Publications of the Project F1302
UnpublishedColloquium
September 27, 2008
UnpublishedColloquium
September 27, 2008
Bibliography
- 1
- B. Buchberger.
Intensive Course on Gröbner Bases (30 hours).
Universitad de Oriente, Santiago, Cuba, 1998. - 2
- B. Buchberger.
Symbolic Computation: Ein überblick.
Universität Hamburg, Institut für Informatik, 1998. - 3
- B. Buchberger.
Theorema: Automatisches Beweisen für Lehre und Forschung.
Universität Leipzig, Mathematisches Institut, 1998. - 4
- B. Buchberger.
Theorema: Computer-Supported Mathematical Proving.
Annual Meeting of the Mathematics Department of the University of Wales, UK, 1998. - 5
- B. Buchberger.
Theorema: Computer-Unterstuetztes mathematisches Beweisen, 1998-4-24.
Universität Karlsruhe, Institut für Informatik, 1998. - 6
- B. Buchberger.
The Theorema Project.
Universidad de Oriente, Santiogo, Cuba, 1998. - 7
- B. Buchberger.
The Theorema Project: An Introduction.
Research Institute IRST, Trento, 1998-2-19, 1998. - 8
- B. Buchberger.
Can Computer Replace Mathematicians?
Symposium ``Symbolic Computation'', TU Wien, April 1999. - 9
- B. Buchberger.
Gröbner Basen: Die ersten Jahren.
Colloquium ``100. Geburtstag von Wolfgang Gröbner'', Universität Innsbruck, May 1999. - 10
- B. Buchberger.
Gröbner bases: Theory and applications.
University of Timisoara, Romania, April 1999. - 11
- B. Buchberger.
Theorema: A System for Supporting Mathematical Proving.
North Carolina State University, Department of Mathematics, USA, October 1999. - 12
- B. Buchberger.
Theorema: A System for Supporting Mathematical Proving.
University of Illinois at Urbana-Champaign, Department of Mathematics, USA, October 1999. - 13
- B. Buchberger.
Theorema: A new kind of mathematical system.
University of Timisoara, Romania, April 1999. - 14
- B. Buchberger.
Theorema: A new kind of mathematical system.
University of Cluj-Napoca, April 1999. - 15
- B. Buchberger.
Theorema: A new kind of mathematical system.
University of Debrecen, Hungary, May 1999. - 16
- B. Buchberger.
Theorema: A progress report.
GMD Bonn, Institut für Algorithmen, Bonn, Germany, June 1999. - 17
- B. Buchberger.
Theorema a system for supporting mathematical proving.
Canergie Mellon University, Department of Mathematics, Pittsburgh, USA, October 1999. - 18
- B. Buchberger.
Computer Algebra: The End of Mathematics?
Freie Universität Berlin, Germany, May 2000. - 19
- B. Buchberger.
Gröbner Bases and Automated Theorem Proving.
Intensive Course at the University of Texas at Beaumont, March 2000. - 20
- B. Buchberger.
Theorema: Beyond Computer Algebra.
University of Texas at Beaumont, February 2000. - 21
- B. Buchberger.
Theorema: Automatisches beweisen für die praxis.
Universität Salzburg, Institut für Mathematik, June 15, 2000. - 22
- B. Buchberger.
Gröbner Bases and automated theorem proving.
Invited colloquium talk at Toho University, Mathematical Institute, Tokyo - Tsudanuma, October 9 2004. - 23
- B. Buchberger.
Automated mathematical theory exploration: How far can we go?
Invited colloquium talk at DERI, Innsbruck, December 2006. - 24
- B. Buchberger.
Die zukunft der algorithmischen mathematik: Kann mathematische forschung automatisiert werden?
Invited colloquium talk at OCG, OVE, Graz, November 2006. - 25
- M. Giese.
A logic with subtypes to talk about java objects.
Invited colloquium talk at UCD Systems Research Group, Dublin, Ireland, August 2006. - 26
- M. Giese.
Practical reflection for formal mathematics in Theorema,.
Invited colloquium talk at SCORE Workshop on Proving and Solving, Aizu-Wakamatsu, Japan, 15.03.06 - 17.03.06, March 2006. - 27
- M. Giese.
Saturation up to redundancy for tableau and sequent calculi.
Logic & Computation Workshop, Alta, Norway, January 2007. - 28
- M. Giese.
Some facts about the implementation of the KeY system.
Logic & Computation Workshop, Alta, Norway, January 2007.
Please direct your comments
or eventual problem reports to webmaster.
SpezialForschungsBereich SFB F013 | Special Research Program of the FWF - Austrian Science Fund
SpezialForschungsBereich SFB F013 | Special Research Program of the FWF - Austrian Science Fund