Publications of the Project F1305
TechRepMisc - 2004
September 27, 2008
TechRepMisc - 2004
September 27, 2008
Bibliography
- 1
- G. E. Andrews, P. Paule, and A. Riese.
MacMahon's Partition Analysis X: Plane Partitions with Diagonals.
SFB-Report 2004-2, J. Kepler University Linz, January 2004. - 2
- G. E. Andrews, P. Paule, and A. Riese.
MacMahon's Partition Analysis XI: Hexagonal Plane Partitions.
SFB-Report 2004-4, J. Kepler University Linz, March 2004. - 3
- G. E. Andrews, P. Paule, and
C. Schneider.
Plane partitions VI: Stembridge's TSPP theorem.
SFB-Report 2004-09, J. Kepler University, Linz, 2004. - 4
- S. Gerhold.
On the signs of recurrence sequences.
Technical report, SFB F013 Numerical und Symbolic Scientific Computing, 2004. - 5
- M. Kauers.
Computer proofs for polynomial identities in arbitrary many variables.
Technical report, SFB Numeric and Symbolical Computation, March 2004. - 6
- M. Kauers.
Zet user manual.
Technical Report 2004-05, SFB F13, 2004. - 7
- M. Kauers and C. Schneider.
Indefinite summation with unspecified sequences.
SFB-Report 2004-13, J. Kepler University, Linz, 2004. - 8
- R. Pemantle and C. Schneider.
When is 0.999... equal to 1?
SFB-Report 2004-30, J. Kepler University, Linz, 2004. - 9
- C. Schneider.
A new sigma approach to multi-summation.
SFB-Report 2004-10, J. Kepler University, Linz, June 2004. - 10
- C. Schneider.
Solving parameterized linear difference equations in terms of indefinite nested sums and products.
SFB-Report 2004-29, J. Kepler University, Linz, 2004. - 11
- C. Schneider.
The summation package sigma: Underlying principles and a rhombus tiling application.
SFB-Report 2004-28, J. Kepler University, Linz, 2004. - 12
- C. Schneider.
Symbolic summation with single-nested sum extensions (extended version).
SFB-Report 2004-7, J. Kepler University, Linz, 2004.
Published in Proc. ISSAC'04.
Please direct your comments
or eventual problem reports to webmaster.
SpezialForschungsBereich SFB F013 | Special Research Program of the FWF - Austrian Science Fund
SpezialForschungsBereich SFB F013 | Special Research Program of the FWF - Austrian Science Fund