Publications of the Project F1305
TechRepMisc - 2007
September 27, 2008
TechRepMisc - 2007
September 27, 2008
Bibliography
- 1
- I. Bierenbaum, J. Blümlein,
S. Klein, and C. Schneider.
Difference equations in massive higher order calculations.
Technical Report 2007-19, SFB F013, J. Kepler University Linz, 2007. - 2
- M. Kauers.
Computer algebra for special function inequalities.
Technical Report 2007-07, SFB F13, Altenbergerstrasse 69, March 2007. - 3
- M. Kauers.
Summation algorithms for stirling number identities.
Technical Report 2007-11, SFB F013, Altenbergerstrasse 69, 2007. - 4
- M. Kauers and C. Koutschan.
A mathematica package for q-holonomic sequences and power series.
Technical Report 2007-16, SFB F013, 2007. - 5
- M. Kauers and C. Schneider, February 2007.
- 6
- M. Kauers and C. Schneider.
Automated proofs for some stirling number identities.
Technical Report 2007-23, SFB F013, J. Kepler University Linz, 2007. - 7
- M. Kauers and C. Schneider.
Symbolic summation with radical expressions.
Technical Report 2007-02, SFB F13, Altenbergerstrasse 69, January 2007. - 8
- C. Koutschan.
Computer algebra systems - a practical guide (michael wester, editor), 2007. - 9
- C. Koutschan.
Linear recurrences and power series division.
Technical Report 2007-20, SFB F013, Johannes Kepler University, A-4040 Linz, 2007. - 10
- S. Moch and C. Schneider.
Feynman integrals and difference equations.
Technical Report 2007-22, SFB F013, J. Kepler University Linz, 2007. - 11
- S. Radu.
New upper bounds on rubik's cube.
Technical Report 07-08, Combinatorics, 2007. - 12
- C. Schneider.
Parameterized telescoping proves algebraic independence of sums.
Poster presentation at FPSAC 2007, 2007. - 13
- C. Schneider.
A refined difference field theory for symbolic summation.
Technical Report 2007-24, SFB F013, J. Kepler University Linz, 2007.
Please direct your comments
or eventual problem reports to webmaster.
SpezialForschungsBereich SFB F013 | Special Research Program of the FWF - Austrian Science Fund
SpezialForschungsBereich SFB F013 | Special Research Program of the FWF - Austrian Science Fund