Publications of the Project F1305
Article - 2007
September 27, 2008
Article - 2007
September 27, 2008
Bibliography
- 1
- H. Alzer, S. Gerhold, M. Kauers, and
A. Lupas.
On Turan's inequality for Legendre polynomials.
Expositiones Mathematicae, 25(2):181-186, May 2007. - 2
- G. E. Andrews and P. Paule.
Macmahon's partition analysis XI: Broken diamonds and modular forms.
Acta Arith., 126:281-294, 2007. - 3
- J. P. Bell and S. Gerhold.
On the positivity set of a linear recurrence sequence.
Israel J. Math., 157:333-345, 2007. - 4
- J. P. Bell, S. Gerhold, M. Klazar, and
F. Luca.
Non-holonomicity of sequences defined via elementary functions.
Annals of Combinatorics, 2007.
To appear. - 5
- S. Gerhold, L. Glebsky, C. Schneider,
H. Weiss, and B. Zimmermann.
Limit states for one-dimensional schelling segregation models.
Communications in Nonlinear Science and Numerical Simulations, 2007.
To appear. - 6
- M. Kauers.
An algorithm for deciding zero equivalence of nested polynomially recurrent sequences.
Transactions on Algorithms, 3(2):1-13, 2007.
article 18. - 7
- M. Kauers and P. Paule.
A computer proof of Moll's log-concavity conjecture.
Proceedings of the AMS, 135(12):3847-3856, 2007. - 8
- C. Koutschan.
Regular languages and their generating functions: The inverse problem.
Theoretical Computer Science, pages 1-10, 2007.
To appear. - 9
- P. Paule and C. Schneider.
Truncating binomial series with symbolic summation.
INTEGERS. Electronic Journal of Combinatorial Number Theory, 7:1-9, 2007. - 10
- C. Schneider.
Apéry's double sum is plain sailing indeed.
Electron. J. Combin., 14:1-3, 2007.
N5. - 11
- C. Schneider.
Simplifying sums in-extensions.
J. Algebra Appl., 6(3):415-441, 2007. - 12
- C. Schneider.
Symbolic summation assists combinatorics.
Sem. Lothar. Combin., 56:1-36, 2007.
Article B56b. - 13
- C. Schneider and R. Pemantle.
When is 0.999... equal to 1?
Amer. Math. Monthly, 114(4):344-350, 2007.
Please direct your comments
or eventual problem reports to webmaster.
SpezialForschungsBereich SFB F013 | Special Research Program of the FWF - Austrian Science Fund
SpezialForschungsBereich SFB F013 | Special Research Program of the FWF - Austrian Science Fund