Publications of the Project F1306
Article
September 27, 2008
Article
September 27, 2008
Bibliography
- 1
- A. Anwander, M. Kuhn, S. Reitzinger,
and C. Wolters.
A parallel algebraic multigrid solver for the finite element method based source localization in the human brain.
Computing and Visualization in Science, 5(3):165-177, December 2002. - 2
- T. Apel, S. Nicaise, and
J. Schöberl.
Crouzeix-Raviart type finite elements on anisotropic meshes.
Numerische Mathematik, 89(2):193-223, 2001. - 3
- T. Apel, S. Nicaise, and
J. Schöberl.
A non-conforming finite element method with anisotropic mesh grading for the Stokes problem in domains with edges.
IMA Journal of Numerical Analysis, 21:843-856, 2001. - 4
- T. Apel and J. Schöberl.
Multigrid methods for anisotropic edge refinement.
SIAM J. Numer. Anal, 40(5):1993-2006, 2002. - 5
- F. Bachinger, U. Langer, and
J. Schöberl.
Numerical analysis of nonlinear multiharmonic eddy current problems.
Numerische Mathematik, 100:593-616, 2005. - 6
- S. Beuchler, T. Eibner, and U. Langer.
Primal and dual interface concentrated iterative substructuring methods.
submitted, 2007.
see also RICAM-Report Nr. 2007-7. - 7
- S. Beuchler and V. Pillwein.
Sparse shape functions for tetrahedral-FEM using integrated Jacobi polynomails.
Computing, 80(4):345-375, 2007. - 8
- S. Beuchler and J. Schöberl.
Extension operators on tensor product structures in 2d and 3d.
Applied Numerical Mathematics, 54:391-405, 2005. - 9
- S. Beuchler and J. Schöberl.
New shape functions for triangular p-FEM using integrated Jacobi polynomials.
Num. Math., 103:339-366, 2006. - 10
- M. Brokate, C. Carstensen, and
J. Valdman.
A quasi-static boundary value problem in multi-surface elastoplasticity: Part 1 - Analysis.
Mathematical methods in the applied sciences, 27:1697-1710, 2004. - 11
- M. Brokate, C. Carstensen, and
J. Valdman.
A quasi-static boundary value problem in multi-surface elastoplasticity: Part 2 - Numerical solution.
Mathematical Models and Methods in Applied Sciences, 28(8):881-901, 2005. - 12
- C. Carstensen, A. Orlando, and
J. Valdman.
A convergent adaptive finite element method for the primal problem of elastoplasticity.
Inter. J. Numer. Meth. Engns., 67(13):1851-1887, 2007. - 13
- C. Carstensen and J. Schöberl.
Residual-based a posteriori error estimate for a mixed Reissner-Mindlin plate finite element method.
Numerische Mathematik, 103:225-250, 2006. - 14
- Z. Dostál and J. Schöberl.
Minimizing quadratic functions over non-negative cone with the rate of convergence and finite termination.
Computational Optimization and Applications, 30:23-44, 2005. - 15
- J. Gerstmayr and J. Schöberl.
A 3D finite element approach to flexible multibody systems.
Multibody System Dynamics, 15:309-324, 2006. - 16
- M. Günther, U. Langer, and U. van
Rienen.
Resume of the collection of articles on scientific computing in electrical engineering.
Surv. Math. Ind., 9(2):151-155, 1999. - 17
- G. Haase.
A parallel AMG for overlapping and non-overlapping domain decomposition.
Electronic Transactions on Numerical Analysis (ETNA), 10:41-55, 2000. - 18
- G. Haase, M. Kuhn, and U. Langer.
Parallel multigrid 3D Maxwell solvers.
Parallel Computing, 6(27):761-775, 2001. - 19
- G. Haase, M. Kuhn, and S. Reitzinger.
Parallel AMG on distributed memory computers.
SIAM Journal of Scientific Computing, 24(2):410-427, 2002. - 20
- G. Haase, U. Langer, S. Reitzinger,
and J. Schöberl.
Algebraic multigrid methods based on element preconditioning.
International Journal of Computer Mathematics, 78(4):575-588, 2001. - 21
- G. Haase and S. Reitzinger.
Cache issues of algebraic multigrid methods for linear systems with multiple right-hand sides.
SIAM Journal on Scientific Computing, 27(1):1-18, 2005. - 22
- B. Heise, M. Kuhn, and U. Langer.
A mixed variational formulation for 3D linear and nonlinear magnetostatics in the space.
Hungarian Electronic Journal, (ANM-981030-A), 1999.
(ISSN 1418-7108). - 23
- A. Hofinger and J. Valdman.
Numerical solution of the two-yield elastoplastic minimization problem.
Computing, 2007.
(accepted). - 24
- B. Kaltenbacher, M. Kaltenbacher, and
S. Reitzinger.
Identification of nonlinear B-H curves based on magnetic field computations and multigrid methods for ill-posed problems.
European Journal of Applied Mathematics, 14(1):13-38, 2003. - 25
- B. Kaltenbacher and J. Schöberl.
A saddle point variational formulation for projection-regularized parameter identification.
Numerische Mathematik, 91(4):675-697, 2002. - 26
- M. Kaltenbacher and S. Reitzinger.
Algebraic multigrid methods for nodal and edge based discretizations of Maxwell's equations.
International Compumag Society Newsletter, 9(2):15-23, 2002. - 27
- M. Kaltenbacher and S. Reitzinger.
Appropriate finite element formulations for 3D electromagnetic field problems.
IEEE Transaction on Magnetics, 38(2):513-516, 2002. - 28
- M. Kaltenbacher and S. Reitzinger.
Nonlinear 3D magnetic field computations using Lagrange FE-functions and algebraic multigrid.
IEEE Transaction on Magnetics, 32(2):1489-1496, 2002. - 29
- M. Kaltenbacher, S. Reitzinger, and
J. Schöberl.
Algebraic multigrid for solving 3d nonlinear electrostatic and magnetostatic field problems.
IEEE Transactions on Magnetics, 36:1557-1560, 2000. - 30
- V. G. Korneev, U. Langer, and
L. Xanthis.
Fast adaptive domain decomposition algorithms for hp-discretizations of 2-d and 3-d elliptic equations: Recent advances.
Hermis-: An International Journal of Computer Mathematics and its Applications, 4(4):27-44, 2003.
- 31
- V. G. Korneev, U. Langer, and
L. Xanthis.
On fast domain decomposition solving procedures for-discretizations of 3D elliptic problems.
Computational Methods in Applied Mathematics, 3(4):536-559, 2003. - 32
- U. Langer, G. Of, O. Steinbach, and
W. Zulehner.
Inexact data-sparse boundary element tearing and interconnecting methods.
SIAM Journal on Scientific Computing, 29(1):290-314, 2007. - 33
- U. Langer and O. Steinbach.
Boundary element tearing and interconnecting methods.
Computing, 71(3):205-228, 2003. - 34
- R. D. Lazarov, J. E. Pasciak,
J. Schöberl, and P. S. Vassilevski.
Almost optimal interior penalty discontinuous approximations of symmetric elliptic problems on non-matching grids.
Numerische Mathematik, 96:295-315, 2003. - 35
- S. Reitzinger and M. Kaltenbacher.
Algebraic multigrid for magnetostatic field problems.
IEEE Transactions on Magnetics, 38(2):477-480, 2002. - 36
- S. Reitzinger and J. Schöberl.
An algebraic multigrid method for finite element discretizations with edge elements.
Numerical Linear Algebra with Applications, 9(3):223-238, 2002. - 37
- S. Repin and J. Valdman.
Functional a posteriori error estimates for problems with nonlinear boundary conditions.
Journal of Numerical Mathematics, 2007.
(accepted). - 38
- M. Schinnerl, M. Kaltenbacher,
U. Langer, R. Lerch, and J. Schöberl.
An efficient method for the numerical simulation of magneto-mechanical sensors and actuators.
European Journal of Applied Mathematics, 18:233-271, 2007. - 39
- M. Schinnerl, M. Kaltenbacher, and
J. Schöberl.
Nested multigrid methods for the fast numerical computation of 3d magnetic fields.
IEEE Transactions on Magnetics, 36:1561-1564, 2000. - 40
- M. Schinnerl, U. Langer, and R. Lerch.
Multigrid simulation of electromagnetic actuators.
ZAMM, 81:729-730, 2001. - 41
- M. Schinnerl, J. Schöberl,
M. kaltenbacher, U. Langer, and R. Lerch.
Multigrid methods for the fast numerical simulation of coupled magnetomechanical systems.
ZAMM, 80:117-120, 2000. - 42
- M. Schinnerl, J. Schöberl,
M. Kaltenbacher, and R. Lerch.
Multigrid methods for the 3D simulation of nonlinear magneto-mechanical systems.
IEEE Transactions Magnetics, 38(3):1497-1511, 2002. - 43
- J. Schöberl.
NETGEN: An advancing front 2d/3d mesh generator based on abstract rules.
Comput. Visual. Sci., pages 41-52, 1998. - 44
- J. Schöberl.
Non-conforming Nodal-value Discretization and Multigrid Methods for-order Problems.
ZAMM, 78:1059-1060, 1998. - 45
- J. Schöberl.
Solving the Signorini Problem on the Basis of Domain Decomposition Techniques.
Computing, 60(4):323-344, 1998. - 46
- J. Schöberl.
Multigrid methods for a parameter dependent problem in primal variables.
Numer. Math., 84:97-119, 1999. - 47
- J. Schöberl.
Efficient contact solvers based on domain decomposition techniques.
Computers and Mathematics with Applications, 42:1217-1228, 2001. - 48
- J. Schöberl and S. Zaglmayr.
High order Nédélec elements with local complete sequence property.
J. for Computations and Mathematics in Electrical and Electronic Engineering, 24:374-384, 2005. - 49
- J. Schöberl and W. Zulehner.
On Schwarz-type smoothers for saddle point problems.
Numerische Mathematik, 95:377-399, 2003.
Please direct your comments
or eventual problem reports to webmaster.
SpezialForschungsBereich SFB F013 | Special Research Program of the FWF - Austrian Science Fund
SpezialForschungsBereich SFB F013 | Special Research Program of the FWF - Austrian Science Fund