Publications of the Project F1305
TechRepMisc - 2005
September 27, 2008
TechRepMisc - 2005
September 27, 2008
Bibliography
- 1
- J. P. Bell and S. Gerhold.
The positivity set of a recurrence sequence.
Technical Report 2005-11, SFB F013, Johannes Kepler Universität, 2005. - 2
- P. Flajolet, S. Gerhold, and B. Salvy.
On the non-holonomic character of logarithms, powers, and theth prime function.
Technical report, J. Kepler University Linz, 2005.
SFB report. - 3
- S. Gerhold.
On some non-holonomic sequences.
Technical report, J. Kepler University Linz, 2005.
SFB report. - 4
- S. Gerhold and M. Kauers.
A computer proof of Turán's inequality.
Technical Report 2005-15, SFB F013, Johannes Kepler Universität, 2005. - 5
- S. Gerhold and M. Kauers.
A computer proof of turan's inequality.
Technical Report 2005-15, SFB F013, Altenbergerstrasse 69, September 2005. - 6
- S. Gerhold and M. Kauers.
A procedure for proving special function inequalities involving a discrete parameter.
Technical Report 2005-02, SFB F013, Johannes Kepler Universität, 2005. - 7
- S. Gerhold and M. Kauers.
A procedure for proving special function inequalities involving a discrete parameter.
SFB Report 2005-02, Johannes-Kepler-University, Altenberger Strasse 69, A-4040 Linz, January 2005. - 8
- M. Kauers.
Algorithms for nonlinear higher order difference equations.
Technical Report 05-10, RISC Report Series, University of Linz, Austria, October 2005.
Ph.D. thesis. - 9
- M. Kauers.
Solving difference equations whose coefficients are not transcendental.
Technical Report 2005-20, SFB F013, Johannes Kepler Universität, 2005. - 10
- M. Kauers.
Solving difference equations whose coefficients are not transcendental.
Technical Report 2005-20, SFB F013, December 2005. - 11
- M. Kauers.
SumCracker -- a package for manipulating symbolic sums and related objects.
Technical Report 2005-21, SFB F013, Johannes Kepler Universität, 2005. - 12
- M. Kauers.
Sumcracker: A package for manipulating symbolic sums and related objects.
Technical Report 2005-21, SFB F013, December 2005. - 13
- M. Kauers and C. Schneider.
Application of unspecified sequences in symbolic summation.
Technical Report 2005-19, SFB F013, Johannes Kepler Universität, 2005. - 14
- M. Kuba, H. Prodinger, and
C. Schneider.
Generalized reciprocity laws for sums of harmonic numbers.
Technical Report 2005-17, J. Kepler University Linz, 2005.
SFB-Report. - 15
- C. Schneider.
Finding telescopers with minimal depth for indefinite nested sum and product expressions (extended version).
Technical Report 2005-08, J. Kepler University Linz, 2005.
SFB-Report. - 16
- C. Schneider and M. Kauers.
Application of unspecified sequences in symbolic summation.
Technical Report 2005-19, SFB F013, December 2005. - 17
- B. Zimmermann.
Computing recurrences for parameter-dependent integrals.
Poster at the Fourth International School on Computer Algebra CoCoA 4, May 2005.
Please direct your comments
or eventual problem reports to webmaster.
SpezialForschungsBereich SFB F013 | Special Research Program of the FWF - Austrian Science Fund
SpezialForschungsBereich SFB F013 | Special Research Program of the FWF - Austrian Science Fund