Publications of the Project F1305
TechRepMisc
September 27, 2008
TechRepMisc
September 27, 2008
Bibliography
- 1
- H. Alzer, S. Gerhold, M. Kauers, and
A. Lupas.
On turan's inequality for legendre polynomials.
Technical Report 2006-16, SFB F13, 2006. - 2
- G. E. Andrews and P. Paule.
MacMahon's Dream.
Technical report, SFB 013, September 2006.
SFB-report 2006-26. - 3
- G. E. Andrews and P. Paule.
MacMahon's Partition Analysis XI: The Search for Modular Forms.
Technical report, SFB 013, 2006.
SFB-report 2006-27. - 4
- G. E. Andrews and P. Paule.
MacMahon's Partition Analysis XII: Plane Partitions.
Technical report, SFB 013, September 2006.
SFB-report 2006-28. - 5
- G. E. Andrews, P. Paule, and A. Riese.
MacMahon's Partition Analysis X: Plane Partitions with Diagonals.
SFB-Report 2004-2, J. Kepler University Linz, January 2004. - 6
- G. E. Andrews, P. Paule, and A. Riese.
MacMahon's Partition Analysis XI: Hexagonal Plane Partitions.
SFB-Report 2004-4, J. Kepler University Linz, March 2004. - 7
- G. E. Andrews, P. Paule, and
C. Schneider.
Plane partitions VI: Stembridge's TSPP theorem.
SFB-Report 2004-09, J. Kepler University, Linz, 2004. - 8
- A. Becirovic, P. Paule, V. Pillwein,
A. Riese, C. Schneider, and
J. Schöberl.
Hypergeometric Summation Methods for High Order Finite Elements.
Technical Report 2006-8, SFB F013, Johannes Kepler Universität, 2006. - 9
- J. P. Bell and S. Gerhold.
The positivity set of a recurrence sequence.
Technical Report 2005-11, SFB F013, Johannes Kepler Universität, 2005. - 10
- I. Bierenbaum, J. Blümlein,
S. Klein, and C. Schneider.
Difference equations in massive higher order calculations.
Technical Report 2007-19, SFB F013, J. Kepler University Linz, 2007. - 11
- K. Driver, H. Prodinger, C. Schneider,
and A. Weideman.
Padé Approximations to the Logarithms II: Identities, Recurrences, and Symbolic Computation.
Technical Report 03-07, RISC-Linz, J. Kepler University, Linz, 2003. - 12
- K. Driver, H. Prodinger, C. Schneider,
and A. Weideman.
Padé Approximations to the Logarithms III: Alternative Methods and Additional Results.
Technical Report 03-08, RISC-Linz, J. Kepler University, Linz, 2003. - 13
- P. Flajolet, S. Gerhold, and B. Salvy.
On the non-holonomic character of logarithms, powers, and theth prime function.
Technical report, J. Kepler University Linz, 2005.
SFB report. - 14
- S. Gerhold.
On the signs of recurrence sequences.
Technical report, SFB F013 Numerical und Symbolic Scientific Computing, 2004. - 15
- S. Gerhold.
On some non-holonomic sequences.
Technical report, J. Kepler University Linz, 2005.
SFB report. - 16
- S. Gerhold, L. Glebsky, C. Schneider,
H. Weiss, and B. Zimmermann.
Limit states for one-dimensional schelling segregation models.
SFB-Report 2006-39, J. Kepler University, Linz, 2006. - 17
- S. Gerhold and M. Kauers.
A computer proof of Turán's inequality.
Technical Report 2005-15, SFB F013, Johannes Kepler Universität, 2005. - 18
- S. Gerhold and M. Kauers.
A computer proof of turan's inequality.
Technical Report 2005-15, SFB F013, Altenbergerstrasse 69, September 2005. - 19
- S. Gerhold and M. Kauers.
A procedure for proving special function inequalities involving a discrete parameter.
Technical Report 2005-02, SFB F013, Johannes Kepler Universität, 2005. - 20
- S. Gerhold and M. Kauers.
A procedure for proving special function inequalities involving a discrete parameter.
SFB Report 2005-02, Johannes-Kepler-University, Altenberger Strasse 69, A-4040 Linz, January 2005. - 21
- S. Gerhold, M. Kauers, and
J. Schöberl.
On a conjectured inequality for a sum of Legendre polynomials.
Technical Report 2006-11, SFB F013, Johannes Kepler Universität, 2006. - 22
- M. Kauers.
Computing limits of sequences.
Poster presentation at ISSAC 2003, Philadelphia, August 2003. - 23
- M. Kauers.
Computer proofs for polynomial identities in arbitrary many variables.
Technical report, SFB Numeric and Symbolical Computation, March 2004. - 24
- M. Kauers.
Zet user manual.
Technical Report 2004-05, SFB F13, 2004. - 25
- M. Kauers.
Algorithms for nonlinear higher order difference equations.
Technical Report 05-10, RISC Report Series, University of Linz, Austria, October 2005.
Ph.D. thesis. - 26
- M. Kauers.
Solving difference equations whose coefficients are not transcendental.
Technical Report 2005-20, SFB F013, Johannes Kepler Universität, 2005. - 27
- M. Kauers.
Solving difference equations whose coefficients are not transcendental.
Technical Report 2005-20, SFB F013, December 2005. - 28
- M. Kauers.
SumCracker -- a package for manipulating symbolic sums and related objects.
Technical Report 2005-21, SFB F013, Johannes Kepler Universität, 2005. - 29
- M. Kauers.
Sumcracker: A package for manipulating symbolic sums and related objects.
Technical Report 2005-21, SFB F013, December 2005. - 30
- M. Kauers.
Computer algebra and power series with positive coefficients.
Technical Report 2006-33, SFB F013, Altenbergerstrasse 69, November 2006. - 31
- M. Kauers.
Problem 11258.
American Mathematical Monthly, December 2006. - 32
- M. Kauers.
Shift equivalence of p-finite sequences.
Technical Report 2006-21, SFB F13, 2006. - 33
- M. Kauers.
Computer algebra for special function inequalities.
Technical Report 2007-07, SFB F13, Altenbergerstrasse 69, March 2007. - 34
- M. Kauers.
Summation algorithms for stirling number identities.
Technical Report 2007-11, SFB F013, Altenbergerstrasse 69, 2007. - 35
- M. Kauers and C. Koutschan.
A mathematica package for q-holonomic sequences and power series.
Technical Report 2007-16, SFB F013, 2007. - 36
- M. Kauers and V. Levandovskyy.
An interface between mathematica and singular.
Technical Report 2006-29, SFB F013, 2006. - 37
- M. Kauers and P. Paule.
A Computer Proof of Moll's Log-Concavity Conjecture.
Technical Report 2006-15, SFB F013, Johannes Kepler Universität, 2006. - 38
- M. Kauers and C. Schneider.
Indefinite summation with unspecified sequences.
SFB-Report 2004-13, J. Kepler University, Linz, 2004. - 39
- M. Kauers and C. Schneider.
Application of unspecified sequences in symbolic summation.
Technical Report 2005-19, SFB F013, Johannes Kepler Universität, 2005. - 40
- M. Kauers and C. Schneider, February 2007.
- 41
- M. Kauers and C. Schneider.
Automated proofs for some stirling number identities.
Technical Report 2007-23, SFB F013, J. Kepler University Linz, 2007. - 42
- M. Kauers and C. Schneider.
Symbolic summation with radical expressions.
Technical Report 2007-02, SFB F13, Altenbergerstrasse 69, January 2007. - 43
- C. Koutschan.
Regular languages and their generating functions: The inverse problem.
Technical Report 2006-25, SFB F013, Johannes Kepler University Linz, 2006. - 44
- C. Koutschan.
Computer algebra systems - a practical guide (michael wester, editor), 2007. - 45
- C. Koutschan.
Linear recurrences and power series division.
Technical Report 2007-20, SFB F013, Johannes Kepler University, A-4040 Linz, 2007. - 46
- M. Kuba, H. Prodinger, and
C. Schneider.
Generalized reciprocity laws for sums of harmonic numbers.
Technical Report 2005-17, J. Kepler University Linz, 2005.
SFB-Report. - 47
- S. Moch and C. Schneider.
Feynman integrals and difference equations.
Technical Report 2007-22, SFB F013, J. Kepler University Linz, 2007. - 48
- R. Osburn and C. Schneider.
Gaussian hypergeometric series and extensions of supercongruences.
SFB-Report 2006-38, J. Kepler University, Linz, 2006. - 49
- P. Paule and C. Schneider.
Truncating binomial series with symbolic summation.
SFB-Report 2006-42, J. Kepler University, Linz, 2006. - 50
- R. Pemantle and C. Schneider.
When is 0.999... equal to 1?
SFB-Report 2004-30, J. Kepler University, Linz, 2004. - 51
- S. Radu.
New upper bounds on rubik's cube.
Technical Report 07-08, Combinatorics, 2007. - 52
- A. Riese.
Omega -- A Mathematica implementation of partition analysis, 1998.
Available via: http://www.risc.uni-linz.ac.at/research/combinat/risc/software/Omega. - 53
- A. Riese.
RatDiff -- A Mathematica implementation of Mark van Hoeij's algorithm for finding rational solutions of linear difference equations, 1998.
Available via: http://www.risc.uni-linz.ac.at/research/combinat/risc/software/RatDiff. - 54
- A. Riese.
Computer algebra algorithms for symbolic summation.
Poster presentation at International Workshop on Numerical and Symbolic Scientific Computing, Strobl, Austria, June 2003. - 55
- C. Schneider.
A collection of denominator bounds to solve parameterized linear difference equations in-fields.
SFB-Report 02-20, J. Kepler University, Linz, 2002. - 56
- C. Schneider.
Degree bounds to find polynomial solutions of parameterized linear difference equations in-fields.
SFB-Report 02-21, J. Kepler University, Linz, 2002. - 57
- C. Schneider.
How one can play with sums, presented at the 8th Rhine workshop on computer algebra.
RISC-Report 02-24, J. Kepler University, Linz, 2002. - 58
- C. Schneider.
Solving parameterized linear difference equations in-fields.
SFB-Report 02-19, J. Kepler University, Linz, 2002. - 59
- C. Schneider.
A unique representation of solutions of parameterized linear difference equations in-fields.
SFB-Report 02-22, J. Kepler University, Linz, 2002. - 60
- C. Schneider.
A note on the number of rhombus tilings of a symmetric hexagon and symbolic summation.
Technical Report 03-09, RISC-Linz, J. Kepler University, Linz, 2003. - 61
- C. Schneider.
Product representations in-fields.
SFB-Report 2003-10, J. Kepler University, Linz, 2003. - 62
- C. Schneider.
A new sigma approach to multi-summation.
SFB-Report 2004-10, J. Kepler University, Linz, June 2004. - 63
- C. Schneider.
Solving parameterized linear difference equations in terms of indefinite nested sums and products.
SFB-Report 2004-29, J. Kepler University, Linz, 2004. - 64
- C. Schneider.
The summation package sigma: Underlying principles and a rhombus tiling application.
SFB-Report 2004-28, J. Kepler University, Linz, 2004. - 65
- C. Schneider.
Symbolic summation with single-nested sum extensions (extended version).
SFB-Report 2004-7, J. Kepler University, Linz, 2004.
Published in Proc. ISSAC'04. - 66
- C. Schneider.
Finding telescopers with minimal depth for indefinite nested sum and product expressions (extended version).
Technical Report 2005-08, J. Kepler University Linz, 2005.
SFB-Report. - 67
- C. Schneider.
Apery's double sum is plain sailing indeed.
SFB-Report 2006-41, J. Kepler University, Linz, 2006. - 68
- C. Schneider.
Parameterized telescoping proves algebraic independence of sums.
SFB-Report 2006-40, J. Kepler University, Linz, 2006. - 69
- C. Schneider.
Simplifying sums in-extensions.
Technical Report 2006-13, J. Kepler University, 2006.
SFB-Report. - 70
- C. Schneider.
Symbolic summation assists combinatorics.
SFB-Report 2006-37, J. Kepler University, Linz, 2006. - 71
- C. Schneider.
Parameterized telescoping proves algebraic independence of sums.
Poster presentation at FPSAC 2007, 2007. - 72
- C. Schneider.
A refined difference field theory for symbolic summation.
Technical Report 2007-24, SFB F013, J. Kepler University Linz, 2007. - 73
- C. Schneider and M. Kauers.
Application of unspecified sequences in symbolic summation.
Technical Report 2005-19, SFB F013, December 2005. - 74
- B. Zimmermann.
A Sister-Celine-type algorithm for definite summation and integration.
Poster presentation at ISSAC 2003, Philadelphia, August 2003. - 75
- B. Zimmermann.
Symbolic integration and summation of special functions.
Poster presentation at International Workshop on Numerical and Symbolic Scientific Computing, Strobl, Austria, June 2003. - 76
- B. Zimmermann.
Computing recurrences for parameter-dependent integrals.
Poster at the Fourth International School on Computer Algebra CoCoA 4, May 2005.
Please direct your comments
or eventual problem reports to webmaster.
SpezialForschungsBereich SFB F013 | Special Research Program of the FWF - Austrian Science Fund
SpezialForschungsBereich SFB F013 | Special Research Program of the FWF - Austrian Science Fund