Publications of the Project F1306
TechRepMisc
September 27, 2008
TechRepMisc
September 27, 2008
Bibliography
- 1
- T. Apel, S. Nicaise, and
J. Schöberl.
Crouzeix-Raviart type finite elements on anisotropic meshes.
Technical Report 99-10, TU Chemnitz, SFB 393, 1999. - 2
- T. Apel and J. Schöberl.
Multigrid methods for anisotropic edge refinement.
Technical Report 00-19, SFB Report, 2000. - 3
- M. Brokate, C. Carstensen, and
J. Valdman.
A quasi-static boundary value problem in multi-surface elastoplasticity: Part 1 - Analysis.
SFB Report 03-16, Johannes Kepler University Linz, SFB ``Numerical and Symbolic Scientific Computing'', 2003. - 4
- M. Brokate, C. Carstensen, and
J. Valdman.
A quasi-static boundary value problem in multi-surface elastoplasticity: Part 2 - Numerical solution.
Technical Report 2004-11, Johannes Kepler University Linz, SFB ``Numerical and Symbolic Scientific Computing'', 2004. - 5
- C. Carstensen, A. Orlando, and
J. Valdman.
A convergent adaptive finite element method for the primal problem of elastoplasticity.
Technical Report 2005-12, Institute of Mathematics, Humboldt-Universität zu Berlin, 2005. - 6
- Z. Dostál and J. Schöberl.
Minimizing quadratic functions over non-negative cone with the rate of convergence and finite termination.
Technical report, Department of Applied Mathematics, Univ. Ostrava CZ, 2003. - 7
- C. C. Douglas, G. Haase, and
M. Iskandarani.
An additive Schwarz preconditioner for the spectral element ocean model formulation of the shallow water equations.
Technical Report 01-22, SFB F013, June 2001. - 8
- P. G. Gruber and J. Valdman.
Solution of elastoplastic problems based on the Moreau-Yosida Theorem.
SFB Report 2006-05, Johannes Kepler University Linz, SFB ``Numerical and Symbolic Scientific Computing'', 2006. - 9
- P. G. Gruber and J. Valdman.
Newton-like solver for elastoplastic problems with hardening and its local super-linear convergence.
Technical report, Johannes Kepler University Linz, SFB ``Numerical and Symbolic Scientific Computing'', 2007. - 10
- G. Haase.
Algebraic multigrid with local support.
SFB-Report 99-29, University Linz, SFB F013, Dec. 1999. - 11
- G. Haase.
A parallel AMG for overlapping and non-overlapping domain decomposition.
SFB-Report 99-05, University Linz, SFB F013, June 1999. - 12
- G. Haase, M. Kuhn, and U. Langer.
Parallel multigrid 3D maxwell solvers.
SFB-Report 99-23, University Linz, SFB F013, Dec. 1999. - 13
- G. Haase, M. Kuhn, and S. Reitzinger.
Parallel AMG on distributed memory computers.
SFB Report 00-16, Johannes Kepler University Linz, SFB F013, 2000. - 14
- G. Haase, U. Langer, S. Reitzinger,
and J. Schöberl.
A general approach to Algebraic Multigrid methods.
SFB Report 00-33, Johannes Kepler University, 2000. - 15
- A. Hofinger and J. Valdman.
Numerical solution of the two-yield elastoplastic minimization problem.
SFB Report 2006-18, Johannes Kepler University Linz, SFB ``Numerical and Symbolic Scientific Computing'', 2006. - 16
- B. Kaltenbacher, M. Kaltenbacher, and
S. Reitzinger.
Identification of nonlinear B-H curves based on magnetic field computations and multigrid methods for ill-posed problems.
SFB-Report 01-17, SFB F013, University of Linz, May 2001. - 17
- B. Kaltenbacher and J. Schöberl.
A saddle point variational formulation for projection-regularized parameter identification.
Technical Report 00-13, SFB Report, 2000. - 18
- M. Kaltenbacher and S. Reitzinger.
Algebraic multigrid for static nonlinear 3D electromagnetic field computations.
Technical Report 00-07, SFB F013, 2000. - 19
- J. Kienesberger.
Multigrid preconditioned solvers for some elasto-plastic problems.
SFB Report 03-15, Johannes Kepler University Linz, SFB ``Numerical and Symbolic Scientific Computing'', 2003. - 20
- J. Kienesberger and J. Valdman.
Computational plasticity.
Poster, SFB-Conference on ``Numerical and Symbolic Scientific Computing'', June 2003. - 21
- M. Kuhn, U. Langer, and
J. Schöberl.
Scientific computing tools for 3D magnetic field problems.
SFB-Report 99-13, Johannes Kepler University Linz, August 1999. - 22
- U. Langer, A. Pohoata, and
O. Steinbach.
Dual-primal boundary element tearing and interconnecting methods.
Technical Report Bericht 2005/6, Technische Universität Graz, Institut für Mathematik D, 2005. - 23
- E. Radmoser, O. Scherzer, and
J. Schöberl.
A cascadic algorithm for bounded variation regularization.
Technical Report 00-23, SFB ``Numerical and Symbolic Scientific Computing'', 2000. - 24
- S. Reitzinger.
Algebraic multigrid and element preconditioning I.
SFB Report 98-15, Special Research Program SFB F013, 1998. - 25
- S. Reitzinger.
Algebraic multigrid and element preconditioning II.
Technical Report 99-18, Johannes Kepler Universität Linz, Institut für Mathematik, 1999. - 26
- S. Reitzinger and J. Schöberl.
Algebraic multigrid for edge elements.
Technical Report 00-15, SFB Report, 2000. - 27
- S. Repin and J. Valdman.
Functional a posteriori error estimates for problems with nonlinear boundary conditions.
Technical Report 2006-25, Johannes Radon Institute for computational and applied mathematics (RICAM), 2006. - 28
- M. Schinnerl and J. Schöberl.
Multigrid methods for the 3D simulation of nonlinear magneto-mechanical systems.
SFB-Report 99-30, University Linz, SFB F013, Dec. 1999. - 29
- J. Schöberl.
Objektorientiertes Finite Element Programm FEPP.
Johannes Kepler Universität Linz, Institut für Mathematik, 1998.
Programmdokumentation via http://nathan.numa.uni-linz.ac.at/Staff/joachim/cpp/doc/index.html. - 30
- J. Schöberl.
Multigrid methods for a class of parameter dependent problems in primal variables.
Technical Report 99-03, University Linz, SFB013, 1999. - 31
- J. Schöberl.
Commuting quasi-interpolation operators for mixed finite elements.
Technical Report ISC-01-10-MATH, Texas AM University, Institute for Scientific Computation, College Station, Texas, 2001.
- 32
- J. Schöberl.
High order finite elements.
Chemnitzer FEM Symposium, Poster presentation, September 2003.
Please direct your comments
or eventual problem reports to webmaster.
SpezialForschungsBereich SFB F013 | Special Research Program of the FWF - Austrian Science Fund
SpezialForschungsBereich SFB F013 | Special Research Program of the FWF - Austrian Science Fund