will change in the more sophisticated
approach of Section 3.2.2. Moreover, we remark that if one applies the Sigma

function call GenerateRecurrence directly to the left side sums in (3)–(5),
it turns out that the computations are much more involved and the orders
of the resulting recurrences in comparison to the orders of rec3 to rec5 are
increased by one. This indicates that ‘creative symmetrizing’ introduced for
hypergeometric sums in [Pau94] plays an essential role also in the algorithmic
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treatment of sums where, for instance, harmonic numbers are involved.

3.3.2 A More Sophisticated Approach: Recurrences with Sum Extensions

Schneider’s summation theory provides a new mechanism which finds certain
sum extensions automatically. The details of this method are described in
[Sch01, Section 4.4.3], so we restrict ourselves to brief descriptions of its appli-
cation to the identities (3)–(5). We shall see that the orders of the recurrences
computed by this approach are significantly smaller than those of rec3 to
rec5.

Identity (3). For mySum3 (resp. T (3)
n ) we are able to find the following recur-

rence of order 1 instead of order 2 as in Out[10].

In[15]:= rec3 = GenerateRecurrence[mySum3,

SimplifyByExt → DepthNumber]

Out[15]=
{

(1 + n) SUM[n] + (1 + n) SUM[1 + n] ==

3

(

n−
n
∑

ι1=1

(2 + n− 2 ι1) ι31 (
(

n

ι1

).
)
3

(1 + n− ι1)
3

)

}

In a second step we can show with Sigma that the sum on the right side is
equal to n for all n ≥ 0. This shows that T (3)

n satisfies

T (3)
n + T

(3)
n+1 = 0

which allows us to read off the closed form representation T (3)
n = (−1)n. Ob-

viously this recurrence for T (3)
n is the minimal possible one.

Identity (4). For mySum4 (resp. T (4)
n ) we are able to find the following recur-

rence of order 1 instead of order 2 as in Out[12].

In[16]:= rec4 = GenerateRecurrence[mySum4,

SimplifyByExt → DepthNumber]

Out[16]= 2 (1 + n) (1 + 2 n) SUM[n] + (1 + n)2 SUM[1 + n] ==

2 (3 + 8 n)
(

n−
n
∑

ι1=1

(2 + n− 2 ι1) ι41

(

(

n

ι1

).
)4

(1 + n− ι1)
4

)

}

In a second step we show with Sigma that the right side is equal to 0 for all
n ≥ 0. This proves that T (4)

n satisfies the recurrence

2 (1 + 2 n) T (4)
n + (1 + n) T

(4)
n+1 = 0;

identity (4) is a direct consequence of this result. In particular, this recurrence

has minimal order for (−1)n
(

2n

n

)

, therefore it is also the minimal recurrence
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for T (4)
n .

Identity (5). Finally, for mySum5 (resp. T (5)
n ), we find the following recurrence

of order 2 instead of order 4 as in Out[14].

In[17]:= rec5 = GenerateRecurrence[mySum5,

SimplifyByExt → DepthNumber]

Out[17]=
{

− (1 + n)2 (2 + n) SUM[n]+

(2 + n)
(

25 + 33 n + 11 n2
)

SUM[1 + n] + (2 + n)3 SUM[2 + n] ==

n (1 + n)
(

− 340− 690 n− 255 n2 + 525 n3 + 681 n4 + 319 n5 + 55 n6
)

+

(1 + n) (13 + 10 n)
n
∑

ι1=0

(2 + n− 2 ι1) ι51

(

(

n

ι1

).
)5

(1 + n− ι1)
5

−

(1 + n)5
(

109 + 154 n + 55 n2
)

n
∑

ι1=0

(3 + n− 2 ι1) ι51

(

(

n

ι1

).
)5

(1 + n− ι1)
5 (2 + n− ι1)

5

}

In a second step we show with Sigma that the right side is equal to 0 for all
n ≥ 0. Therefore we obtain the recurrence

−(1 + n)2 T (5)
n +

(

25 + 33 n + 11 n2
)

T
(5)
n+1 + (2 + n)2 T

(5)
n+2 = 0

for all n ≥ 0. Observing that this is, up to an alternating sign variation, the
well-known recurrence (39) of the Apéry numbers enables us to guess the right
side An in (5). The guess is verified by checking the first two initial values.
Again this recurrence is the minimal possible one for T (5)

n . Consequently, by
identifying the output recurrence as the Apéry recurrence we have even found

the right hand side of identity (5).

4 Conclusion

Before we conclude with an open problem we compare the two different ap-
proaches of the previous sections.

In the Newton-Andrews-Zeilberger approach, using (8) one sets up a more gen-
eral hypergeometric summation problem that contains the original harmonic
number summation. For this more general problem a Zeilberger recurrence is
computed. In order to solve the original harmonic number summation problem,
this recurrence is specialized by differentiation and evaluation. The generality
of this approach is also its computational bottleneck. More precisely, in many
cases this ansatz finds only recurrences with a drastically higher recurrence
order than necessary. For instance, for proving identity (5) we have to compute
a recurrence of order 6 instead of order 4 as in Out[14] or order 2 as in Out[17].
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Moreover, when products or quotients of several harmonic numbers appear in
the summand, one has to introduce additional variables in order to translate
the problem to the hypergeometric setting which reduces the efficiency of the
algorithm tremendously. Additionally, in this case, as pointed out in Section 2,
one has to consider many extra conditions. Depending on their complexity, in
general there is no guarantee that a desired recurrence for the given definite
summation problem can be derived by restricting to hypergeometric tools only.
Nevertheless, in practice many problems are of the simple type (20); so the
Newton-Andrews-Zeilberger approach could well serve as a useful extension
of any implementation of Zeilberger’s algorithm.

The approach followed by the Sigma package is completely different. Nested
sum expressions, including summations involving harmonic numbers, are
translated in a natural way into the corresponding difference field setting
and, by using a very general algebraic machinery, the problem is solved there.
Clearly, if one restricts these general algorithms to the hypergeometric case,
they cannot compete in performance with the hypergeometric special purpose
provers and solvers. But, due to the richness of the underlying algebraic struc-
ture, the Sigma approach provides much more flexibility and efficiency when
dealing with definite nested sum expressions. Here we want to mention that
with the Sigma package we can go on to compute recurrences for the sums
T (α)

n as illustrated in Subsection 3.3.2. For instance, for α = 6 and α = 7 we
obtain recurrences that are quite out of scope for the ‘naive’ hypergeometric
approach, namely

3 (1 + n) (2 + 3 n) (4 + 3 n) T (6)
n −

(3 + 2 n)
(

30 + 39 n + 13 n2
)

T
(6)
n+1 − (2 + n)3 T

(6)
n+2 = 0 (44)

and

−(1 + n)4
(

39 + 33 n + 7 n2
)

T (7)
n −

(

56667 + 199575 n + 290457 n2+

223446 n3 + 95773 n4 + 21675 n5 + 2023 n6
)

T
(7)
n+1+

(

29445 + 89733 n + 111973 n2 + 73282 n3 + 26575 n4 + 5073 n5+

399 n6
)

T
(7)
n+2 + (3 + n)4

(

13 + 19 n + 7 n2
)

T
(7)
n+3 = 0. (45)

Using the Sigma package, we computed recurrences for T (α)
n up to α = 9.

Remarkably, for 3 ≤ α ≤ 9, these recurrences are the same as the recurrences
we computed with Sigma or Zeilberger’s algorithm for the hypergeometric sum

U (α)
n :=

n
∑

j=0

(n − 2j)

(

n

j

)α

, (46)

also parameterized by α. We do not know whether the Zeilberger recurrences
for U (α)

n coincide with the minimal recurrences of the T (α)
n for all α ≥ 3. Note

that the sums T (α)
n are highly non-trivial whereas it is easy to prove that the

U (α)
n evaluate to zero for all α, n ≥ 0.
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Another open problem is the question of whether the sum T (α)
n for all α ≥ 3

finds a representation in terms of a definite hypergeometric single-sum.
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[Pet92] M. Petkovšek. Hypergeometric solutions of linear recurrences with
polynomial coefficients. J. Symbolic Comput., 14(2-3):243–264, 1992.
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