Publications of the Project F1308
Article - 2002
September 27, 2008
Article - 2002
September 27, 2008
Bibliography
- 1
- H. Benameur and B. Kaltenbacher.
Regularization of parameter estimation by adaptive discretization using refinement and coarsening indicators.
Journal of Inverse and Ill-Posed Problems, 10(6):561-583, 2002. - 2
- M. Burger, V. Capasso, and G. Eder.
Modelling crystallization of polymers in temperature fields.
Z. Angew. Math. Mech., 82:51-63, 2002. - 3
- M. Burger, V. Capasso, and S. Salani.
Modelling multi-dimensional crystallization of polymers in interaction with heat transfer.
Nonlinear Analysis, Series B, Real World Applications, 3:139-160, 2002. - 4
- M. Burger, H. W. Engl, J. Haslinger,
and U. Bodenhofer.
Regularized data-driven construction of fuzzy controllers.
J. Inverse and Ill-posed Problems, 10:319-344, 2002. - 5
- M. Burger and W. Mühlhuber.
Iterative regularization of parameter identification problems by SQP-methods.
Inverse Problems, 18:943-970, 2002. - 6
- M. Burger and W. Mühlhuber.
Numerical approximation of an SQP-type method for parameter identification.
SIAM J. Numer. Anal., 40(5):1775-1797, 2002. - 7
- H. W. Engl and P. Kügler.
Identification of a temperature dependent heat conductivity by Tikhonov regularization.
J. of Inverse and Ill-Posed Problems, 10:67-90, 2002. - 8
- B. Kaltenbacher, A. Neubauer, and
A. Ramm.
Convergence rates of the continuous regularized Gauss-Newton method.
J. Inv. Ill-Posed Problems, 10:261-280, 2002. - 9
- B. Kaltenbacher and J. Schicho.
A multi-grid method with a priori and a posteriori level choice for the regularization of nonlinear ill-posed problems.
Numerische Mathematik, 93(1):77-107, 2002. - 10
- B. Kaltenbacher and J. Schöberl.
A saddle point variational formulation for projection-regularized parameter identification.
Numerische Mathematik, 91(4):675-697, 2002.
Please direct your comments
or eventual problem reports to webmaster.
SpezialForschungsBereich SFB F013 | Special Research Program of the FWF - Austrian Science Fund
SpezialForschungsBereich SFB F013 | Special Research Program of the FWF - Austrian Science Fund